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1. Introduction

In engineering and management sciences studies, it is important to test whether the underlying

distribution has a particular form. Most statistical methods assume an underlying distribution in

the derivation of their results and inferences. Therefore, methods for checking that the underlying

distribution has a special form, i.e. goodness of fit tests, is necessary.

Different methods for goodness of fit tests are introduced by researchers in view of goodness of

fit tests based on empirical distribution function, empirical characteristic function, entropy and

Kullback-Leibler information, maximum correlations, and divergences.

The goodness of fit tests has been discussed by many authors including Saniga and Miles (1979),

Dudewicz and Van der Meulen (1981), Read (1984), D’Agostino and Stephens (1986), Arizono and

Ohta (1989), Baglivo et al. (1992), Huang (1997), Aerts et al. (1999), Kim (2000), Esteban et al.

(2001), Zhang (2002), Fortiana and Grané (2003), Chen et al. (2003), Pouet (2004), Choi et al.

(2004), Hunter et al. (2008), Christensen and Sun (2010), Cheng et al. (2010), Alizadeh Noughabi

(2010), Ma et al. (2011), and Alizadeh Noughabi and Arghami (2011a,b, 2013a,b,c). Moreover,

some tests for censored data are proposed by authors; see, for example, Balakrishnan et al. (2004),

Balakrishnan et al. (2007), Habibi Rad et al. (2011), Pakyari and Balakrishnan (2012), Lin et al.

(2008), and Pakyari and Balakrishnan (2013).

* Corresponding author. E-mail address: alizadehhadi@birjand.ac.ir (H. Alizadeh Noughabi)
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The Gini coefficient is one of the indices most widely used to measure of income inequality. It is
defined as:

G= 1− 2

∫ 1

0

L(p)dp,

where is the well-known Lorenz function,

L(p) =
1

E(X)

∫ p

0

F−1(t)dt.

An equivalent expression for the Gini index is used by Giles (2004) as

G=

∫M
m
F (y)(1−F (y))dy

µ
,

where the variable is defined on a real interval (m,M) with 0≤m<M <∞, and µ is the expected
value of the variable.

Suppose that an IID sample of size n is drawn randomly from the population, and Fn denotes the
empirical distribution function. Let x1, x2, . . . , xn be a random sample and x(1) ≤ x(2) ≤ . . .≤ x(n)

be the order statistics obtained from the sample, the usual estimator is

Ĝn =

∫M
m
y(2Fn(y)− 1)dFn(y)

X̄
=

n∑
i=1

(2i−n)x(i)

n
∑n

j=1 xj
.

Gail and Gastwirth (1978) introduced a scale-free goodness of fit test for the exponential distri-
bution based on the Gini statistic. They showed that their test has a good power. Next Jammala-
madaka and Goria (2004) used spacings and introduced a test of goodness of fit based on Gini
index of spacings. In this paper, we introduce a general test of goodness of fit based on the Gini
index of data.

In section 2, a general goodness of fit test based on Gini index is introduced. Also properties of
proposed test are discussed. Several examples of goodness of fit tests of scale and location-scale
families are considered in Sections 3. The power values of the proposed tests compared with the
competitor tests by using simulation study. Section 4 contains the use of the proposed test via real
examples.

2. Test statistics and its properties
Let X1, . . . ,Xn be a random sample from an unknown distribution F with a probability density

function f(x). Let F0(x;θ) be a parametric family of distributions with probability density function
f0(x;θ). The hypothesis of interest is

H0 : f(x) = f0(x;θ), for some θ ∈Θ,

and the alternative to H0 is

H1 : f(x) 6= f0(x;θ), for any θ ∈Θ.

Without loss of generality, by means of the probability integral transformation ui = F0(xi), i =
1,2, . . . , n, we can reduce the above problem of goodness of fit, to testing the hypothesis of unifor-
mity on the unit interval, i.e.,

H0 : f(u) = 1,0<u< 1 against the alternative H0 : f(u) 6= 1,0<u< 1.
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We use the Gini index as a test statistic for the above problem of goodness of fit test. The usual
estimator of Gini index is considered and consequently the proposed test statistic is as

Ĝn =
n∑
i=1

(2i−n)u(i)

n
∑n

j=1 uj

=
n∑
i=1

(2i−n)F0(x(i); θ̂)

n
∑n

j=1F0(xi; θ̂)
,

where θ̂ is a reasonable estimate of θ.
The exact and the asymptotic distributions of Ĝn under the null hypothesis of uniformity are

stated in the following theorems.

Theorem 1. Let u1, u2, . . . , un be a random sample from uniform distribution. Then we have

FĜn
(t) = P (Ĝn ≤ t) =

∫ τ(an)

0

∫ τ(an−1)

0

. . .

∫ τ(a1)

0

e−
∑n

i=1 tjdt1dt2 . . . dtn,

where ai = (n+ 1− i)(i−nt) for 1≤ i≤ n and

τ(aj) =

{
∞ if aj ≤ 0
−
∑n

i=j+1 aiti/aj if aj > 0.

Proof. See Martinez-Camblor and Correal (2009) for more details.
According to Martinez-Camblor and Correal (2009), for very small sample sizes the FĜn

can be
computed easily but the complexity of the problem increases dramatically with sample size (for
n≥ 5 the problem begins to be embarrassing). Therefore, the exact distribution can not be used in
practical problems. The next theorem states that the asymptotic distribution of the test statistic
is normal.

Theorem 2. Let u1, u2, . . . , un be a random sample from uniform distribution. Then we have
the convergence

√
n
Ĝn− 1/3√

8/135

D−→N(0,1).

Proof. See Martinez-Camblor and Correal (2009).

3. Test for some distributions
In this section, we consider normal, exponential, uniform and Laplace distributions and use the

proposed test statistic for testing these distributions.

3.1. Competitor tests
Since the proposed test is a general test, it is natural that the competitors also be general tests.

The competitor tests are chosen from the class of tests discussed in D’Agostino and Stephens
(1986). The test statistics of competitor tests are as follows.

The Kolmogorov–Smirnov, Cramer–von Mises, Kuiper and Anderson-Darling test statistics are
respectively:

KS = max
1≤i≤n

{
i

n
−Zi,Zi−

i− 1

n

}
,

CH =
1

12n
+

n∑
i=1

(
2i− 1

2n
−Zi

)2

,

V = max
1≤i≤n

{
i

n
−Zi

}
+ max

1≤i≤n

{
Zi−

i− 1

n

}
,

AD = −n−
∑n

i=1(2i− 1){ln(Zi) + ln(1−Zn−i+1)}
n

,
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where Zi = F0(x(i); θ̂), i= 1, . . . , n and F0 is the cdf under the null distribution.

3.2. Testing normality
We have the following test statistic for testing normality.

Ĝn =
n∑
i=1

(2i−n)F0(x(i); θ̂)

n
∑n

i=1F0(xi; θ̂)

where F0 is normal distribution function and θ̂= (µ̂, σ̂) where

µ̂= X̄ = 1
n

∑n

i=1Xi σ̂= s=
√

1
n

∑n

i=1(Xi − X̄)2

It is obvious that the test statistic is invariant with respect to location and scale transformations.
Monte Carlo methods were used to obtain the critical values of our procedure. Table 1 gives the

critical values of the proposed statistic for testing normality.

Table 1. Critical values of the proposed statistic for testing normality.

Significance level
n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
5 0.4317 0.4471 0.4602 0.4753 0.5319 0.5339 0.5351 0.5359
10 0.3499 0.3643 0.3770 0.3903 0.4451 0.4481 0.4500 0.4517
15 0.3322 0.3440 0.3544 0.3649 0.4135 0.4170 0.4195 0.4218
20 0.3256 0.3357 0.3441 0.3532 0.3972 0.4007 0.4032 0.4057
25 0.3221 0.3319 0.3390 0.3469 0.3870 0.3905 0.3930 0.3954
30 0.3204 0.3288 0.3355 0.3426 0.3799 0.3832 0.3857 0.3883
40 0.3199 0.3260 0.3316 0.3379 0.3706 0.3738 0.3761 0.3788
50 0.3190 0.3248 0.3298 0.3352 0.3648 0.3679 0.3701 0.3728

Table 2. Power comparisons of normal goodness of fit tests with size 0.05. Ĝ1
n denotes One-sided and Ĝ2

n denotes
Two-sided

n=10 n=20

Alternatives KS CH V AD Ĝ1
n Ĝ2

n KS CH V AD Ĝ1
n Ĝ2

n

Normal 0.051 0.051 0.054 0.047 0.050 0.050 0.049 0.051 0.048 0.051 0.050 0.050
Laplace 0.142 0.158 0.142 0.159 0.181 0.127 0.326 0.425 0.353 0.467 0.336 0.243
Logistic 0.073 0.080 0.071 0.083 0.090 0.069 0.087 0.106 0.090 0.113 0.142 0.098
Cauchy 0.580 0.618 0.589 0.618 0.605 0.538 0.847 0.880 0.865 0.882 0.889 0.853
t2 0.273 0.304 0.274 0.310 0.318 0.256 0.457 0.518 0.486 0.535 0.574 0.495
t3 0.164 0.182 0.163 0.190 0.207 0.160 0.260 0.309 0.277 0.327 0.382 0.307
t5 0.100 0.112 0.099 0.116 0.125 0.093 0.131 0.161 0.141 0.174 0.219 0.159
Uniform 0.066 0.074 0.081 0.080 0.157 0.097 0.100 0.144 0.150 0.171 0.349 0.249
Beta(2,2) 0.046 0.044 0.048 0.046 0.091 0.057 0.053 0.058 0.064 0.058 0.160 0.096

The powers of the normality tests based on Ĝn, KS, V , CH and AD statistics for some alter-
natives and samples of size n= 10,20 are estimated and reported in Table 2.

We observe that the proposed test performs very well compared with the other tests.
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3.3. Testing exponentiality
We have the following test statistic for testing exponentiality.

Ĝn =
n∑
i=1

(2i−n)F0(x(i); θ̂)

n
∑n

i=1F0(xi; θ̂)
,

where F0 is the exponential distribution function and θ̂= 1
n

∑n

i=1Xi.

The test statistic is invariant with respect to transformations of scale. By Monte Carlo methods
the critical points and power values of our test are obtained and reported in Tables 3 and 4,
respectively.

Table 3. Critical values of the proposed statistic for testing exponentiality.

Significance level
n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
5 0.2848 0.3079 0.3309 0.3588 0.6034 0.6394 0.6714 0.7127
10 0.2578 0.2795 0.2982 0.3217 0.4948 0.5202 0.5433 0.5689
15 0.2587 0.2760 0.2926 0.3115 0.4546 0.4758 0.4937 0.5152
20 0.2633 0.2782 0.2928 0.3094 0.4328 0.4504 0.4662 0.4850
25 0.2671 0.2807 0.2936 0.3081 0.4186 0.4344 0.4487 0.4650
30 0.2690 0.2827 0.2939 0.3078 0.4090 0.4232 0.4359 0.4503
40 0.2738 0.2856 0.2959 0.3079 0.3959 0.4089 0.4200 0.4330
50 0.2772 0.2887 0.2982 0.3091 0.3875 0.3992 0.4083 0.4198

Table 4. Power comparisons of exponential goodness of fit tests with size 0.05. Ĝ1
n denotes One-sided and Ĝ2

n denotes
Two-sided

n=10 n=20

Alternatives KS CH V AD Ĝ1
n Ĝ2

n KS CH V AD G1 G2
Exponential 0.051 0.051 0.054 0.047 0.050 0.050 0.051 0.048 0.049 0.052 0.050 0.050
Gamma(2) 0.211 0.240 0.200 0.176 0.376 0.242 0.406 0.486 0.372 0.441 0.673 0.523
Gamma(3) 0.457 0.536 0.445 0.448 0.715 0.551 0.811 0.891 0.780 0.876 0.967 0.921
Weibull(2) 0.500 0.609 0.515 0.518 0.742 0.593 0.848 0.930 0.850 0.915 0.971 0.932
Weibull(3) 0.899 0.968 0.931 0.947 0.988 0.963 0.999 1.000 1.000 1.000 1.000 1.000
Normal (5,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Uniform 0.280 0.362 0.356 0.289 0.384 0.272 0.528 0.673 0.668 0.619 0.622 0.497
Beta(2,1) 0.837 0.947 0.934 0.921 0.956 0.904 0.995 0.999 0.999 0.999 1.000 0.999
Beta(2,2) 0.622 0.764 0.699 0.691 0.839 0.720 0.933 0.987 0.971 0.983 0.992 0.978
Log-normal 0.097 0.101 0.088 0.079 0.097 0.065 0.138 0.152 0.143 0.134 0.129 0.083
χ2
(1) 0.260 0.290 0.217 0.475 0.503 0.405 0.471 0.524 0.391 0.701 0.748 0.656

3.4. Testing uniformity

We have the following test statistic for testing uniformity.
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Ĝn =
n∑
i=1

(2i−n)u(i)

n
∑n

i=1 ui

The critical values of our test are given in Table 5.

Table 5. Critical values of the proposed statistic for testing uniformity.

Significance level
n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
5 0.2742 0.2970 0.3205 0.3516 0.6206 0.6607 0.6976 0.7362
10 0.2474 0.2699 0.2898 0.3146 0.5084 0.5379 0.5643 0.5920
15 0.2483 0.2680 0.2855 0.3063 0.4651 0.4888 0.5087 0.5334
20 0.2516 0.2690 0.2848 0.3030 0.4418 0.4615 0.4782 0.4990
25 0.2563 0.2713 0.2858 0.3026 0.4270 0.4450 0.4597 0.4770
30 0.2591 0.2743 0.2878 0.3033 0.4160 0.4325 0.4472 0.4641
40 0.2648 0.2787 0.2900 0.3037 0.4020 0.4165 0.4292 0.4433
50 0.2717 0.2833 0.2933 0.3055 0.3932 0.4061 0.4173 0.4308

Table 6. Power comparisons of uniform goodness of fit tests with size 0.05.

n=10 n=20

Alternatives KS CH V AD Ĝ1
n Ĝ2

n KS CH V AD Ĝ1
n Ĝ2

n

Uniform 0.051 0.051 0.052 0.048 0.050 0.050 0.048 0.049 0.049 0.053 0.050 0.050
Beta(2,1) 0.390 0.440 0.245 0.421 0.549 0.400 0.686 0.759 0.474 0.752 0.864 0.762
Beta(3,1) 0.806 0.866 0.569 0.857 0.908 0.815 0.988 0.996 0.934 0.996 0.999 0.995
Beta(3,2) 0.204 0.180 0.349 0.122 0.634 0.462 0.499 0.486 0.682 0.443 0.943 0.871
Beta(3,.5) 0.990 0.997 0.917 0.998 0.990 0.972 1.000 0.999 1.000 1.000 1.000 1.000
Beta(2,.5) 0.894 0.938 0.666 0.960 0.874 0.782 0.995 0.999 0.959 0.999 0.995 0.989
Beta(2,2) 0.041 0.026 0.182 0.014 0.201 0.110 0.065 0.047 0.358 0.039 0.394 0.252
Beta(3,3) 0.046 0.026 0.410 0.012 0.442 0.281 0.148 0.136 0.769 0.151 0.793 0.643

The estimated powers of the uniformity tests based on Ĝn, KS, V , CH and AD statistics for
samples of size n= 10,20 are reported in Table 6.

We see that the proposed test performs very well compared with the other tests. The difference
of powers the proposed test and other tests are substantial.

3.5. Test for Laplace distribution
The hypothesis of interest is

H0 : f(x) = f0(x;α,β) = 1
2β2

exp
{
− |x−α|

β

}
,−∞<x<∞ for some (α,β)∈ Θ = R×R+,

where α and β are unknown. The alternative to H0 is

H1 : f(x) 6= f0(x;α,β), for any (α,β)∈Θ.

The test statistics is:

Ĝn =
n∑
i=1

(2i−n)F0(x(i); θ̂)

n
∑n

i=1F0(xi; θ̂)
,
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where F0 is Laplace distribution function and θ̂= (α̂, β̂) where

â=median(x1, x2, . . . , xn) ; β̂ = 1
n

∑n

i=1 |xi− α̂|.

It is obvious that the test statistic is invariant with respect to location and scale transformations.
The critical values of our procedure are obtained by Monte Carlo methods. Table 7 gives the

critical values of the proposed statistic.

Table 7. Critical values of the proposed statistic for test of Laplace distribution.

Significance level
n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
5 0.3930 0.4132 0.4329 0.4573 0.5758 0.5824 0.5869 0.5908
10 0.3446 0.3605 0.3730 0.3872 0.4620 0.4694 0.4750 0.4805
15 0.3250 0.3364 0.3470 0.3586 0.4309 0.4391 0.4456 0.4522
20 0.3224 0.3315 0.3403 0.3500 0.4085 0.4152 0.4203 0.4264
25 0.3156 0.3255 0.3332 0.3423 0.3987 0.4054 0.4106 0.4169
30 0.3161 0.3246 0.3315 0.3393 0.3885 0.3941 0.3992 0.4046
40 0.3149 0.3217 0.3279 0.3347 0.3780 0.3832 0.3874 0.3923
50 0.3149 0.3211 0.3265 0.3323 0.3713 0.3762 0.3802 0.3850

The powers of the normality tests based on Ĝn, KS, V , CH and AD statistics for some alter-
natives and samples of size n= 10,20 are estimated and reported in Table 8.

We observe that the proposed tests perform very well compared with the other tests for some
alternatives.

Table 8. Power comparisons of Laplace goodness of fit tests with size 0.05.

n=10 n=20

Alternatives KS CH V AD Ĝ1
n Ĝ2

n KS CH V AD Ĝ1
n Ĝ2

n

Normal 0.051 0.051 0.054 0.047 0.086 0.058 0.089 0.084 0.103 0.073 0.125 0.081
Gamma(2) 0.104 0.121 0.093 0.131 0.159 0.118 0.183 0.212 0.193 0.267 0.239 0.182
Gamma(3) 0.076 0.089 0.076 0.094 0.114 0.091 0.133 0.153 0.142 0.185 0.159 0.125
Weibull(2) 0.063 0.069 0.068 0.067 0.068 0.069 0.116 0.118 0.146 0.120 0.078 0.082
Weibull(3) 0.051 0.057 0.059 0.052 0.084 0.059 0.102 0.090 0.125 0.081 0.087 0.130
Exponential 0.241 0.245 0.202 0.269 0.328 0.250 0.473 0.437 0.461 0.535 0.501 0.411
Uniform 0.099 0.116 0.138 0.106 0.127 0.093 0.244 0.256 0.364 0.253 0.212 0.155
Beta(2,1) 0.105 0.131 0.114 0.128 0.143 0.080 0.216 0.242 0.290 0.267 0.279 0.176
Beta(2,2) 0.065 0.071 0.082 0.064 0.110 0.074 0.154 0.137 0.200 0.129 0.176 0.119
Logistic 0.046 0.050 0.046 0.046 0.070 0.050 0.064 0.056 0.066 0.052 0.094 0.064
Lognormal(0..5) 0.092 0.106 0.091 0.117 0.167 0.122 0.163 0.188 0.158 0.239 0.245 0.182
Lognormal(0.1) 0.354 0.352 0.314 0.401 0.491 0.401 0.681 0.623 0.642 0.733 0.726 0.653
Lognormal(0.2) 0.845 0.818 0.820 0.843 0.868 0.826 0.993 0.981 0.992 0.990 0.987 0.980
t1 0.325 0.336 0.371 0.357 0.364 0.310 0.516 0.544 0.607 0.565 0.598 0.538
t3 0.055 0.053 0.064 0.056 0.062 0.061 0.071 0.068 0.079 0.075 0.082 0.077
χ2
(1) 0.565 0.521 0.516 0.553 0.608 0.523 0.900 0.820 0.907 0.886 0.835 0.781
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4. Real examples
In this section, we present two real examples to show the behavior of the proposed test in real

cases.
Example 1. The following dataset is considered by Bain and Engelhardt (1973), consisting of

33 difference in flood levels between stations on a river.
1.96, 1.97, 3.60, 3.80, 4.79, 5.66, 5.76, 5.78, 6.27, 6.30,6.76, 7.65, 7.84, 7.99, 8.51, 9.18, 10.13,

10.24, 10.25, 10.43, 11.45, 11.48, 11.75, 11.81, 12.34, 12.78, 13.06, 13.29, 13.98, 14.18, 14.40, 16.22,
17.06.

They suggested that the Laplace distribution might provide a good fit. Puig and Stephens (2000)
used the EDF tests for fitting a Laplace distribution for the data. They obtained AD = 0.965,
CH = 0.155,

√
nKS = 0.917, V = 1.241 and concluded that KS and CH just reject the Laplace

assumption for the data at 0.05 level.
For this example, we find α̂ = 10.13, β̂ = 3.361 and Ĝn = 0.4088 and the critical values are

0.3139, 0.3222, 0.3292, 0.3921, 0.3970, and 0.4030 at levels 0.01, 0.025, 0.05, 0.95, 0.975 and 0.99,
respectively. Therefore the Laplace assumption is rejected and our procedure confirms the result
obtained by KS and CH tests.

Example 2. In this example one real-life data analysis from Lawless (1982) is considered. The
following dataset consist failure times for 36 appliances subjected to an automatic life test.

11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451, 2471,
2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 6367, 6976,
7846, 13403.

Ebrahimi et al. (1992) applied the exponential distribution to this data which was satisfactory.
Recently the same conclusion has been drawn by Baratpour and Habibi Rad (2012).

For this example, we obtained Ĝn = 0.3513 and the critical values are 0.2735, 0.2851, 0.2957,
0.4138, 0.4254, and 0.4385 at levels 0.01, 0.025, 0.05, 0.95, 0.975 and 0.99, respectively. Then the
exponential assumption is accepted and the results obtained by previous authors are confirmed.
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[33] Ma, Y., Hart J. D., Janicki R. and Carroll R. J. (2011). Local and omnibus goodness-of-fit tests in
classical measurement error models. Journal of the Royal Statistical Society: Series B, 73, 8–98.

[34] Martinez–Camblor, P. and Corral, N. (2009). About the exact and asymptotic distribution of the gini
coefficient. Revista de Matematica: Teorıa y Aplicaciones, 16, 199-204.

[35] Pakyari, R. and Balakrishnan, N. (2012). A general purpose approximate goodness-of-fit test for pro-
gressively Type-II censored data. IEEE Transactions on Reliability, 61, 238-244.

[36] Pakyari, R. and Balakrishnan, N. (2013). Goodness-of-fit tests for progressively Type-II censored data
from location-scale distributions. Journal of Statistical Computation and Simulation, 83, 167-178.

[37] Pouet, C. (2004). Nonparametric goodness-of-fit testing under Gaussian models. Journal of the American
Statistical Association, 99, 561-562.

[38] Puig, P. and Stephens, M.A. (2000). Tests of fit for the Laplace distribution with applications. Techno-
metrics, 42, 417-424.

[39] Read, T.R.C. (1984). Small-Sample comparisons for the power divergence goodness-of-fit statistics.
Journal of the American Statistical Association, 79, 929-935.

[40] Saniga, E.M. and Miles J.A. (1979). Power of some standard goodness-of-fit tests of normality against
asymmetric stable alternatives. Journal of the American Statistical Association, 74, 861-865.

[41] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, Lon-
don.

[42] Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American
Statistical Association, 69, 730-737.

[43] Von Alven, W.H. (1964). Reliability engineering by ARINC. Prentice-Hall, NJ.

[44] Zhang, J. (2002). Powerful goodness-of-fit tests based on the likelihood ratio. Journal of the Royal
Statistical Society: Series B, 64, 281-294.


	Introduction
	Test statistics and its properties
	Test for some distributions
	Competitor tests
	Testing normality
	Testing exponentiality
	Testing uniformity
	Test for Laplace distribution

	Real examples

