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Maximal accretive singular quasi-differential
operators
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Abstract

In this paper firstly all maximal accretive extensions of the minimal
operator generated by a first order linear singular quasi-differential
expression in the weighted Hilbert space of vector-functions on right
semi-axis are described. Later on, the structure of spectrum set of
these extensions has been researched.
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1. Introduction

It is known that a linear closed densely defined operator T : D(T) C H — H
in Hilbert space H is called accretive(dissipative) if for all f € D(T) the inequality
Re < Tf,f >u> 0(Im <Tf, f>u>0) is satisfied. Also it is called maximal accre-
tive(maximal dissipative) if it is accretive(dissipative) and does not have any proper
accretive(dissipative) extension [3], [1]. The class of accretive operators is an important
class of non-selfadjoint operators in the operator theory. Note that the spectrum set of
accretive operators lies in right half-plane.

The maximal accretive extensions and their spectral analysis of the minimal operator
generated by regular differential-operator expression in Hilbert space of vector-functions
defined in one finite interval case have been studied by V.V. Levchuk [4].

This work is organised as follows: In Section 3, all maximal accretive extensions of
the minimal operator generated by a linear singular quasi-differential operator expres-
sion in the weighted Hilbert spaces of the vector functions defined at right semi-axis are
examined. In Section 4, the structure of the spectrum of these type extensions has been
investigated.

*Institute of Natural Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey,
Email: ipekpembe@gmail.com

TCorresponding Author.

iDepartment of Mathematics, Karadeniz Technical University, 61080, Trabzon, Turkey,
Email: zameddin.ismailov@gmail.com



1121

2. Statement of the problem

Let H be a separable Hilbert space and a € R. Moreover assumed that « : (a,c0) —
(0,00), a € C(a,00) and a~* € L'(a,00). In the weighted Hilbert space L2(H, (a,c0))
of H— valued vector-functions defined on the right semi-axis consider the following linear
first order quasi-differential expression with operator coefficient

I(u) = (qu)’ + Au,
where A : H — H is a selfadjoint operator with condition A > 0.

By a standard way the minimal Ly and maximal L operators corresponding to quasi-
differential expression I( * ) in L2(H, (a,00)) can be defined (see [2]). In this case the
minimal operator Lo is accretive, but it is not maximal in L2 (H, (a,c0)).

The main goal of this work is to describe of all maximal accretive extensions of the
minimal operator Lo in terms of boundary condition in L2(H, (a,00)). Secondly, the
structure of the spectrum set of these extensions will be investigated.

3. Description of maximal accretive extensions

Note that in similar way the minimal operator LJ generated by a quasi-operator

expression

It (v) = —(av)’ + Av
can be defined in L2(H, (a,00)) (see [2]). In this case the operator LT = (Lo)* in
L2(H, (a,00)) is called the maximal operator generated by {7 ( - ). It is clear that Lo C L
and L§ C L*.

If L is any maximal accretive extension of the minimal operator Lo in L2 (H, (a, o))
and M is corresponding extension of the minimal operator My generated by a quasi-
differential expression

m(u) = i(au)
in L2(H, (a,00)), then it is clear that
Lu (o) (t) + Au(t)
i(—i(au))(t) + Au(t)

i(=M)(t) + Au(?)
i (— (Re]\7+ ilmﬁ)) u(t) + Au(t)

(Im]\N/[) u(t) —i (Re]\N/[) u(t) + Au(t)

[(sz\?) + A] u(t) — i (RezTI) ult).

Therefore .
(Ref) = (ImM) + A
On the other hand it is clear that
(ReZ) = (ImM) +A=1Im (M+A) .
Hence to describe all maximal accretive extension of the minimal operator Lg in

L2%(H, (a,0)) it is sufficiently to describe all maximal dissipative extensions of the min-
imal operator Sy generated by quasi-differential expression

s(u) = i(au) + Au
in L2(H, (a, 50)).
Furthermore, we will denote the maximal operator generated by the quasi-differential
expression s( ) in L2(H, (a,00)) by S.
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In this section, we will investigate the general representation of all maximal dissipa-
tive extensions of the minimal operator So in L2 (H, (a,0)) by using Calkin-Gorbachuk
method. Let us prove the following proposition.

3.1. Lemma. The deficiency indices of the minimal operator So in L2 (H, (a,00)) are
given in the form

(n+(So),n—(So0)) = (dimH,dimH).

Proof. For the simplicity of calculations, we will take A = 0. It is clear that the general
solutions of differential equations

i(laus) (t) £ius(t) =0, t > a
in L7, (H, (a,00))

t

ui(t):ﬁemp :F/% f, f€H, t>a.

a

From these representations, we have
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Consequently n (So) = dim ker(S +iE) = dimH.
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On the other hand, it is clear that for any f € H,

lue 122 ooy = / - (0)| 2t

T 1 ds 2
- / Isgeer / M) FPralt)de

dt|| 113

/ el UL

a

bl
d<

ds
exp 2/; -1 ||f|\?.1<oo

It follows from that n_(So) = dim ker(S —iE) = dimH. This completes the proof of
the theorem. O

Consequently, the minimal operator So has a maximal dissipative extension (see [1]).

In order to describe these extensions, we need to obtain the space of boundary values.

3.2. Definition. [1] Let $ be any Hilbert space and S : D(S) C $ — $) be a closed
densely defined symmetric operator in the Hilbert space $) having equal finite or infinite
deficiency indices. A triplet (H,~1,72), where H is a Hilbert space, 1 and v are linear
mappings from D(S™) into H, is called a space of boundary values for the operator S if
for any f,g € D(S")

<SS f,g>0 — < [,57g >o=<7(f),72(9) >u — <72(f),n(9) >u

while for any Fi, F» € H, there exists an element f € D(S*) such that v1(f) = F1 and
Y2(f) = Fa.

3.3. Lemma. Define

v D(S) = H, m(u) = ((au)(o0) = (au)(a)) and

Sl -

Y2: D(S) = H, 72(u) = ((au)(o0) + (au)(a)), u € D(S).

1
2

Then the triplet (H,v1,72) s a space of boundary values of the minimal operator So in
L3(H, (a,00)).
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Proof. For any u, v € D(S)
< Su,v >L3(H,(a,oo)) - < U,SU >L§(H,(a,oo))
= < i(au)/ + Au,v > 12 (H (a,00)) — < U Z‘(Cw), + Av > L2 (H,(a,00))

= <i(au), v >12 (#1,(as00)) — < W i(aV) >12 (7 (a,00))

oo (oo}

= / <i(au) (t),v(t) >m alt)dt f/ < u(t),i(aw) (t) >m at)dt

a a

= 1 / < (au)'(t), (aw)(t) >&1 dt+/ < (au)(t), (av) (t) > dt

= z/ < (au)(t), (av)(t) >4 dt

= i[< (au)(00), (aw)(o0) >g — < (au)(a), (aw)(a) >H]

= <), > — <72(u),n() >u .
Now for any given elements f, g € H, we can find the function v € D(S) such that
(1) = o (o) (o) ~ (ou)(@)) = f and 32(u) = 2= ((ou)(o0) + (ou)(@) = g
From this, we obtain

(au)(00) = (ig + )/V2 and (au)(a) = (ig — f)/V2.

If we choose the function u( - ) in following form
(= e g + V2 e g - /YR
then it is clear that w € D(S) and v1(u) = f, v2(u) = g. O

The following result can be established by using the method given in [1].

3.4. Theorem. If S is a mazimal dissipative extension of the minimal operator So
in L2(H, (a,00)), then it is generated by the differential-operator expression s( = ) and
boundary condition

(au)(a) = K(au)(co),
where K : H — H 1s a contraction operator. Moreover, the contraction operator K in H
is determined uniquely by the extension §, i.e. S = Sk and vice versa.

Proof. 1t is known that each maximal dissipative extension S of the minimal operator
So is described by the differential-operator expression s( * ) and the boundary condition
(V = E)ni(u) +i(V + E)ya(u) =0,
where V : H — H is a contraction operator. Therefore from Lemma 3.3, we obtain

(V = E) ((au)(c0) = (au)(a)) + (V + B) ((au)(c0) + (au)(a)) = 0, u € D(S).
From this, it implies that
(au)(a) = =V (au)(c0).
Choosing K = —V in last boundary condition, we have
(au)(a) = K(au)(o0).
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From this theorem and the note mentioned above, it implies the validity of the fol-
lowing result.

3.5. Theorem. Each mazimal accretive extension L of the minimal operator Lo is gen-
erated by linear singular quasi-differential expression I( * ) and boundary condition

(au)(a) = K(au)(co),

where K : H — H is a contraction operator such that this operator is determined uniquely

by the extension f, i.e. L = Lk and vice versa.

4. The spectrum of the maximal accretive extensions

In this section the structure of the spectrum set of the maximal accretive extensions
of the minimal operator Lo in L2(H, (a, 00)) will be researched.

4.1. Theorem. The spectrum of any mazimal accretive extension Ly has the form

—1

[ d _
o(Lk) = {AeC:A= /a(Z) (In (lu|™") +darg(m) + 2nmi)
weo| Kexp fA/Oiz) , nEZL

Proof. Consider the following problem to get the spectrum of the extension Ly, i.e.
Lg(u)=Xu+f, A€C, A\ = ReX > 0.
Then we have

(o) (t) + Au(t) = Mu(t) + f(t), t > a,
(o) (@) = K (o) (00).

The general solution of the last differential equation

(o) (t) = ﬁ(w — A)u)(t) + (8), t>a
is

1
u(t; \) = mewp ()\E—A)/

ds

s | P

a
t

1 Ji dr
_ Ol(t)t/exp ()\EfA)/% F(s)ds, fr € H, t>a.

s



1126

In this case
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= exp 2/\7«/% /@ ||fHL(21(H,(a,oo)) < oo.

Hence u(  ,\) € L2(H, (a,00)) for A € C, ReX > 0.
Furthermore from boundary condition, we get

oo oo a

E — Kexp ()\E—A)/% fr= /exp (/\E—A)/Oi:) f(s)ds.

a a S
Therefore in order to obtain A € o(Lx) the necessary and sufficient condition is

exp —)\/ ds =p€o | Kexp —A/ ds

a(s) a(s)

a

Hence -
ds . .
-2 = In|u| + iargp + 2mmni, m € Z,
o(s)
e gs \ 7! ’ > ds
. B SN ) _
that is, A = ({ 7(1(3)) (In (|uI~") +darg(m) + 2nmwi), n€Z, p€o (Ke;rp ( A{ 7(1(3))) .

Example. All maximal accretive extensions L, of the minimal operator Lo generated
by a differential expression

l(u) = (tu(t,z))" + Au(t,z), a > 1,
in Hilbert space L~ ((0,1) x (1,00)) in terms of boundary conditions are described by
the following form
(tut,2)) (1) = r (t"u(t,2)) (o), 0 <1 <1, 0< o <1,
where
A:L%(0,1) — L*(0,1), Av(z) = zv(z).
Moreover, the spectrum of such extensions is
o(Ly) = {/\ EC:A=(1-0a)(In (er) + iarg(@) + 2nmi) ,p € o <rezp (aﬁ 1)) , mE Z} .
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