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Abstract

In this study, we present a numerical method to solve the Regularized Long Wave (RLW) equation,
based on cubic B-spline quasi-interpolation for the space integration and Crank-Nicolson method
for the time integration. The method is tested on the problems of propagation of a solitary wave and
interaction of two solitary waves. The three conservation quantities of the motion are calculated to
determine the conservation properties of the proposed algorithm.
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1. Introduction

Various phenomena in disciplines could be described by nonlinear partial differential equations
(NPDESs). Numerical solution of NPDEs is very important due to just limited classes of these
equation are solved analitically. One of the nonlinear evolution equations which we deal with is the
Regularized Long Wave (RLW) equation. This equation was originally introduced to describe the
behavior of the undular bore by Peregrine [1] who developed the first numerical method of the
RLW equation using the finite difference method. Benjamin et al. [2] showed the similarity of
wave solutions of the RLW equation to the wave solutions of the more widely known Korteweg-de
Vries (KdV) equation. RLW equation has been solved by various numerical method including



finite difference method [3-5], collocation method [7-12], Galerkin method [13-22], and
Quadrature method [23,24].

In this paper, Crank-Nicolson method for time integration, and quasi cubic B-spline functions for
space integration are used to obtain numerical solution of the RLW equation. In the test problems
section, error norms and conservation quantities are calculated for the accuracy of the solution.

This study is a part of the master thesis of Mersin [25]. In this thesis the numerical solution of some

partial differential equations including RLW, EW, MRLW and MEW equations were solved by
using quasi spline interpolation.

2. Governing equation
We consider the following RLW equation
U + Uy + EUUY — UUyye = 0 (1)
with the boundary conditions
u(a,t) =u(b,t) =0,t>0
and the initial condition
u(x,0) = f(x).

We denoted the space of univariate splines of degree d which has C%~1 property by S;(Xy) on
the uniform partition

Xy=x;=a+ihi=0,.. N

with the meshlength h = b%a, where b = xy. Let the B-spline basis of S;(Xy) be {B},j € J}

with | = {1,2, ..., N + d}, which can be computed by the de Boor-Cox formula [26]. Using the
Boor-Cox formula, B; is obtained as

((x —x;)? X € [x),%]41)
(x = %)*(Kju — %) +
(=) (X453 =X —X41) + ,x € [Xj41, Xj42)
L (xj+4 —x)(x — xj+1)2
Bi() = 55 (@ = 1) (a3 — 0% + @

(X = %41) (K43 =) (Xj4a —X) +  ,x € [xj+2ﬂxj+3)
(Xj4a — x)%(x — Xj42)

(Xja — )° % € [X43,Xj44)
\0 else

for j € J. Univariate B-spline quasi-interpolants can be defined as operators of the form

174



Qaf = Xjer 4B; 3)

[27-29]. For the cubic B-spline quasi interpolation

Qsf = XV ui(F)B; 4)
the coefficients are listed as follows:
wm(f) = ];o,
() = 5(7/(0 +18f1 — 9f; + 2f3),
wi(F) = 2(~fi-s +8fj-2 = f-1)j = 3,., N + 1, (5)
tns2(f) = 75 2fws + 18f; = 9f, + 2f3),
un+3(f) = fn-

The main advantage of quasi interpolation is having a direct construction without solving any
system of linear equations.

Qsu =27 ;W) B, (Qsw)' = X2 wyw) Bj, (Qsw)” = XjZ7 w;(u) Bf' (6)

are the approximations of the first and the second derivatives of the unknown function u. After
using these approximations

, 1 1 3 1
Qu'(xo) = E(—_uo t3u; —Jup + us),
1/ 1 1
Qu'(xy) = g(_guo —SU T U ——u3),
, 1(1 2 2 1 .
Qu'(xj) = Z(Euf_z — W1t U _Euf”)’ j=2,..,.N—2 (7

' _1(1 _ _1 1 )
Qu'(xy_1) = N (6 UN-3 ~Un—2 ~FUN-1 T JUN),
1 1 3 11
Qu'(xy) = ;(_guN—s + SUN-2 ~ 3uy_q + ?uN)

are obtained for the first derivation and,

Qu' (xg) = %(Zuo — 5u; +4u, —us),
rn 1

Qu"(x1) = ﬁ(uo = 2uy +uy),
" 1 1 5 5 1 B

Qu'(x) = ﬁ(_guj—z W1~ 3u; + Wi+~ gu]-+2), j=2,.,.N—=2 (8)
143 1

Qu''(xy-1) = ﬁ(uzv—z = 2uy_q +uy),

143 1
Qu'(xy) = ﬁ(_uzv—3 + 4uy_; — Suy_q + 2uy)

are obtained for the second derivation [29].
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3. Numerical scheme
Applying Crank Nicolson method to the equation

Up + Uy + EUUY — UUyye = 0

we have
umtt -y n uFtttug te u)™ T+ uu)™ it ud 0 9)
At 2 2 At )
Linearizing the nonlinear term (uu,)™** by using following approximation [30]:
()™ ~ u™ult + ulu™tt — utul (10)
Eq. (9) can be written as
At n+1 n n+1 n+1 n At n n
(1 + e;ux) + A (1 + e(u ))u — Mg = U = Uy — Uy, (11)

After using quasi spline approximations for the first and the second derivatives (7-8), the Eq. (11)
1s written as

[ At 11 At
Uttt + 57(Ux)3 ———A+eU) —pu—=|+

34 5
upn |2 (1 +eUD) + ”hZ]

[ 3 4
1
U;H —ﬁ7(1+8U61) Mhz]
1 At

At
U3T,l+1 3h > (1 + SU(‘SI) +u hz] UO (Ux)g - ﬂ(Uxx)g

gt |- AL UM
0 |73n72 “hZ

1A
n+1 1___1 ]
Uj _ 2h2( +£U)+uh2

vp [LAE 1 4 eumy — ui] +
) h?
1 At At
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n+1 [_1 At n
Un=2 [12h 2 (1+eUm) + ”6h2]

[ 2 At 5
UB [- 25 (1 + eUR) — pos | +

Uptt :1 + s—(Ux)?n + u—] +

(12)
[ 2 At
U |25 (1 +eUR) — s | +
[ 1 At At
Unth [~ o5 L+ eUR) + pos| = UR =5 (U — (U
Untl|— 1A (1 + eUn )]
6h 2 N1

1A 1
Ut _———(1+eUN D - “hZ]

URtl 1+€ (Ux)N 11—

N

Un+1
Un+1
Un+1

n+1
Uy

where m = 2, ...

2
2h2 (1+SUN 1)+‘uh2

1At

U |55 QL+ U0 = ] = Ua = 5 Wy — 1 Uain

[ 1At n
- 21+ eUR) + 1 ]

[ 3 At n
221+ eUp) —u ]+

'—iﬁ(1+suﬁ)+u =]+

11 At

2 A
1+ e (UDE + o5 (L +eUR) — 3| = UR = S (W} — U}

,N — 2. The system (12) contains N + 1 unknowns and N + 1 equations. The
first and the last equations are deleted to apply the boundary conditions to the system. Then our
system turns to N + 1 unknown and N — 1 equations.

After the first and the last equations are deleted and the boundary conditions U(a,t) = U(b,t) =
0 are implemented, then the system (12) is transformed into

1 At
U1+ 25 (U)F — 5 (1 + eUD) + g +
Uptt [1 2+ eUM) —p ]

1 At At
Upt [ 25 (@ eUD)| = UF = 5 U} — u(UnY
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[ 2 At 5
U{l+1 _E?(l +EU?) —MW

[ At 3
Ut 1+ e (UE + uﬁ] +

|+

[ 2 At 5
R 2 + eUf) — | +

1 At 1 At
Ut [- S+ eUp) + ,um] = U} —— (U} — u(Usx)}

n+1 [_1 At n L

Uy [ (1 + eUR) + s | +
1 [ 2 At 5

Unti =55 A+ elUn) —ug3

[ At 3
Up™ |1+ e (Uh + uﬁ] +
[ 2 At 5

Unty _g;(l +eUm) — i

|+

(13)
] +
1 At

[ 1 At
Uy [- o5 (U + eUR) + pos| = U = 5 (U — p(Un )i

[ 1 At 1
Uﬁti E?(l + SUX]L_Z) + ﬂw] +

[ 2 At 5
UNts _—57(1 + eUy_3) — #m] +

[ At 3
RS [1+ 65 Wh-, + pog] +

[ 2 At 5 At
U2+ eUR_y) — s | = UB - = S (U2 — (U2

1 At
UR [+ Uy | +

1At 1
Ugts [—;7(1 +eUy-1) — Mﬁ] +
1 At

At 2 At
R [1+ e Uy = =25 (1t eV + 5] = URey = 25 (U os — U)o

where m = 3, ..., N — 3. It’s clearly seen that the equation system consist of N — 1 equations and
N — 1 unknowns where U+, UM*?, ... UR*] are unknowns. Initial unknowns Ug,UP, -+, Up
are calculating by using initial condition U(x,,,0) = f(x,,) m = 0,1, ..., N to solve system (13)

iteratively. The local truncation error for the Eq. (13) is computed as
2 2

k
7 (Uxxxx);ln + 7 [M(Uxx)%(Uxt);ln - MSZMU%((UQC &)Z(Uxx)% + S#U%(Uxt)%(l]xx);ln

+€ﬂ2(Ux %(Uxx)%(Uxxt)Tril + .U(Uxxtt);ln(Ux)% - #Z(Uxx);ln(uxxtt)% - S.u((Ux ;ln)z(Uxx)%’L] + -
by neglecting the terms of high order. Since the local truncation error vanishes as the time and
space steps become smaller, the one step difference equation (13) is consistent with RLW equation.
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4. The test problems
4.1 Motion of single solitary wave
The exact solution of the RLW equation is given by
u(x, t) = 3csech?(k[x — X5 — (1 + &0)t]) (14)
which describes a single bell-shape solitary wave of amplitude 3c, travelling with velocity
v =1+ c in the positive x—direction over the space interval [a, b]. The initial condition for

single solitary wave solution of the RLW equation can be written as

u(x,0) = 3csech?(k[x — X)) (15)
where k = ’48_/;7 The RLW equation possess three conservation constants,

C, = ffooo udx, C,= ffooo(uz + u(u,)®dx, C3= ffooo(u3 + 3u?)dx (16)

corresponding to mass, momentum and energy, respectively [31]. Exact values of these
conservation constants can be calculated by Maple as:

6C 12¢? | 48kc?u 36c2
Ci=—, C,= + C; =
17 g 72 k s 3 5k

(4c + 5). (17)

To compare the analytical and the numerical solutions, error norm Lo, = max|U,, — u(x,,, t)| is
m

used, where u(x,,,t) is corresponding to the exact solution on (x,,,t,) and U, is
corresponding to the approximate solution on (x,,, t;,).

Initial solution (15) and position of solitary waves at time t = 20 over the space interval
—40 < x < 60 are shown at the Figure 1 for ¢ = 0.1, ¥, = 0 and parameters ¢ = u = 1.

0.35

0.3~ N

0.25[ N

0.2 N

U(x,t)

0.15f N

0.1+ .

0.05- i

| | L | |
910 -30 -20 -10 0 x 10 20 30 40 50 60

Figure 1. Solitary waves at t = 0 and t = 20 for ¢ = 0. 1.
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On the first test problem parameters are chosen as space step h = 0.125, time step At = 0.1 and
amplitude 3¢ = 0.3. Program was run up to time t = 20 and the conservation quantities Cj, C,,
C3 and L, error norm are given at the Table 1 in different times. Its easy to see that the results are
acceptable and in good aggrement with the exact solution according to the the error norms L., and
conservation quantitites.

Table 1. Conservation quantities and the error norms
for h=0.125, At=0.1, c=0.1 and —40 < x < 60.

Time L00X105 Cl CZ C3

0 0 3.9799267 0.8104625 2.5790074
4 2.12 3.9799300 0.8104625 2.5790074
8 4.26 3.9799267 0.8104625 2.5790074
12 6.22 3.9799257 0.8104625 2.5790074
16 8.00 3.9799171 0.8104625 2.5790074
20 9.62 3.9798828 0.8104625 2.5790074
Exact 0 3.9799497 0.8104625 2.5790074

The absolute value of the difference between the numerical solution and the analytical solution at
t = 20 is plotted in the Figure 2. It is clear to see that the maximum error is occured in the middle
of the space interval.

4

1X10 T T T T T T T T T
08+ -
0.6+ -
§
G
L 04- .
3
[=}
3
< 02 -
e I . I L I I )
50 -30 -20 -10 0 x 10 20 30 40 50 60

Figure 2. Absolute Error = |Analytical Solution — Numerical Solution|
for h = 0.125, At = 0.1, ¢ = 0.1 and —40 < x < 60 at the time t = 20.

The solitary wave problem is investigated by changing the amplitude of the solitary waves.
Therefore, initial solution (15) and position of solitary waves at time t = 20 over the space
interval 40 < x < 60 are shown at the Figure 3 for ¢ = 0.03, X, = 0 and parameters € = u = 1.
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Figure 3. Solitary waves at t = 0 and t = 20 for ¢ = 0.03.

On this problem, parameters are choosen as space step h = 0.125, time step At = 0.1 and
amplitude 3¢ = 0.09. The program was run up to time t = 20 and the conservation quantities
C;, C,, C5 and error norm L, are given at the Table 2 by different times. According to the Table 2
its easy to see the absolute error has increased according to ¢ = 0.1.

Table 2. Conservation quantities and the error norm
for h =0.125, At = 0.1, ¢ = 0.03and —40 < x < 60.

Time L00X104 Cl CZ C3

0 0 2.10704672 0.12730126 | 0.38880465
4 2.30 2.10709771 0.12730112 [ 0.38880407
8 2.21 2.10689617 0.12730112 0.38880405
12 2.12 2.10654963 0.12730111 0.38880397
16 2.14 2.10592816 0.12730109 0.38880365
20 4.32 2.10461363 0.12730104 0.38880235

Figure 4 shows the absolute value of the difference between the analytical and numerical solutions
of the program. The program was run up to time t = 20 with h = 0.125, At = 0.1, ¢ = 0.03
over the space interval —40 < x < 60. The maximum error can be seen at the end of the space
interval. It means that there is a problem with the boundary conditions. The reason for the error
seen at the end of the space domain is due to the space interval of the wave is not chosen close
enough to the zero.
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Figure 4. Absolute Error = |Analytical Solution — Numerical Solution|
0.125,At = 0.1,c = 0.03 and —40 < x < 60 at the time t = 20.

h =

In order to reduce the error, the program was run again by extending the space interval from
—40 < x <60 to —80 < x < 120. The obtained results are given in the Table 3. It can be seen
from the table that the error is decreased when the larger space interval —80 < x < 120 is used.

Table 3. Conservation quantities and the error norms for h = 0.125, At = 0.1, ¢ = 0.03 and

—80 < x < 120.
Time L,x10° C, C, Cs
0 0 2.10940502  |0.12730172 | 0.38880599
4 0.88 2.10940516  |0.12730172 | 0.38880599
8 1.79 2.10940511  |0.12730172 | 0.38880599
12 2.71 2.10940507  |0.12730172 | 0.38880599
16 3.65 2.10940508  |0.12730172 | 0.38880599
20 4.57 2.10940502  |0.12730172 | 0.38880599
Exact 2.10940750  |0.12730172 | 0.38880599

The Figure 5 shows the absolute value of the difference between the analytical and numerical
solutions at time t = 20 over the interval of —80 < x < 120 and it is seen that the error is
decreased and the maximum error is also occurred in the middle of the interval. As a result, the
selection of boundary conditions is very important in the solitary wave test problems.

x10°

2- 4

Absolute error

1

q | : . i
B0 60 40 -20 0 4 20 40 60 80 100 120

Figure 5. Absolute Error = |Analytical Solution — Numerical Solution| for
h =0.125, At = 0.1, ¢ = 0.03 and —80 < x < 120 at the time t = 20.
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Table 4 displays a comparison of the values of the invariants and error norms obtained by the
present method with those obtained by other methods. The results of the proposed method in good
agreement with previous studies results.

Table 4. Conservation quantities and the error norms for

h =0.125, At =0.1, c = 0.1 and

—40 < x <60 attime t = 20.

Method L. x105 C, C, Cs
Present 9.62 3.0798828  |0.8104625  |2.5790074
[13] 8.6 3.97988 0.810465 257901
[18] 175.5 3.98203 0.808650 257302
[19] 156.6 3.96160 0.804185 255829
21] 19.8 3.98206 0.811164 258133
122] 734 3.9798879  |0.8104622 | 2.5790063
Exact 7 3.979949 0.8104625 | 2.5790074

4.2 Interaction of two solitary waves
The collision problem of two solitary waves has the following initial condition
u(x, 0) = 3¢ysech?(ky[x — x7]) + 3cysech? (ky[x — %3]) (18)

ECji
4u(l+ecy)’

where k; = i = 1,2. In (18), the solitary waves have 3c¢; and 3¢, amplitudes, and

each peak points of them are located at X; and X7, respectively over the problem domain [a, b]. If
the parameters are choosen as ¢; > ¢, and X; > X7 in the initial solution (18), the bigger wave
which has bigger amplitude will stand on the left. Hence, if the parameters are choosen properly,
the bigger wave will reach and pass the smaller wave as its faster than the smaller wave. So the
collision will be occured.

Exact values of the conservation constants for this problem can be calculated by Maple as

—6(fLy 2
€ = 6(k1+k2)’

1o (L ) 48 2 2
C, =12 (kl + kz) + u(kici + kyc3),

3

_ 6c3
C; = ™ (4c, +5).

36c7
- (4c, +5) +

When the parameters are choosen as X7 = 20, X; = 65, ¢; = 2/3 and ¢, = 0.1, the initial
condition of RLW equation for the interecation of two solitary waves test problem is

u(x, 0) = 2sech? (% [x — 20]) + 0.3sech? (\/%_4 [x — 65]). (19)

The program was run up to time t = 150 with the parameters h = At = 0.1 over the space

interval [0,300]. The solitary waves’ at times t =0, t = 65 and t = 150 are plotted in the
Figure 6. It is observed from the Figure 6 that the time of the collision is around ¢t = 65 and the
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solitary waves retain their shape after the collision.
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Figure 6. Collision of two solitary waves at times £t = 0, £ = 65, t = 150.
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The numerical values of the conservation constants are given in Table 5 for various times.

Table 5. Conservation quantities for the collision of two solitary waves.

Time C1 CZ C3

0 16.62901975 119.02523346 |80.16048477
30 16.62903736 | 19.02519099 [80.16021819
60 16.62903725 119.02299037 [80.14604732
90 16.62903719 19.02393162 |80.15214565
120 16.62903854 |19.02519877 [80.16026810
150 16.62903891 ]19.02520778 [80.16032521

Absolute errors for conservation constants are given in the Figure 7. In this figure, the largest error
occurs for Cs, then for C,, and the smallest error for C;. It shows that the absolute error of the
conservation constants is increasing and then decreasing between t = 50 and t = 100 because

of the collision.
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Figure 7. Absolute errors for conservative quantities.

5. Conclusion

In this study, quasi cubic B-splines for space discretization and Cranck Nicolson method for time
discretization are proposed for numerical solution of the RLW equation. The advantage of the
proposed method is the unknown function can be directly calculated by approaching the
derivatives as in the finite difference method. The proposed numerical method for the RLW
equation is investigated by two test problems. After the numerical solutions are examined, it is seen
that the proposed method gives good results. Consequently, quasi cubic B-spline method which is
an easier method than the finite element method in the terms of ease of implementation for the
numerical solution of the RLW equation.
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