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ABSTRACT 

Rotors have a widespread usage in today's machine technology. Rotors can be used in electric motors, gas 

turbines, pumps and other mechanical systems. If the rotor system parameters are defined, it is possible to estimate the 

vibration frequencies. Any deformation from the rotor system components or wear lead to high frequency vibrations. 

These vibration parameters can be determined theoretically and experimentally. Vibration characteristics such as 

frequency, amplitude, speed and acceleration of vibration are the most important factors in the performance of a 

machine in operating conditions and in diagnosing mechanical problems.  

In this study; the critical speeds of a single disk rotor system have been calculated and compared to the 

theoretical and critical speed values determined by the Dynrot software. Examples of such dynamic behavioral 

mechanical systems (servo, hydraulic, pneumatic motor shaft, cutter disk-shaft systems, etc.) between industrial field 

power, hydraulic pneumatic power train and shaft-disk systems have been similarly applied to the methods used in this 

work . In particular, it has been concluded that the software used in this study would be useful in characterizing the 

dynamic behavior of more complex rotors such as vacuum pumps, gas turbines, rotary, diffusion and turbomolecular 

pumps. 
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INTRODUCTION 

Unbalance in rotating machines has been increasing day by day with the development of high-speed machines. 

Unbalance in rotating elements of machines is the most important source of vibration. Vibrations resulting from 

unbalance can cause wear and tear on the machine elements, as well as fatigue and breakage in the machine elements 

can cause the decrease machine performance and the loss of power if the vibrations affect other elements of the 

machine. In addition, high level noises result in unbalance. To avoid negative effects such as this and such, unbalances 

in machinery must be eliminated or balanced. According to DIN / ISO 1925, unbalance is defined as the condition that 

occurs when centrifugal forces on a track generate vibrational forces or motions on the bearings. Another definition can 

be given as the separation of the center of mass from the axis of rotation of the rotor due to the irregularity of the mass 

distribution of an rotor. Balancing is a process of correcting or removing unwanted inertia forces and moments in a 

rotating machine. In other words, it tries to align the center of mass with the axis of rotation of the rotor (Belek H. T., 

2002). 

Rotor unbalance is the most common cause of machine vibrations. Most of problems with rotating machine 

elements can be solved by eliminating rotor balancing and axial misalignment. Even a small amount of unbalance in 

machine elements rotating at high speed can cause serious problems. Rotors are used in many engineering applications 

such as pumps, fans, propellers and turbo machines. Vibration, caused by unbalance, can lead to damage to machine 

critical parts such as bearings, seals, gears and couplings. In practice, rotors can never be perfectly balanced due to 

manufacturing errors such as porosity in the cast, uneven density of the material, production tolerances and material 

gain or loss during operation (Eshleman, R.A., 1969).  In determining unbalance response, some analytical methods 

such as the transfer method have been applied in the literature (Mitchell, L., Mellen, D.D.M., 1995).  In addition, the 

unbalanced parts of the rotor rotate at the same speed as the rotor, so that the force due to the unbalance is synchronized 

(Bently,D. E., 2002). Rao proposed analytical closed form expressions for large and small axis radii of the unbalance 

response orbital for the single shaft rotor-bed system (Gupta, K.D. Gupta K. A., 1993). Rao et al., 1996 and Shiau et al. 

1998, have reported that vibration signals, which are useful tools for studying advanced machine mechanical failures 

and at the same time detecting mechanical faults, can be widely used (Ramachandran,K.P., 2004). 
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It should always be taken into consideration that very serious faults can occur in the balancing process or in 

particular in the control of the residual unbalance, from the rotating system components connected to the rotating body 

or from the elements supporting the rotating body without their own bearings. The reasons for the occurrence of some 

faults are: 

- Unbalance effects arising from rotating or supporting elements, 

- Faults resulting from the components of the rotating or supporting elements, 

- Faults originating from gaps between the rotating or supporting elements and rotating masses, 

- Eccentric faults from the junction of the rotating masses with the journal with respect to the shaft axis. 

In this study; the critical speeds of a single disk rotor system have been calculated and compared to the 

theoretical and critical speed values determined by the Dynrot software. Examples of such dynamic behavioral 

mechanical systems (servo, hydraulic, pneumatic motor shaft, cutter disk-shaft systems, etc.) between industrial field 

power, hydraulic pneumatic power train and shaft-disk systems have been similarly applied to the methods used in this 

work. It has been concluded that the software used in this study would be useful especially when the dynamic behaviors 

of rotors in more complex structures (eg vacuum pumps, gas turbines, diffusion and turbomolecular pumps) were 

characterized. 

 

DYNAMIC ANALYSIS OF THE SINGLE DISC ROTOR 

Description Of The Physical Model 

 

 
Figure 1. The Physical Model (Krodkiewski, J.M., 2000). 

 

 

 
Figure 2. Indication of the absolute position of the center of gravity G (Krodkiewski, J.M., 2000). 

 

Let us consider rotor shown in Fig. 2.1 assuming that it rotates with a constant angular speed  . The shaft S of 

the rotor is supported rigidly at its ends. Assume that the shaft can be considered massless and flexible whereas the 

element E can be approximated by a particle of mass m. This particle is attached to the shaft at the centre of gravity G of 

the element E. The centre of gravity G is displaced by µ from the geometrical centre of the shaft cross-section C. The 

distance µ represents imbalance of the element E and can be considered as a small magnitude. To analyze motion of this 

system let us introduce the inertial system of coordinates XY Z as it is shown in Fig. 2.2. The instantaneous position of 

the centre C is determined by the position vector rC . The centre of gravity G rotates with the angular velocity  respect 

to this centre. Since the angular velocity is constant, the relative instantaneous position of the centre of gravity G is 

determined by the angle t and the imbalance µ (vector rGC). The absolute position of the centre of gravity G, in Fig. 

2.2 is denoted by rG.  The vector Fs represents the static resultant force acting on the element E. R stands for the 

interaction force between the element considered and the shaft (Krodkiewski, J.M., 2000). 
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Mathematical Model 

Motion of the centre of gravity G is governed by the Newton’s second law, 

 

sG FRrm         (2.1) 

 

Equation 2.2 is obtained from Fig. 2.2 

 

)sin()cos( tYJtXIrG    

JkY--IkX  R         (2.2)  

YsXs JF  F I  Fs   

In the above formula k stands for stiffness of the shaft at the point C and XY are its coordinate pairs. Substituting  Eq’s. 

2.2 into Eq. 2.1, results in the following set of differential equations. 

 

YsFkYtYm  )sin( 2      (2.3) 

or after reorganization 

 

tmFkXXm Xs  cos2  

                       tmFkYYm Ys  sin2       (2.4) 

 

The particular solution of the non-homogeneous Eq. 2.5 

                       XsF   kXXm   

                             YsF  kYYm    (2.5) 

 

yields the equilibrium position (Xs; Ys). Upon assuming the particular position in form 

 

  Xs  X   

                             Ys  Y                (2.6)  

 

 

one may obtain the following formulae for coordinates of the equilibrium position which 

are usually referred to as the static deflection of the shaft. 

sX
k

FXs
          

k

F
Y Ys

s         (2.7) 

 

The total deflection of the shaft X,Y are sumof the static deflection Xs; Ys and the dynamic 

deflection x,y (see Fig. 2.3). 

y Ys  Y                       

 Xs  X                      



 

                                  (2.8) 

Introduction of Eq. 2.8 into the mathematical model 2.4 in equations which govern the 
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Figure 3. Dynamic deflections xy. 

      

  tsinmky   ym 2                                                                             (2.9) 

or 

                       tcosq2                                                                                       (2.10) 

                       tqyy  sin2                                                                                     (2.11) 

where 

                   
m

k
w                        

2q                                                                      (2.12)
 

Upon multiplying the equation 2.11 by the imaginary unit i and adding the equations 

2.10 and 2.11, one may obtain the equations of motion of the rotor in the following form 

                      
ti2 qezz                                                                                             (2.13)

 

where 

                      iyz                                                                                                     (2.14) 

The above equation governs motion of the rotor in the stationary system of coordinates 

xyz. 

Let us introduce the rotating systemof coordinates xR  ; yR; zR  ; shown in Fig. 2.4. Axis zR 

 
 

 

 

Figure 4. The rotating systemof coordinates xR  ; yR; zR   

 

coincides axis z and axes xR and yR rotates with the constant angular velocity  . In terms of the complex notations, 

position of the point C in the stationary system of coordinates xyz is 

                      
iezz                                                                                                          (2.15)

 

and in the rotating system of coordinates is 
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ti

R

ti

RR eezezz    )(
                                                                           (2.16) 

 

Substituting  Eq. 2.15 into Eq. 2.16 yields the relationship between coordinates of the same point in the stationary (x; iy) 

and the rotating (xR  ; yR ) system of coordinates. 

 

                           
ti

R zez                                                                                                  (2.17) 

The inverse transformation is 

                                  
ti ez z R                                                                                          (2.18)

 

Differentiating of Eq. 2.18 with respect to time one can obtain 
ti

R

ti

R eizezz     

                                  
ti

R

ti

R

ti

R ezeizezz   22                                                     (2.19) 

Substituting Eq. 2.19 into the mathematical model equation 2.10 gives equation of motion of the rotor in terms of the 

rotating system of coordinates (Krodkiewski, J.M., 2000). 

 

 

                                  qzizz RRR  )(2 22                                                  (2.20) 

 

THEORETICAL MODEL RESULTS AND EVALUATIONS 

The single disc shaft system (De Laval Rotor) with its geometric and mechanical characteristics is modeled by 

the software and this rotor system is operated under different operating conditions (260, 800 and 1200 rpm). Several 

analyzes have been performed for the rotor system during these different cases of operation. These are critical speeds 

and natural frequency analyzes. In addition, these values are also compared with the theoretically calculated values. 

 

Theoretical Analysis 

Model System 

 

In this section, the analysis of the critical speeds of the rotor system in the loaded and unloaded operating conditions has 

been carried out. 

 

L = 600 mm. (distance between the beds), d = 32 mm (shaft diameter), M = 2902 grams (disk mass), shaft weight = 

4529 grams, E = 207.109 Pa (for steel). 

 

3.1.2. Critical Speed of the Shaft 

The critical speed in the case of the unloaded operation of the shaft in the rotor system (Zajaczkowski, J., 1997). 

                                      
3s

L.M

I.E
.87,9  

                                                                    (3.1) 

64

)032,0.(

64

44 


d
I =5,14.10

-8
 m

4 

                                                            
(3.2) 

                                    E =207.10
9
 Pa     (Steel)                                 

                                   M =4,529 kg 

                                    L = 0.6 m 

           374.10487,9
978.0

29.10654
.87,9

)6.0.(529,4

 5,14.10.10.207
.87,9

3

-89

s  

                       ωs = 1030.173  rad/s      (Critical speed when unloaded) 
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Single Disc System 

The critical speed of the rotor system of De Laval  in the case of loaded  operation (Zajaczkowski, J., 1997), 

                                                 
221

b.a.M

L.I.E.3
                           (3.3)         

 

 

a = 300 mm. b = 300 mm 

L = 600 mm 

 
Figure 5. Single disc loading. 

 

22

89

1
)3,0.()3,0.(902,2

6.0.10.14,5.10.207.3 

  

 

0235.0

22.19177

)3,0.()3,0.(902,2

722.19177
221   

 

ω1 = 903.355 rad/s      (Critical speed for single disk center) 

 

Other critical speeds which calculated at the first critical speed 4, 9, 16, 25, .... may float on the floors (Zajaczkowski, 

J., 1997). 

 

From Dunkerley’s Equation; 

    
2

1
2

s
2

n

111


       (3.4) 

                                           
222 )355.903(

1

)173.1030(

11


n
 

                                            
6

2
10.167.2

1 
n

 

                                              ωn
2 
= 461467.4665 

                                              ωn = 679.314  rad/s 

 

The critical speed of the complete system (shaft + single disk) without neglecting the mass of the shaft. 

 

Analyzes Applied to Software Modeled Rotor Model 

A modeling method based on the finite element method for rotor dynamics has been used in the modeling of 

the dynamic system that is the basis of operation. Rolling bearings used in the system are modeled software using 

spring, damping elements and bearings for dynamic analysis in Dynrot. Because bearings used in software do not allow 

certain calculation types such as critical speed (Figure 3.2) (Genta, G., 1998). 
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Figure 6. The modeled shape of the rotor system. 

 

 

Analysis of critical speeds 

In Table 3.1, the critical velocity values obtained by the analytical method using equation 3.3 are given 

together with the critical velocity values obtained by the software. There are differences between the critical speed 

values obtained from the software and analytical calculation. The reason is the modeling of rolling bearings of the rotor 

system with a spring and damping element as an assumption in the software. When modeling is desired as a bearing, 

restrictions arise in calculations. Therefore, instead of a roller bearing, a spring and a damping element are preferred. 

 

Table 1. Different critical speed values. 

 

 Critical speed values calculated from 

Equation (3.1) 

Critical speed values calculated by 

software 

1
st
  Critical speed 903.355   rad/s 585.548989 rad/s 

2
nd

 Critical speed 3613.420  rad/s 1666.509126 rad/s 

3
rd

  Critical speed 8130.195  rad/s 1696.511142 rad/s 

4
th

  Critical speed 14453.68  rad/s 3379.765629 rad/s 

5
th

  Critical speed 22583.875  rad/s 4688.035919 rad/s 

 

At the 5 different critical speeds shown in the figures below, the first mode shape of the impeller is due to the 

operation of the rotor. The horizontal axis in the graph shows the modeled amplitude of the rotor, and the vertical axis 

shows the variation in amplitude. 
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Figure 7. Deformation occurred in the rotor system at the first critical speed. 
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Figure 8. Shape change in the rotor system at the second critical speed. 
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Figure 9. Shape change in the rotor system at the third critical speed. 
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Figure 10. Deformation occurred in the rotor system at the fourth critical speed. 
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Figure 11. Deformation occurred in the rotor system at the fifth critical speed. 

 

Shape changes occurred at the calculated critical speeds of the rotor system modeled in Figs. 3.3a-e are 

graphically shown. When the graphics are examined; the amplitude value in the radial direction at the first critical speed 

(585.548989 rad / s) is higher than the other modes. The critical speed value in the first mode is considerably lower than 

the critical speed in the other modes. Therefore, we can interpret the fact that the system does not operate at a stable 

speed at low speeds and that the harmonics of the 1st critical speed of the system are not approached at other running 

speeds because the radial amplitude value of the shape modification is high. As the operating speed of the system 

increases, the amplitude value in the radial direction decreases. In other words, as the speed of operation increases, the 

system becomes more stable and it becomes a normal rotation. 

 

Campbell Diagram 

As a result of the analyzes made, the graph in Figure 3.4 is obtained. The horizontal axix in the graph shows 

the change in the running speed and the vertical axis shows the change in the natural frequency. First, the maximum and 

minimum speeds of the system were determined (min speed 260 rpm and max speed 1200 rpm), and 10 rs and + 20 

natural frequencies were found in the plus and minus directions at the rotation speeds of 1 s . The graph in Figure 3.4 

also shows the change in natural frequencies in these positive and negative directions. Although it appears that the lines 

in the graph are straight, this is due to the fact that there is not a lot of variation in the natural frequencies found at the 

end of the rotation speeds. This change can be seen comfortably as the graph is enlarged. This change can also be 

interpreted by the fact that during the operation of the system at different speeds, the change in the bed (spring-damping 

element) system occurs at a lesser rate, which affects the natural frequencies. From this, it is clear that the natural 

frequency of the system depends on the angular velocity. However, the increase in natural frequencies in the positive 

direction and decrease in the negative plane until the increase in speed, ie 260 rpm 1200 rpm, shows that the change in 

rotation direction can affect the change in natural speed as well as the working speed. 
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Figure 12. Campbell diagram. 

 

CONCLUSIONS AND RECOMMENDATIONS 

Vibration characteristics are the most important factors in the performance of a machine in operating 

conditions and in diagnosing mechanical problems. These characteristics are frequency, amplitude, speed and 

acceleration of vibration. 

In this study, five critical speed values are calculated for the rotor system and it is observed that the critical 

speed values determined by theoretical and software are different from each other. Further studies can be done to 

increase speeds and change the dimensions. It is conceivable that the methods used in this study can be applied in a 

similar way to mechanical systems with dynamic behavior such as industrial field power, hydraulic pneumatic drive and 

shaft-disk systems (servo, hydraulic, pneumatic motor shaft). In particular, it has been concluded that the software used 

in this study would be useful in characterizing the dynamic behavior of more complex rotors (eg vacuum pumps, gas 

turbines, diffusion and turbomolecular pumps). 
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