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ABSTRACT 

 

Type II singularities are a phenomenon encountered in closed kinematic chains. 

Characteristically, they lead to diverging actuator forces and loss of motion control. As a 

general solution to this problem, it is suggested in the literature that the dynamic model of the 

mechanism is made consistent at the singular configuration so that the singularity can be 

passed through smoothly. In line with this principle, the present paper analytically explores 

the guidelines for motion planning of four-bar mechanisms in the presence of type II 

singularities. With this purpose in mind, four theorems and two corollaries are developed and 

proved. Considering that four-bar mechanisms are widely used in various industrial 

applications, the theoretical outcomes of the paper are believed to be important also from a 

practical point of view. 
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ÖZ 

 

Tip II tekillikler kapalı kinematik zincirlerde karşılaşılan bir olgudur. Karakteristik olarak, 

eyleyici kuvvetlerinin ıraksamasına ve hareket kontrolünün kaybına neden olurlar. Bu 

probleme genel bir çözüm olarak, literatürde tekilliğin sorunsuz bir şekilde geçilebilmesini 

teminen, mekanizmanın dinamik modelinin tekil konumda tutarlı hale getirilmesi önerilmiştir. 

Bu prensip çerçevesinde, bu makale tip II tekilliklerin varlığında dört-çubuk 

mekanizmalarının hareket planlamasına dair temel ilkeleri analitik olarak ortaya koymuştur. 

Bu amaçla dört teorem ve iki sonuç teoremi geliştirilmiş ve ispatlanmıştır. Dört-çubuk 

mekanizmalarının muhtelif endüstriyel uygulamalarda yaygın olarak kullanıldığı göz önüne 

alınarak, makalenin teorik sonuçlarının pratik açıdan da önem taşıdığı düşünülmektedir. 
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1. INTRODUCTION 

 

A great number of studies on robotics have been devoted to closed-loop (or parallel) 

manipulators. Despite their numerous advantages over serial robotic arms, parallel 

manipulators have workspace limitations, mainly stemming from type II singularities [1-3]. 

Motion control is lost and the mechanism may be damaged due to the divergence of the 

actuator forces around these positions [1, 4, 5]. Therefore, it is crucial to develop effective 

methods for enabling a closed-loop mechanism to smoothly pass through this kind of singular 

configurations. 

 

The inherent solution is to use redundancy [6]. Recent variations of this kind of attempts 

can be found in [7, 8]. However, non-redundancy offers improvements in terms of cost and 

complexity. One of the solutions in this regard is the planning of the motion in order to ensure 

the consistency of the dynamic model even at the singular position [9-13]. This motion 

planning technique has been also adapted to rigid-link flexible-joint and flexible parallel 

robots [14, 15]. Two alternative methods have been recently proposed by the present author. 

These alternatives are the method of singularity robust balancing and the singularity-

consistent payload placement method [16, 17]. 

 

Although the general conditions for the dynamic model of parallel robots to be consistent 

at a singular configuration are well identified in the literature, deriving a complete set of 

guidelines for the motion planning of a particular mechanism passing through such 

configurations still requires a thorough analysis of the problem. While the existing studies 

have focused primarily on high degree-of-freedom mechanisms, one-degree-of-freedom 

mechanisms are also widely used in numerous industrial systems [18]. Use of flywheels or a 

double four-bar mechanism has been suggested particularly for dealing with singularities of 

four-bar mechanisms [19]. Hence, this paper is aimed at analytically deriving the guidelines 

for the motion planning of four-bar mechanisms in the presence of type II singularities. The 

paper is organized as follows: First, Section 2 provides some background on the dynamic 

model and type II singularities of the mechanism. Then, in Section 3, the motion planning 

guidelines in the presence of type II singularities are derived in the form of four theorems and 

two corollaries. Following this, in Section 4, a demonstrative example is presented. Finally, 

Section 5 concludes the paper by summarizing the highlights of the study. 

 

2. PRELIMINARIES 

 

Referring to Figure 1, the closed-loop constraint equations of a planar RRRR four-bar 

mechanism can be written as follows: 

 

2 2 3 3 1 4 4cos cos cosa a a a              (1) 

 

2 2 3 3 4 4sin sin sina a a              (2) 

 

where 1a AD , 2a AB , 3a BC  and 4a CD . From Eqs. (1) and (2), one can obtain the 

velocity-level constraints in matrix form as 

 

Φq 0              (3) 
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where 

 

 2 3 4

T
  q             (4) 

 

and 

 

  2 2 3 3 4 4

2 2 3 3 4 4

sin sin sin

cos cos cos

a a a

a a a

  

  

  
   

 
Φ Φ q         (5) 

 

 

Figure 1. A four-bar mechanism 

Assuming that 2  is the input variable and choosing q  as the generalized coordinates, the 

dynamic equations of the mechanism can be written using the Lagrangian method as follows. 

 
T   Mq N G T Φ λ            (6) 

 

where 

 

 
11 12

21 22

33

0

0

0 0

M M

M M

M

 
 

 
 
  

M M q           (7) 

 

   1 2, 0
T

N N N N q q           (8) 

 

   1 2 3

T
G G G G G q           (9) 

 

 0 0
T

TT           (10) 

 

 1 2

T
 λ           (11) 

2G  
2 

A  D  

y  

x  

2  

g  

2  

3 

3G  

3  

3  B  

C  

4 

4  

4G  4  
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and 

 
2 2

11 2 2 2 3 2M m c I m a            (12) 

 

 12 21 3 2 3 2 3 3cosM M m a c              (13) 

 
2

22 3 3 3M m c I            (14) 

 
2

33 4 4 4M m c I            (15) 

 

 2

1 3 2 3 3 2 3 3sinN m a c               (16) 

 

 2

2 3 2 3 2 2 3 3sinN m a c                (17) 

 

 1 2 2 2 2 3 2 2cos cosG m c m a g              (18) 

 

 2 3 3 3 3cosG m gc             (19) 

 

 3 4 4 4 4cosG m gc             (20) 

 

Here, 
im  and iI  denote the mass and the centroidal moment of inertia of the i th link, 

respectively; g  is the gravitational acceleration, T  the motor torque associated with 
2 ; the 

distances to the center of gravities are labeled as 
2 2c AG , 

3 3c BG , 4 4c DG ; and 
1  and 

2  are the Lagrange multipliers. 

 

For a prescribed motion of the mechanism, Equation 6 is a system of three equations in 

three unknown variables, namely, T , 
1  and 

2 . However, these three variables appear 

together only in the first row of the matrix Equation 6 whereas T  does not show up in its 

second and third rows. Therefore, provided the second and third rows of the matrix Equation 

6 can be solved for the Lagrange multipliers, one can obtain the necessary motor torque from 

its first row. However, this becomes impossible and a type II singularity occurs when 

 

 3 3 3 3

3 4 3 4

4 4 4 4

sin cos
sin 0

sin cos

a a
a a

a a

 
 

 


     


H      (21) 

 

or, equivalently, when 

 

3 4 0,                (22) 

 

It should be obvious at this point that H  is the coefficient matrix of the Lagrange 

multipliers in the second and third rows of the matrix Equation 6, i.e. it is nothing but a 

partition obtained by deleting the first row of 
T

Φ . 



Fen ve Mühendislik Dergisi Cilt: 18  No: 2  Sayı: 53 Sayfa No: 196 

 

 

3. THEOREMS ON MOTION PLANNING OF FOUR-BAR MECHANISMS IN THE 

PRESENCE OF TYPE II SINGULARITIES 

 

In the rest of the paper, the superscript 
*
 over a variable x  denotes the value of that 

variable at a type II singular configuration, i.e.  *

scx x t t   where t  is the time and 
sct  the 

time at which the singularity is encountered. 

 

Definition 1. Let 1   if * *

3 4 0   , and 1    if * *

3 4     . Then define the constants 

1 , 
2  and 

3  as follows: 

 

3
1

4

a

a
   

 

 

2

3 4 1
2 * *

2 2 4sin

a a

a

 


 

 



 

 

 * *2
3 2 2 4

4

cos
a

a
      

 

Definition 2. In accordance with Definition 1, define the constants  ,   and   as follows: 

 

*4
2 21 3 33

3

a
M M

a
     

 

4
22 1 33

3

a
M M

a
    

 

* *4
2 3

3

a
G G

a
    

 

It should be noted before proceeding further that the joint displacements at the singular 

configuration can be determined by solving Equation 1, Equation 2 and Equation 22 

simultaneously. Also notice from Equation 14 and Equation 15 that 22M  and 33M  are 

constant and positive. 

 

Theorem 1. Consider a four-bar mechanism, as shown in Figure 1. Let 2  and 3  be its 

input and output variables, respectively. Then, in accordance with Definitions 1 and 2, the 

condition that should be satisfied by the motion in order to render the dynamic equations 

consistent at a type II singularity can be expressed by the following equation: 

 

 
2

* *

3 3 0       
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Proof. The proof starts by noting that, at a type II singularity, the rows of the H  matrix are 

linearly dependent [10] through the following relation: 

 

4
1 2

3

0j j

a
H H

a
  , 1,2j         (23) 

 

For a physically realizable system, the governing dynamic equations should be consistent 

at the singular position [9-13], i.e. 

 

 * * * * * * *4
21 2 22 3 2 2 33 4 3

3

0
a

M M N G M G
a

                (24) 

 

For a prescribed motion of the mechanism, the joint velocities and accelerations are 

calculated as 

 

 

 
3 3 4

2 3

2 2 4

sin

sin

a

a

 
 

 


 


         (25) 

 

 

 
3 2 3

4 3

4 2 4

sin

sin

a

a

 
 

 





         (26) 

 

     

 

2 2 2

2 2 2 4 3 3 3 4 4 4 3 3 3 4

2

2 2 4

cos cos sin

sin

a a a a

a

         


 

      



   (27) 

 

     

 

2 2 2

2 2 3 3 2 3 4 4 2 4 3 3 2 3

4

4 2 4

cos cos sin

sin

a a a a

a

         


 

      



   (28) 

 

Now consider the singular configuration. First, by substituting Equation 22 into Equation 

25, *

2  becomes simply zero, i.e. 

 
*

2 0             (29) 

 

In a similar manner, substitution of Equation 22 into Equation 26 gives 

 

* *3
4 3

4

a

a
             (30) 

 

Next, by substituting Equation 22 and Equation 29 into Equation 27, *

2  can be expressed as 

 

   
 

2 2
* *

3 3 4 4*

2 * *

2 2 4sin

a a

a

  


 

 



        (31) 
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Similarly, by the use of Equation 22 and Equation 29, *

4  can be obtained as follows. 

     

 

2 2
* * * *

3 3 4 4 2 4
* *3
4 3* *

44 2 4

cos

sin

a a
a

aa

    
  

 

   
   


     (32) 

 

The rest of the proof directly follows from the substitution of Equations 13-15, Equation 

17, Equation 19, Equation 20 and Equations 29-32 into Equation 24, and rearrangement of the 

resulting expression according to Definitions 1 and 2. Q.E.D. 

 

Remark 1. The condition given in Theorem 1, in general, describes a parabola in the *

3
*

3 -

plane. 

 

A corollary to Definition 2 can be stated as follows: 

 

Corollary 1.   is always positive, being given by 

 

34
22 33

3 4

aa
M M

a a
    

 

Proof. Substituting the given expression for 
1  into   expression in Definition 2, the proof 

follows from the facts that 
2 1   and that 22M  and 33M  are positive constants. Q.E.D. 

 

Remark 2. If the mechanism works in the horizontal plane, then the G  vector will be a zero 

vector and, consequently,   will be simply zero. 

 

Remark 3. In order to prevent the mechanism from being instantaneously at rest at the 

singular position, *

3  should be selected to be non-zero. 

 

Theorem 2. Consider a four-bar mechanism, as shown in Figure 1. Let 
2  and 

3  be its 

input and output variables, respectively. Then, in accordance with Definitions 1 and 2, the 

lower or upper bound for output angular accelerations that are realizable at a type II 

singularity is as follows: 

(i) For 0  , *

3





  . 

 

(ii) For 0  , *

3





  . 

 

Proof. The condition of Theorem 1 can be rearranged in the following form: 

 

 
2

* *

3 3

 
 

 
            (33) 

 

Then, setting * *

3 3d d   to zero gives the critical point as follows: 
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*
*3
3*

3

2 0
d

d

 


 
             (34) 

 

or, given that 0  , 

 
*

3 0             (35) 

 

The value of *

3  at this critical point can be obtained by simply setting *

3  to zero in 

Equation 33. 

 
*

3     at *

3 0          (36) 

 

Noting that 
*

3

* *

3 3

2
dd

d d

 

  

 
  

 
 and recalling Remark 1, it can be concluded that the 

obtained value of    is the unique global minimum (maximum) for *

3  if 0   ( 0 ) by 

applying the second derivative test. The rest of the proof follows from Remark 3. Q.E.D. 

 

A useful corollary to Theorem 2 is as follows: 

 

Corollary 2. Under the definitions and assumptions of Theorem 2, in order to obtain a 

realizable motion passing through a type II singularity: 

 

(i) For 0   and 0  , *

3  cannot be assigned a non-positive value. 

(ii) For 0   and 0  , *

3  cannot be assigned a non-negative value. 

 

Proof. Keeping in mind Corollary 1 and Remark 3, for 0  , the  
2

*

3





  term in Equation 

33 is always positive. Furthermore, under the condition that 0  , one can conclude that the 

   term in Equation 33 is always non-negative. Hence, *

3  is always positive in such a 

case. Similarly, when 0  , the  
2

*

3





  term is always negative, and given that 0  , the 

   term is always non-positive. Therefore, *

3  is always negative in such a case.   Q.E.D. 

 

Theorem 3. Consider a four-bar mechanism, as shown in Figure 1. Let 
2  and 

3  be its 

input and output variables, respectively. If the output angular acceleration is desired to be 

zero at a type II singularity, then, in accordance with Definitions 1 and 2, 0



  must hold 

for it to be realizable. Moreover, if that is the case, then *

3  should be equal to    or 

   . 

 

Proof. When *

3 0  , the condition of Theorem 1 reduces to 
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 
2

*

3 0              (37) 

 

or, solving for *

3  gives 

 
*

3               (38) 

 

Therefore, 0



   must hold for *

3  to be real and non-zero (recall Remark 3). Q.E.D. 

 

Remark 4. Theorem 3 is useful for, but not limited to, the tasks that are prescribed with a 

constant angular velocity of the output link. 

 

Theorem 4. Consider a four-bar mechanism, as shown in Figure 1. Let 
2  and 

3  be its 

input and output variables, respectively. In accordance with Definitions 1 and 2, if 0  , *

3  

should be equal to    for a realizable motion passing through a type II singularity. 

 

Proof. The proof directly follows from the substitution of 0   into the condition of 

Theorem 1, and solution of the resulting expression for *

3 . Q.E.D. 

 

4. NUMERICAL EXAMPLE 

 

This section presents a numerical example to show the application and effectiveness of the 

proposed guidelines. The parameters of the mechanism are chosen as given in Table 1. The 

mechanism is assumed to work in the horizontal plane (i.e. 0  ). The task is described as 

follows: 

 

 The mechanism will start from 3 345   . The remaining joint variables at this initial 

configuration will be 2 83.5    and 
4 173.8   . 

 The coupler link will rotate an angle of 10° in the counterclockwise direction. The 

joint variables at this final position will be 2 81.5   , 3 355    and 
4 158.7   . 

 The motion will be completed in 1 sendt  . 

 The initial and final velocities and accelerations will be zero. 

 

While executing the prescribed task, a type II singularity arises when 
3 348.5   . At this 

singular configuration, 2 84.3    and 4 3     (so 1   ), and Figure 2 shows the 

corresponding consistent motion design parabola whose equation is as follows: 

 

 
2

* *

3 33.2664 10 0            (39) 

 

By setting 0.4 ssct  , and by selecting *

3 0.2 rad s   and * 2

3 0.0131 rad s    in order 

to satisfy Equation 39, a consistent motion fulfilling the aforementioned task specifications 

can be planned for the coupler link as below: 
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  3 4 5 6 7 8

3 6.0214 6.6860 31.5065 65.0950 68.2196 35.1461 7.0266t t t t t t t         (40) 

 
Table 1. Numerical values assumed for the parameters of the mechanism 

Parameter Numerical value 

1a  5 m 

2a  1 m 

3a  3 m 

4a  2 m 

2m  1 kg 

3m  3 kg 

4m  2 kg 

iI  
2

12

i im a
   for 2,3,4i   

ic  
1

2
ia    for 2,3,4i   

i  0   for 2,3,4i   

 

 

Figure 2. The consistent motion design parabola for the encountered type II singularity 

As can be understood from Figure 3, since the motion is planned according to Equation 

39, the mechanism can pass smoothly through the singularity. 
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Figure 3. The necessary motor torque for executing the planned motion 

5. CONCLUSIONS 

 

This paper studies in depth the motion planning of the classical four-bar mechanism in the 

presence of type II singularities by proposing four theorems and two corollaries. There should 

be no doubt on that four-bar mechanisms are used in an enormous range of applications in 

industry and machinery. The highlights of the study can be summarized as follows: 

 

 Theorem 1 gives, in its simplest form, the relation between the consistent angular 

velocities and accelerations of the output link at the singular configuration. 

 It is shown analytically that the consistent angular velocities and accelerations of the 

output link at the singularity, in general, describe a parabola in the *

3
*

3 -plane. 

 Theorem 2 gives the lower or upper bound for output angular accelerations that are 

realizable at the singular configuration. 

 Corollary 2 states the realizable sign of the output angular acceleration at the singular 

position. 

 Theorem 3 is able to cover tasks that are prescribed with a constant angular velocity of 

the output link. 

 

Last but not least, the analysis presented here is believed to bring new insights into the 

synthesis of four-bar mechanisms. 
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