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Abstract: Heterogeneous survival data can have two different distributions before and after a certain time
because many factors affect the life of the creatures or machines. For this purpose, we use a mixture of two
identical (same kind of) distributions of Exponential, Gamma, Lognormal and Weibull and also all pairwise
combinations of these distributions. In addition to the previous studies, we propose the mixture of Log-normal
distribution with the Exponential, Gamma and Weibull distributions. Maximum likelihood estimations of
parameters of the mixture distribution models are obtained by using the EM (Expectation Maximization)
algorithm. Model performances are compared using goodness of fit tests and Akaike’s information criterion
(AIC). Results indicate that, mixtures of two non-identical (different kind of) distributions are as useful as
mixtures of identical distributions.
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1. Introduction

The statistical analysis of lifetime, survival time or failure time data is an important topic in
many areas, including the biomedical, engineering, and social sciences. Various parametric families
of models are used in the analysis of lifetime data. Among the univariate models, a few distributions
occupy a central position because of their demonstrated usefulness in a wide range of situations.
Foremost in this category are the Exponential, Lognormal, Gamma and Weibull distributions [13].
Also, mixture of two identical distributions (ID) and mixture of two non-identical distributions
(NID) using different binaries of Gamma, Weibull and Exponential distributions have been recently
used to model the heterogeneous survival data sets [7, 8, 9]. Mixture distribution models are
useful because they are applied to represent heterogeneous data set when there is evidence of
multimodality or simply unimodality [10]. Chen et al. [2] used a two-component mixture model
for the analysis of cancer survival data generalizing an earlier idea in [1]. In [17], a similar model
of a mixture of a Weibull component and a surviving fraction in the context of a lung cancer
trial were considered. Marin et al. [15] illustrated how Bayesian methods can be used to fit a
mixture of Weibull models with an unknown number of components to heterogeneous, possibly
right-censored survival data using a birth death Markov chain Monte Carlo (MCMC) algorithm.
Zhang [18] proposed and studied the usefulness of a parametric mixture model approach for the
analysis of survival data.

As seen in the previous studies, mixture distribution models are more appropriate distribution
models for the heterogeneous survival data sets. But, we need to compare the mixture distribution
models which are mixture of two identical distributions and mixture of two different distributions.

33



A.H. Tiirkan and Qalig: Two-component mizture distribution for heterogeneous survival datasets: A Review Study
34 ISTATISTIK: Journal of the Turkish Statistical Association 7(2), pp. 33-42, © 2014 Istatistik

Therefore, the purpose of this paper is to show that which kind of mixture distributions is more
appropriate distribution for the heterogeneous survival times.

2. Survival Time Functions

Lifetime is the length of life measured from some particular starting point. In applications,
other terms such as ”failure time” and ”survival time” are also frequently used. Survival time
data measure the time to a certain event, such as failure, death, response, the development of a
given disease. These times are subject to random variations, and like any random variables, form
a distribution [14]. Let T" denote the survival time. Survival function, denoted by S(t), is defined
as the probability that an individual survives longer than ¢:

S(t)=P(T>1) (2.1)

where S (t) >0, S(0)=1 and tlim S (t)=0.
—00
If we define
F(t)y=1-S(t)=P(T(t) (2.2)
where F'(0) =0 and then F'(t) is the probability that a fatality occurs before time ¢. We will refer
to F'(t) as the cumulative distribution function (cdf). A third function, defined by

riny=20 0 (2.3

is called the probability density function (pdf). The pdf, f (¢) has these two properties:

F#)>0 and/oof(t)dtzl (2.4)

The mean lifetime is defined by
E (1) :/ oL (2.5)
0
which is the expected value of the probability distribution defined by f (¢) [5].
Probability density functions, distribution functions and means of the theoretical distributions
used in this study are briefly summarized in Tablel.

TABLE 1. The features of the theoretical distributions used in the study

Distribution Probability Density Function Distribution Function Mean
Exponential distribution %e’§ ,t>0,A>0 l1—e % A
- T a—1_—1t
Gamma distribution ot ;artz:) ,t>0,0,8>0 fotr(iajdt af
(3 ) P
Lognormal distribution eﬁ >0, 1,0>0 | O{(Int—p)/o}®=—[ 7 e Tdu| etz
. e b () ()
Weibull distribution % (é) e (%) ,t>0,a,8>0 1—e (%) pr (1 + é)

3. Model Description

Choosing a theoretical distribution to approximate survival data is as much an art as a scientific
task. In this paper, the mixture of several theoretical distributions that have been used widely to
describe survival time are suggested. In Sec. 3.1, we define mixture of two identical distributions in
survival analysis. In Sec. 3.2, we define mixture of two different distributions in survival analysis.
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3.1. Mixture of Two Identical Distributions
To model the heterogeneous survival data set, we used the mixtures of the two same kind of
distributions which are identical pairs of Exponential, Gamma, Lognormal and Weibull defined as

fexp—exp(t) = 7-‘.1fexp(t) + TerGXP(t) (31)
fgamfgam(t) = 7Tlfgaﬂ"b(t) +7T2fgam(t) (32)
flognflogn(t) :ﬂ-lflogn(t) +7T2flogn(t) (33)

Juwvi—wbt(t) = 71 fupi () + 72 fupi(t) (3.4)

where 7y, Ty are the mixing weights and 7w +m, =1, 0 < 7y, m < 1 for each of the mixture distri-
bution models.

3.2. Mixture of Two Non-identical Distributions
To model the heterogeneous survival data set, we used the mixtures of two different distributions
which are non-identical pairs of Exponential, Gamma, Lognormal and Weibull defined as

Jexp—gam (t) = 71 fexp () + T2 fgam (t) (3.5)
Jexp—10gn (t) = 1 foxp (1) + 72 frogn (1) (3.6)
Jexp—wni(t) = 1 fexp (t) + T2 fun (t) (3.7)
Foam—togn(t) =1 fgam (t) + 72 frogn (t) (3.8)
Jgam—wbi(t) = 71 fgam (t) + 72 fur () (3.9)
fiogn—wbi(t) =1 fogn(t) + 2 funi(t) (3.10)

where 7, w5 are the mixing weights and m +m =1, 0 <y, < 1 for each of the mixture distri-
bution models.

In order to detect whether a specific distribution is preferred, we used two different goodness-
of-fit tests: the mean square error (MSE) test and the Kolmogorov-Smirnov (KS) test. Firstly, we
use the MSE test. The MSE value is defined as

MSE: Z7=1[Fe7§ti)kjF(tl)]2 (311)

where F(t) is the emprical distribution and F'(¢) is the cumulative distribution function that is
proposed to model the heterogeneous survival data set. k£ is the number of free parameters in
the distribution. As is known, the most appropriate distribution guides the smallest MSE value.
Secondly, the KS test is performed. The Kolmogorov_Smirnov statistic KS is defined by

KS =max|F,(t) — F(t)| (3.12)

It is well recognized that the preferred distribution has the smallest value of KS. Furthermore,
we used AIC as goodness of fit test because it is one of the most commonly used model selection
criteria. AIC value is given as follows

AIC =—2LogL +2d (3.13)

where d represents estimated parameters [16]. The smallest AIC value represents the best model.
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4. Parameter Estimation

In this study we tend to select mixture distributions with two components. Therefore this study
only includes mixtures with two components. Suppose the density of a random variable T has a
2-component mixture form which is given as

f@) Zﬂfk (t16x) (4.1)

where ¢ = (1,72, 01,02) is the vector containing all the unknown parameters in the mixture model.
The function fj (¢ |6y ) is called component density function for k= 1,2. with parameter 6, and 7,
is called mixing proportion of kth class satisfying conditions 7, € (0,1) and >;_ 7, =1 [16].

In finite mixture distribution models, the EM algorithm is a broadly applicable algorithm that
provides an iterative procedure for computing maximum likelihood estimators of unknown param-
eters [3].

Suppose t1,ts,...,t, is an incomplete data and z, 2, are the label values of observed data or latent
class variables where the kth element of z;, z,; is defined to be one or zero, according to whether
t; did or did not arise from the kth component of the mixture. Thus z; is distributed according to
a multinomial distribution with probabilities 7;, 7, and its density function is given by

sz’” (4.2)
The probability density function of #;, given z; can be written as
2
f(tilz) H i (835 01))™ (4.3)

Therefore the complete data likelihood function is given by

2
[T (Fe s 00)) 7w (4.4)

1 k=1

E:

f(tl)t27 tn7Z17Z2)

2

From equation (4.4) the maximum log-likelihood function for complete data can be written as

InL (¢ [tr, 2, ooty 20, 225 0 2 Zz%ln (73 fic (£i361)) (4.5)

i=1 k=1

The EM algorithm is applied to this problem by treating the z; as unobservable or missing data.
EM algorithm consists of two steps, E and M steps. The E step simply requires to calculate the
current conditional expectation of z,; given the observed data tq,ts,...,t,,

e fr (i [0r)

ZA/]ﬂ' FE Zki t
Gaelte) = S o Tt (ti161)

(4.6)

f (zaalt) is given by |
CACHIA) kil

> er (Fr (5560))™ 7y

Therefore the expectation of the complete data log-likelihood function is given by

f (i lti) = (4.7)

lIlL ZZZ]“ 11’1 kak tl,ek)) (48)

i=1 k=1
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In M step, E(z|t;) function which is calculated in E step is maximized. To maximize the
E (In L), we introduce the Lagrange multiplier A\ with the constraint that Zizl T, = 1 and we take
the derivative of equation (4.9) with respect to all parameters [9].

lnL Zszz hl kak tz,ﬁk (Zﬂ'k — 1) (49)

i=1 k=1

The estimate of 7, (k=1,2.) is defined by

n

R 1
T — g Z Zli (410)

i=1

Suppose f, (t]6,), in equation (4.1), as the Exponential pdf of kth group for observed data. We
can evaluate the maximum likelihood estimator of A\ parameter of Exponential distribution with
EM for kth group in rth iteration as

i Briti

Zz 1 Zk;z

Suppose fi (t]0; ), in equation (4.1), as the Gamma pdf of kth group for observed data. We can
evaluate the maximum likelihood estimators of parameters « and § of Gamma distribution with
EM for kth group in rth iteration as

Ao = (4.11)

R . E ;7’: Zkq In(t;
In(dy.,) — ¥(és,) — In (z,nl kit >+ Eigy 2:1n0)

i1 ki

Y (r+1) = Qpgr — 4.12

A =G T 0 (o) (12)
P o Zrits

_ i Fuf 4.13

2 Gk D i 2hi ( )

where 9(.) and ¢’(.) are a digamma and trigamma functions respectively.

Suppose f. (t]6x ), in equation (4.1), as the Log-normal pdf of kth group for observed data. We
can evaluate the maximum likelihood estimators of parameters p and o2 of Log-normal distribution
with EM for kth group in rth iteration as

n ~
Do Awnt
Hi = n N

D ic Pk

“2 S 2k (Int; — ﬂk)2
O = n A
Zi:l Zki
Suppose f, (t]61.), in equation (4.1), as the Weibull pdf of kth group for observed data. We can

evaluate the maximum likelihood estimators of parameters o and 8 of Weibull distribution with
EM for kth group in rth iteration as

(4.14)

(4.15)

PSP WS (VS E(c 91 %8
k,(r+1) k,r (1/di7T)+(Bk’TDk’T_ )/B T

1/éy,
A Dic1 Frits i
= =1 4.17
P ( Zi:l Zki ( )

_ it Zrilnt; N s 4Gk _ " o2 s O 2
where Akm = W, Bkﬂa = Zi:l Zkiti s Ck,r = Zz 1 Z]” lnt and Dk = Zi:l zkiti (h’l tl) .
i=

(4.16)



A .H. Tiirkan and Calis: Two-component mizture distribution for heterogeneous survival datasets: A Review Study

38 ISTATISTIK: Journal of the Turkish Statistical Association 7(2), pp. 33-42, © 2014 Istatistik

5. Analysis of Survival Data

5.1. Analysis of Lung Cancer Survival Data

Lung cancer survival data set consists of survival times of 183 lung cancer patients [4]. A variety
of mixture models have been proposed for the data set. Models proposed, parameter estimations of
proposed models and the comparison values to select the most adequate model are given in Table
2. The histogram and three probability densities having better fits than others for the survival
times of 183 lung cancer patients are given in Figure 1(a). The empirical distribution function and
three distribution functions having better fits than others are shown in Figure 1(b).

TABLE 2. The estimated parameters, AIC values, KS test statistics and MSE values for survival times of 183 lung

cancer patients

Distributions | Estimations of Parameters AIC |KS* |MSE (x107%)
Exp-Exp A1 =206.81 | Ay =205.09 m =0.414|2321.6 |0.099 |12.000
Gam-Gam g1 =3.795 | B0 =T4.531 | ago =1.684 | By =31.583 | m; = 0.665 | 2306.0 | 0.041 | 0.6955
Logn-Logn w =4.307 | o;=1.101 o =05.690 |092=0.378 | m =0.583]2310.0 | 0.037 | 1.0500
Whbl-Whl Q1 = 5.323 | 1 =25.168 | o = 1.377 | fyo = 244.65 | m; = 0.092 | 2301.4 | 0.045 | 2.0662
Exp-Gam A=12640 | o, =5.571 B, =57.826 m =0.594 | 2307.8 | 0.037 | 0.8057
Exp-Logn A=146.13 |p=5.741 0 =0.365 m =0.680|2307.8 |0.037 |0.7316
Exp-Whbl A=120.25 | o, =2.064 | B, =332.69 m =0.489 | 2308.8 | 0.045 | 1.5509
Gam-Logn o, =3.685 | B, =76.612 | p=3.850 o =1.029 m =0.626 | 2306.6 |0.034 | 0.7567
Gam-Whbl a,=2.041 | B,=17.267 |, =1.668 |3,=278.38 |m =0.201|2305.6 |0.036 |0.7488
Logn-Whbl p=3.850 |o=1.071 a, =187 | B,=301.98 |m =0.335|2306.2 | 0.035 |0.6957

*p values are 0.72, 1, 1, 0.99, 1, 1, 0.99, 0.99, 1, 1 at the 5% significance level
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FIGURE 1. (a) The probability densities of the fitted distributions and a histogram (b) The empirical distribution
function and the fitted distribution functions for survival times of 183 lung cancer patients
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TABLE 3. The estimated parameters, AIC values, KS test statistics and MSE values for actual time-of-death for
irradiated mice

Distributions | Estimations of Parameters AIC KS* |MSE (x107%)
Exp-Exp A1 =488.89 | A\, =488.69 m =0.614 |869.038 |0.293 | 337.00
Gam-Gam g1 =10.421 | By = 28.609 | age =92.975 | B0 =6.824 |1 =0.433 | 773.542 |0.054 |4.8282
Logn-Logn t =5.650 |o;=0.313 Ho =16.447 | 09 =0.104 m =0.434 |773.07 |0.047 |4.6731
Whl-Whl Q1 =3.761 | By1 =313.53 | o =9.731 | By =657.20 | w1y =0.397 | 774.922 | 0.061 |4.3954
Exp-Gam A=380.18 |a,=5.690 |j3,=85.905 m =0.0001 | 809.65 | 0.188 | 86.000
Exp-Logn A=405.09 |p=6.102 o =0.452 m =0.0001 | 815.276 |0.201 | 98.000
Exp-Wbl A=32874 |o,=3.061 |pB,=>549.21 m = 0.0002 | 802.078 | 0.157 | 73.000
Gam-Logn o, =9419 | B,=6.743 1 =>5.661 0 =0.323 m =0.559 | 772.762 |0.048 |4.3470
Gam-Whl oy =24481 | B,=11.693 |, =9.732 |B,=0657.55 |m =0.401 |772.446 |0.072 |11.000
Logn-Wbl 7 =>5.619 o =0.299 o, =9.695 | B, =657.50 |7 =0.404 |771.708|0.044 | 3.0028

*p values are 0.00, 0.99, 1, 0.99, 0.16, 0.10, 0.34, 1, 0.98, 1 at the 5% significance level
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FIGURE 2. (a) The probability densities of the fitted distributions and a histogram (b) The empirical distribution
function and the fitted distribution functions for actual time-of-death for irradiated mice

5.2. Analysis of Actual Time-of-Death for Irradiated Mice Data

The data are actual time-of-death for irradiated mice given in Elandt-Johnson and Johnson
(1980) [6]. Jiang and Murthy (1995) [11] confine their attention to deaths due to thymic lymphoma
(22 data points) and reticulum cell sarcoma (38 points). Proposed models, parameter estimations
of proposed models and the comparison values to select the most adequate model are given in
Table 3. The histogram and three probability densities having better fits than others are given in
Figure 2(a). The empirical distribution function and three distribution functions having better fits
than others are shown in Figure 2(b).

5.3. Analysis of Failure Times for Oral Irrigators

Another real data set previously studied by [12] consists of failure times for oral irrigators. This
data set is dealing with failure times for oral irrigators. Models proposed, parameter estimations of
proposed models and the comparison values to select the most adequate model are given in Table
4. The histogram and three probability densities having better fits than others are given in Figure
3(a). The empirical distribution function and three distribution functions having better fits than
others are shown in Figure 3(b).
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TABLE 4. The estimated parameters, AIC values, KS test statistics and MSE values for oral irrigator data set

Distributions | Estimations of Parameters AIC KS* |MSE (x107%)
Exp-Exp A1 =263.32 | A\, =265.76 m=0.493 |1295.302 |0.113 | 34.000
Gam-Gam g1 =1.127 | By =145.27 | ogo =65.224 | By ="7.790 | m; = 0.707 | 1261.932 | 0.049 | 3.975
Logn-Logn 1 =4.548 01 =1203 | p,=6.199 09=0.146 | m =0.684|1276.998 |0.090 |15.000
Whbl-Whl Q1 =522.19 | By1 =6.871 | o =149.28 | 5,2 =1.115 | m; = 0.351 | 1260.654 | 0.045 | 3.225
Exp-Gam A=165.74 oy, =65.505 | B, =7.748 m =0.711]1260.506 |0.059 |4.791
Exp-Logn A=167.73 n=106.226 o =0.119 m =0.717| 1260.646 | 0.059 | 4.866
Exp-Wbl A =148.17 o, =520.98 | B, =6.839 m =0.656 | 1259.608 | 0.058 | 4.058
Gam-Logn ay,=53.299 |5, =9.386 |p=4.566 0=1.206 |7 =0.308|1276.284 |0.091 |16.000
Gam-Whl o, =1.143 By=126.21 | @, =521.01 | B, =6.792 | 7 =0.648 | 1260.996 |0.050 |3.441
Logn-Whl nw=4.412 o=1.199 o, =505.64 | B, =5.686 | m =0.386 | 1272.738 |0.081 |11.000

*p values are 0.43, 0.99, 0.78, 0.99, 0.99, 0.99, 0.99, 0.78, 0.99, 0.78 at the 5% significance level
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FIGURE 3. (a) The probability densities of the fitted distributions and a histogram (b) The empirical distribution
function and the fitted distribution functions for oral irrigators data set

6. Discussion and Conclusions

The survival analysis has become an increasingly active and very important area of research.
Various theoretical distributions are used to model survival time. In this paper, mixtures of these
distributions are considered for modelling heterogeneous survival time data. Heterogeneous sur-
vival time data can have two different distributions before and after a certain time because many
factors affect the life of the creatures. For instance, a slowly growing tumor can grow faster after a
particular process and this can be affect the life. Each of the different parts of life will generate a
peak in the mixture distribution. Therefore, we try to model the heterogeneous survival time data
with the most appropriate distributions among the mixture models. In this study, we also apply
the mixture of Log-normal distribution with the Exponential, Gamma and Weibull distributions
and we compare the mixture of two identical distributions and two different distributions. The AIC
values, KS test statistics and MSE are calculated to determine the most appropriate distribution
for the present data sets.

A variety of mixture models have been proposed for each of the three data sets and majority of
these mixture models fit these data sets successfully. The best model among the two component
mixture distribution models is the mixture of Gamma and Log-normal for survival times of 183
lung cancer patients according to KS test statistics and alternative models are determined as the
mixture of two Gamma distributions and two Weibull distributions according to MSE and AIC
values for this data set respectively.
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For the mice data, the mixture of Log-normal and Weibull distributions is found the best model
according to all comparison criteria. Mixture of Gamma and Log-normal distributions and mixture
of Gamma and Weibull distributions can be used alternative models for the mice data according
to AIC values. Finally for the oral irrigator data set, the best fit model is the mixture of two
Weibull distributions according to all comparison criteria. Mixture of Exponential and Gamma
distributions, mixture of Exponential and Log-normal distributions and mixture of Exponential
and Weibull distributions are alternative models also for the oral irrigator data set.

In conclusion, it’s known that mixture distribution model approaches are provided better fit for
the heterogeneous data set. Mixture of identical distributions can be used with different number
of components for the heterogeneous data sets having two or more modes. Also as seen in the
previous studies, the mixture models of two different distributions approach is a new method for
heterogeneous data sets. However, it can be difficult to model the heterogeneous data sets with
the mixture models consisted of more than two different distributions. It will be subject of a new
study to see how the mixture models can be generalized for the heterogeneous data sets which have
more than two modes and how the parameters of these models are estimated. As a result of this
study, the mixture models of two different distributions are powerful alternative models compared
to mixture of two identical distributions in case of heterogeneous survival data sets which have two
components.
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