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1 Introduction and Preliminaries

The well-known concept of the real quaternion was first introduced by Hamilton in 1843 [1]. It has four components, i.e.

q = qr + qii+ qjj + qkk

where qr, qi, qj , qk ∈ R and i, j and k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, ik = −ki = −j, jk = −kj = i.

The real quaternion algebra plays an important role in matrix analysis, quantum physics, kinematics, differential geometry, game development,
image and signal processing etc. Thus, there are number of studies associated with real quaternions [2, 3]. Since the multiplication of real
quaternions is non-commutative, all results about the complex numbers cannot be generalized in real quaternions. This problem restricts the
applications of real quaternions. In addition, this can increase the complexity of many processes.

The concept of commutative quaternions was first introduced by Schütte and Wenzel [4]. The major difference between commutative quater-
nions and real quaternions is commutativeness of the multiplication, which are commutative for commutative quaternions. There are many
studies on commutative quaternions in literature. Catoni et al. studied the functions of commutative quaternions variable and obtained general-
ized Cauchy-Riemann conditions [5]. Pei et. al introduced digital signal and image processing using commutative quaternions. For color image
processing, they defined a simplified polar form of commutative quaternions to represent the color image and showed that this representation is
useful to process color images in the brightness-hue-saturation color space [4]. In [6], Isokawa et al. investigated two types of multistate Hop-
field neural networks based on commutative quaternions. Moreover, Kosal and Tosun investigated some algebraic properties of commutative
quaternion matrices by means of complex representation of commutative quaternion matrices [7]. In [8], Kosal et al. constructed some explicit
expression of the solution of the Kalman-Yakubovich-conjugate commutative quaternion matrix equations, by means of real representation of
a commutative quaternion matrices. In [9], Kosal and Tosun studied some equivalence relations and related to results over the commutative
quaternions and their matrices. In this sense, they defined consimilarity, semisimilarity and consemisimilarity over the commutative quaternions
algebra and their matrix algebra and determined the equalities of these equivalence relations. In [10], Kosal and Tosun established universal
similarity factorization equalities over the commutative quaternions and their matrices. Based on these equalities, real matrix representations of
commutative quaternions and their matrices have been derived, and their algebraic properties and fundamental equations have been determined.

In this study, the existence of solution to the elliptic quaternion matrix equationsAX = B is characterized and solutions of this matrix equation
are derived by means of real representations. Elliptic quaternions are generalized form of commutative quaternions and so complex numbers
[5]. Thus, the obtained results extend, generalize and complement some known commutative quaternions matrices and complex matrices results
from the literature.

A set of elliptic quaternions is denoted by [5]

Hp = {a = a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R, i, j, k /∈ R}

where

i2 = k2 = α, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = αj, α < 0.

There are three types of conjugate of a = a0 + a1i+ a2j + a3k ∈ Hp. They are
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1ā = a0 − a1i+ a2j − a3k,

2ā = a0 + a1i− a2j − a3k,

3ā = a0 − a1i− a2j + a3k

.

and norm of a is defined

‖a‖ = 4
√
|a (1ā) (2ā) (3ā)|

= 4

√ [
(a0 + a2)2 − α(a1 + a3)2

] [
(a0 − a2)2 − α(a1 − a3)2

]
.

Addition, multiplication and scalar multiplication of the elliptic quaternions a = a0 + a1i+ a2j + a3k, b = b0 + b1i+ b2j + b3k ∈ Hp and
λ ∈ R are defined by

a+ b = (a0 + b0) + (a1 + b1) i+ (a2 + b2) j + (a3 + b3) k,

pq = (a0b0 + αa1b1 + a2b2 + αa3b3) + (a1b0 + a0b1 + a3b2 + a2b3) i
+ (a0b2 + a2b0 + αa1b3 + αa3b1) j + (a3b0 + a0b3 + a1b2 + a2b1) k,

and

λa = λ (a0 + a1i+ a2j + a3k) = λa0 + λa1i+ λa2j + λa3k

respectively.
If a = a0 + a1i+ a2j + a3k ∈ Hp and ‖a‖ 6= 0 then a has multiplicative inverses. Multiplicative inverse of a is given by

a−1 =

(
1ā
)(

2ā
)(

3ā
)

‖a‖4
.

2 Elliptic Quaternion Matrices

The set of Hm×n
p denotes all m× n type matrices with elliptic quaternion entries. For A =

(
aij
)
, B =

(
bij
)
∈ Hm×n

p , C =
(
cjk
)
∈

Hn×l
p and λ ∈ R, the ordinary matrix addition, scalar multiplication and multiplication are defined by

A+B =
(
aij
)

+
(
bij
)

=
(
aij + bij

)
∈ Hm×n

p ,

λA = λ
(
aij
)

=
(
λaij

)
∈ Hm×n

p

and

AC =

 n∑
j=1

aijcjk

 ∈ Hm×l
p

respectively.
There are three types’ of conjugate of A =

(
aij
)
∈ Hm×n

p . They are

1Ā =
(
1aij

)
∈ Hm×n

p , 2Ā =
(
2aij

)
∈ Hm×n

p and 3Ā =
(
3aij

)
∈ Hm×n

p .

A matrix AT ∈ Hn×m
p is transpose of A ∈ Hm×n

p . Also A∗s =
(sA)T ∈ Hm×n

p , s = 1, 2, 3, is called conjugate transpose according to
the sth conjugate of A ∈ Hm×n

p .

Theorem 1. Let A and B be elliptic quaternion matrices of appropriate sizes. Then followings are satisfied:

1.
(sĀ)T=s

(
AT
)
,

2. (AB)∗s = B∗sA∗s ,
3. (AB)T = BTAT ,
4. s(AB) =

(sĀ) (sB̄) ,
5. If A−1 and B−1 exist then (AB)−1 = B−1A−1 ,

6. If A−1 exists (A∗s)
−1

=
(
A−1

)∗s
,

7.
(sĀ)−1=s(A−1).

This theorem can also be easily proved by direct calculation.
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3 Real Representation of Elliptic Quaternion Matrices

Let A = A0 +A1i+A2j +A3k ∈ Hm×n
p where A0, A1, A2, A3 ∈ Rm×n. For X ∈ Hn×n

p , we will define the linear transformations

ηA (X) = AX.

Then, we get real representations of elliptic quaternion matrix A = A0 +A1i+A2j +A3k ∈ Hm×n
p

ηp (A) =

 A0 αA1 A2 αA3
A1 A0 A3 A2
A2 αA3 A0 αA1
A3 A2 A1 A0

 ∈ R4m×4n.

Theorem 2. Let A, B ∈ Hm×n
p , C ∈ Hn×p

p and λ ∈ R. Then following identities are satisfied:

1. A = B ⇔ ηp (A) = ηp (B), ηp (A+B) = ηp (A) + ηp (B),
2. ηp (AC) = ηp (A) ηp (C), ηp (λA) = ηp (Aλ) = ληp (A),
3. A = 1

2−2αE4mηp (A)E∗14n where E4t =
(
It iIt jIt kIt

)
∈ Ht×4t,

4. If A is a nonsingular matrix of size m then

ηp
(
A−1

)
= η−1p (A) , A−1 =

1

2− 2α
E4mη

−1
p (A)E∗14m,

5. ηp (A) = R−14mηp (A)R4n, ηp (A) = S−14mηp (A)S4n and ηp (A) = T−14mηp (A)T4n where

Q4t =

 0 αIt 0 0
It 0 0 0
0 0 0 αIt
0 0 It 0

 , S4t =

 0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0

 , T4t =

 0 0 0 αIt
0 0 It 0
0 αIt 0 0
It 0 0 0

 .

4 On Solutions to the Elliptic Quaternion Matrix Equation AX = B

Now, we consider the solution of the

AX = B (1)

by means of the real representation, where A ∈ Hm×n
p , B ∈ Hm×p

p . We define the real representation of the matrix equation (1) by

ηp (A)Y = ηp (B) . (2)

Proposition 1. The equation (1) has a solution X if and only if the equation (2) has a solution Y = ηp (X).

Theorem 3. The equation (2) has a solution Y ∈ R4n×4p if and only if the equation (1) has a solution X ∈ Hn×p
p . In that case, if Y ∈

R4n×4p is a solution of (2), then the matrix

X =
1

8− 8α
(Im iIm jIm kIm)

(
Y +Q−14mY Q4p + S−14mY S4p + T−14mY T4p

) Ip
−iIp
jIp
−kIp

 (3)

is a solution of (1).

Proof:
We show that if the real matrix

Y =

 Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

 , Yuv ∈ Rn×p, u, v = 1, 2, 3, 4 (4)

is a solution to (2), then the matrix given in (3) is a solution to (1). Since Q−1m Y Qn = Y, R−1m Y Rn = Y, S−1m Y Sn = Y, we have

ηp (A)Q−14mY Q4p = ηp (B) , ηp (A)R−14mY R4p = ηp (B) , ηp (A)S−14mY S4p = ηp (B) .

This equation shows that if Y is a solution to (2), then Q−14mY Q4p, R−14mY R4p and S−14mY S4p are also solutions to (2). Thus the following
real matrix:

Y ′ =
1

4

(
Y +Q−14mY Q4p +R−14mY R4p + S−14mY S4p

)
(5)

is a solution to (2). Now substituting (4) in (5) and the simplifying the expression, we easily get
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Y ′ =

 Z0 αZ1 Z2 αZ3
Z1 Z0 Z3 Z2
Z2 αZ3 Z0 αZ1
Z3 Z2 Z1 Z0

 ,

where

Z0 = 1
4 (Y11 + Y22 + Y33 + Y44) , Z1 = 1

4

(
Y12
α + Y21 + Y34

α + Y43

)
,

Z2 = 1
4 (Y13 + Y24 + Y31 + Y42) , Z3 = 1

4

(
Y14
α + Y23 + Y32

α + Y41

)
.

Thus we obtain

X = Z1 + Z2i+ Z3j + Z4k =
1

8− 8α
(Im iIm jIm kIm)

(
Y +Q−14mY Q4p + S−14mY S4p + T−14mY T4p

) Ip
−iIp
jIp
−kIp

 .

�

5 Numerical Algorithms

Based on the discussions in the previous section, in this section we provide numerical algorithms for solving elliptic quaternion matrix equation
AX = B.

1. Input A0, A1, A2, A3 and B0, B1, B2, B3.
2. Form ηp (A) and ηp (B).
3. Compute Y and Y ′ = 1

4

(
Y +Q−14mY Q4p +R−14mY R4p + S−14mY S4p

)
.

4. Calculate

X =
1

8− 8α
(Im iIm jIm kIm)

(
Y +Q−14mY Q4p + S−14mY S4p + T−14mY T4p

) Ip
−iIp
jIp
−kIp

 .

6 Numerical Examples

Let us for solve the elliptic quaternion matrix equation(
1 1 + i
j k

)
X =

(
1 + 2i+ j 2 + j + k
−1 + j + 2k − 1 + i+ 2j

)
.

Under consideration of the Theorem 3, real representation of given matrix equation is

1 1 0 α 0 0 0 0
0 0 0 0 1 0 0 α
0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 α
1 0 0 α 0 0 0 0
0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0


Y =



1 2 2α 0 1 1 0 α
−1 −1 0 α 1 2 2α 0
2 0 1 2 0 1 1 1
0 1 −1 −1 2 0 1 2
1 1 0 α 1 2 2α 0
1 2 2α 0 −1 −1 0 α
0 1 1 1 2 0 1 2
2 0 1 2 0 1 −1 −1


If we solve this equation, we have

Y =



1 2 2α 0 −1 −1 −2α −α
0 0 0 0 2 2 0 0
2 0 1 2 −2 −1 −1 −1
0 0 0 0 0 0 2 2
−1 −1 −2α −α 1 2 2α 0
2 2 0 0 0 0 0 0
−2 −1 −1 −1 2 0 1 2
0 0 2 2 0 0 0 0


.

Finally, we obtain

X = 1
8−8α (Im iIm jIm kIm)

(
Y +Q−14mY Q4p + S−14mY S4p + T−14mY T4p

) Ip
−iIp
jIp
−kIp


=

(
1 + 2i− j − 2k 2− j − k

2j 2j

)
.
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