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ABSTRACT. The main subject of this paper is Hom-comodule algebras with
Hom-Hopf module structure. First, we give the factorization of a class of Hom-
bialgebras, which is not only Hom-module coalgebras but also Hom-comodule
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this class of Hom-comodule algebras. Finally, we discuss the relation between
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1. Introduction

The study of Hom-associative algebras originates with work by Hartwig, Larsson
and Silvestrov in the Lie case [4], where a notion of Hom-Lie algebra was introduced
in the context of studying deformations of Witt and Virasoro algebras. Later, it was
extended to the associative case by Makhlouf and Silvestrov in [7]. Now the asso-
ciativity is replaced by Hom-associativity a(a)(bc) = (ab)a(c). Hom-coassociativity
for a Hom-coalgebra can be considered in a similar way, see [8].

The crossed product algebra was introduced in [1], which is a generalization of the
smash product algebra. In [1], Blattner, Cohen and Montgomery showed the equiv-
alence of crossed products and cleft extensions. In [2], Blattner and Montgomery
gave several characterizations of crossed products. Lu and Wang [5] generalized
the results in [1] to the case of Hom-Hopf algebras. Hopf modules (see [9]) are
vector spaces with both a comodule and module structure which are related in a
natural way. The theory of Hopf modules accounts for some of the deeper results
for Hopf algebras. Hom-Hopf modules, as the generalization of Hopf modules, are

also studied by many people. Motivated by this, the main subject of this paper
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is the Hom-comodule algebras with Hom-Hopf module structure. In this paper we
not only discuss the relation between this class of Hom-algebas and Hom-crossed
product algebras, but also discuss the relation between this class of Hom-algebas
and cleft extensions.

This paper is organized as follows. In Section 2, we recall some basic defini-
tions and results, such as Hom-Hopf algebra, Hom-Hopf module, Hom-(co)module
(co)algebra, Hom-crossed product algebra and so on. Next, we always assume that
H is a Hom-Hopf algebra, B is a right H-Hom-Hopf module and (B, p) is a right
H-Hom-comodule algebra, set A = B In Section 3, let B be also a Hom-module
coalgebra and a Hom-bialgebra, we provide the factorization of Hom-bialgebra B,
that is B ~ A H as Hom-bialgebras (see Theorem 3.3). In Section 4, we define
a weak action of H on A, thus obtain the Hom-crossed product algebra Af,H and
B ~ A#,H as Hom-algebras (see Theorem 4.2), that is, we obtain the factoriza-
tion of this class of Hom-comodule algebas. Furthermore, we discuss the relation

between this class of Hom-comodule algebas and cleft extensions (see Theorem 4.7).

2. Preliminaries

Throughout this paper, k is a fixed field. Unless otherwise stated, all vector
spaces, algebras, coalgebras, maps and unadorned tensor products are over k.
We now recall from [7,8,10] some definitions and results about Hom-Hopf alge-

bras, Hom-(co)modules and so on.

2.1. Hom-Hopf algebra. A Hom-algebra is a quadruple (A4, i, 14, «) (abbr. (4, a)),
where A is a linear space, 1 : A® A — A is a linear map, with notation p(a®a’) =
aa’, 14 € A and o € Autp(A), such that for any a,a’,a” € A,
a(aad’) = a(a)a(a’), ala = 1aa = afa),
a(a)(a'a"”) = (aa")a(a"), a(la) = 14.
A Hom-coalgebra is a quadruple (C, A e, 3) (abbr. (C,3)), where C is a linear

space, A: C — C ®C, e:C — k are linear maps, and 8 € Auty(C), such that for
any ¢ € C,

Bler) ® Blea) = B(c)1 @ B(c)2, ec(cr)ea = crec(ez) = B(e),
B(c1) ® 21 ® ca2 = €11 @ €12 ® f(c2), ef = €.

A Hom-bialgebra is a sextuple (H, u, 15, A, e,7) (abbr. (H,~)), where (H, p, 15,7)

is a Hom-algebra, and (H, A, ¢,7) is a Hom-coalgebra, such that A, £ are morphisms
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of Hom-algebra, i.e.
A(hh") = A(h)A(R), A(lg) =1g ® 1y, e(hh') =e(h)e(h’), e(1g) = 1.
Furthermore, if there exists a linear map S : H — H such that
S(h1)he = h1S(hs) = e(h)1lm, S(y(h)) =~(S(h)),
then we call (H, pu,1p,4A,¢,5,v) (abbr. (H,S,v)) a Hom-Hopf algebra.

2.2. The fundamental theorem of Hom-Hopf module. Let (4, 8) be a Hom-
algebra, a right (A, 5)-Hom-module is a triple (M, -, &), where M is a linear space,
- M®A— M is a linear map, and « is an automorphism of M, such that for any

a,a’ € Aand m e M,
a(m) - (ad') = (m-a) - B(d’), m-1a = a(m), a(m-a)=a(m) - B(a).

Let (C, 8) be a Hom-coalgebra, a right (C, 8)-Hom-comodule is a triple (M, p, &),
where M is a linear space, p: M — M ® C'is a linear map (write p(m) = mg) @
m(1)), and « is an automorphism of M, such that for any m € M,

a(m)) ® may @ may2 = M) o) © M)y @ Blm)),
mo)e(m(1)) = a(m), a(m)e) ® a(m)a) = alm()) @ B(m())-
Let (H, «) be a Hom-Hopf algebra, a right H-Hom-Hopf module is a quadruple

(M, -, p, ), where M is a right H-Hom-module and a right H-Hom-comodule, such
that for allm € M, h € H,

p(m-h)= m) - hi ® m(l)hg.

2.3. Hom-module coalgebra and Hom-comodule algebra. Recall from [6],

let (H,«) be a Hom-Hopf algebra and (C, 3) be a Hom-coalgebra, if (C,-,«) is a

left (H, 8)-Hom-module, for all ¢ € C, h € H the following conditions hold
(h-c)1®(h-c)g=h1-c1 @hg-ca, e(h-c)=ce(h)e(c),

then (C, -, 8) is called an H-Hom-module coalgebra.

Recall from [10], let (H, o) be a Hom-Hopf algebra and (A, §) be a Hom-algebra,
if (A,p,B) is a left (H, a)-Hom-comodule, for all a,b € A the following conditions
hold

p(ab) = a_1b_1 ® agbo, p(la) =15 @ 14,

then (A, p, B) is called an H-Hom-comodule algebra.
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2.4. Hom-crossed product algebra and cleft extension. Recall from [5], let
(H, ) be a Hom-Hopf algebra and (A, 8) be a Hom-algebra. We say that H acts
weakly on A from the left if there is a linear map given by —: H ® A — A, such
that for all a,b € A and h € H,

B(h —a) = a(h) = Bla), h—=1=¢e(h)1,
a?(h) — (ab) = (h1 — a)(hy = b), 1 —a = B(a).

Let (H,a) be a Hom-Hopf algebra and (A, 8) be a Hom-algebra. Assume that
H acts weakly on A from the left; Let 0 € Hom(H ® H, A) be a linear map. For all
a,b € Aand h,g € H, define Af, H whose underlying vector space is A ® H with

the multiplication given by
(@@ h)(b®g) = a((a™(hi) = B72(b))o (e (h12), a7*(g1))) ® @' (haga).

We say that (A, H, S ® «) is a Hom-crossed product algebra if and only if

(C1) o(1,h) = o(h, 1) =e(h)1, o(a®a)= fo;

(C2) (= (@~ (g1) = @))o(a(ha),algs)) = ola(hn),alg))(@  (hags) —
B(a));

(C3) (h — a(g1,lh))o(a(ha), g2l2) = a(a(h1), a(gr))o(haga, a*(1)).

Let (H,«) be a Hom-Hopf algebra and (B, p, ) be a left H-Hom-comodule
algebra. Denote by A = B°H = {a € B | p(a) = f(a) ® 1}, then A C B is said to
be a cleft extension if there exists a left H-Hom-comodule map v : H — B which

is convolution invertible.

3. The structure of Hom-bialgebras with the Hom-Hopf module

structure

In this section, we mainly provide the factorization of Hom-bialgebras with Hom-
Hopf module structure. On the one hand, we give the algebra factorization for right

H-Hom-comodule algebras with Hom-Hopf module structure.

Proposition 3.1. Let (H,S,«) be a Hom-Hopf algebra and (B, -, p, ) be a right
H-Hom-Hopf module. We assume that (B, p, 3) is a right H-Hom-comodule algebra
(write p(b) = by @ by ), and set A= B“" ={a € B | p(a) = f(a) ®1}. Define

a multiplication on A ® H as follows

(a@h)(b@g) = ((B7%(a)-a *(h11))(B72(b)-a *(g11))) - S (h1ag12) ®a ™" (haga),

foralla,be A h,g € H, then (AR H,® «,14 ® 1g) is a Hom-algebra, we write
it as AO,H. Moreover, B ~ AO,H as Hom-algebras.
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Proof. We first check that the multiplication is well defined. For all a,b € A,

h,g € H, we have

((Chw hi))(B72(b) -
((67%(a) -a™(n )(/3 ?(b)-a”
®((B7%(a) - @™ (h))(B72(b) - a~
= (87 2(a) a™H(h1)) o) (B72(b) - a (g
- (h) 1) (B72(0) -
“Hha))((B72(0)) 0
(B~ 2(0)) (1) - @~ (ha2) ) (B~
(B~ Ha) - o™ (h))(BH(0) -~
“}(h12g12)Sa? (ha1gan
(((571(11)'04 *(h))(BH0
®a~*(ha11g211)Sa”

a)-a™* )-a 4 (g1))) - Sa~

)

1))
)

e

(h2129212)

BU(B™2(a) o™ (h1)) (B

Thus, ((87%(a) - a™*(h1))(B72(b) - a*(g1))) - Sa™?

‘g 1)) - Sa”
(1)) 1y Sax

)
) a(g1))) - Sa”?

(87 (@) - a2 (h))(B7H(b) - a™*(g1)))) - Sa™
(b) - a™*(g1))) - Sa~

3(hags))

3(ha2ga2)

“*(ha1g21)
) Sa?
“Hg1)w))Sa”
“Hgn))) - Sa”?
2®)ay-a
*(gn))) - Sa”?

(h22922)
?(ha1g21)
(h22922)
(912)))Sa™ > (ha1921)

(h22922)

(h22922)

*(hag2) ® 1y

%(h2g2))) @ 14

(haga) € A.

Next, we check that the associativity holds. For all a,b,c € A h,g,k € H, we

can calculate

((a®h)(b®g))(B(c) ® a(k))

= ((B2(((B7(a) - a*(ha))(B2(b) - @ *(g11))) - S (h1agra)) - a~° (ha11gan))
(B7H(e) - @™ (k1)) - Sa™* (@™  (haizgarz)alkiz)) @ @ ?(hazgaz))ke

= ((((B7%(a) - a™®(h))(B3(b) - @™ *(911))) - Sa™*(hiagiz)a”°(ha119211))
(B7H(e) - a3 (kn))) - Sa™ (hai2gz12)a 2 (k12) © a2 (hazg22)) ke

= ((((B%(@) - a™*(h))(B72(b) - @ *(91))) - Sa®(hanigarn)a™* (h212g212))
(B71(c) - a3 (k11))) - Sa™* (haa1gast )2 (k12)) © a* (haszgana)) ko

= ((B7%(a) - a™(h))(B72(b) - a>(g)) (B~ (e) - a3 (k11)))
-Sa”?(hargar)a ™2 (k12) ® @™ (haagao) k.

In a similar way, we get

(6(a) ® a(h))((b® g)(c ® k))
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((B7Ha) - a2 (ha)((B72(b) - a2 (91))(B72(c) - a7 (F1))))
-S(a™?(h2)a™*(g21k21)) © haa™(gazkan)
= ((B7%(a) - a2 (h))(B72(b) - a2 (g)) (B (e) - a7 (k11)))
-S(a (hargan)a 2 (k1)) @ @~ ?(hazg22)) k.
So we get ((a®@h)(b®g))(B(c)@a(k)) = (B(a)@a(h))((beg)(c®k)). It is easy to see
that (a@h)(1a®@1g) = 1a@1g)(a®h) = Bla)@a(h). So (AQH,BRa,14®15)

is a Hom-algebra.

Finally, we show that B ~ ACJ,H as Hom-algebras. Since (B, f3,-,p) is a right

H-Hom-Hopf module and A = B! there is an isomorphism of right H-Hom-Hopf

module, which is given by
p:A®H — B, pla®h)=a-h, YVa,b€e A h,g € H.

We only need to verify that ¢ is a Hom-algebra morphism. For all a,b € A, h,g € H,

p((a@h)(b®g))
= o(((B7%(a) -~ (h))(B72(b) - @ (g11))) - Sa”*(h12g12) © ™" (haga))
= ((B7%(a) -~ (ha))(B72(b) - @ *(911))) - Sa > (h12g12)) - ™" (haga)
= ((B7Y(a) - a2 (h))(B7H(D) - a7 *(911))) - (Sa™? (hi2gr2)a™? (haga))
= (7 (a) - a2(h))(BH(b) - a”*(91))) - e(h2g2)ln
= ((B7(a) a7 (h)(BTI() - a" (9) - 1
= (a-h)(b-g9) = pla®@h)p(b@g).

Thus, B ~ AO,H as Hom-algebras. ]

On the other hand, we have obtained the coalgebra factorization of right H-

Hom-module coalgebras with Hom-Hopf module structure (see [3], Theorem 4.1).

Proposition 3.2. Let (H,«) be a Hom-Hopf algebra and (B, -, p,3) be a right H -
Hom-Hopf module. We assume that (B,-,3) is a right H-Hom-module coalgebra,
and set A = B! = {a € B|p(a) = B(a) ® 1}. The comultiplication on A ® H is
given by
Ala®h) = p~ (a1(0 0)) Sa~ (al(o)(l))®of (al(l) (hl)
@B (az(0)(0)) - Sa ™ (az(0)1)) ® @ *(agr))e " (ha),
and the counit is given by

ela® h) = e(a)e(h),



110 LIHONG DONG AND SHUAN XUE

foranya € A h € H, then (AQ H, B®«) is a Hom-coalgebra, we write it as AL H.
Moreover, B ~ AL H as Hom-coalgebras.

By Proposition 3.1 and Proposition 3.2, we can obtain the main result of this

section.

Theorem 3.3. Let (H,«a) be a Hom-Hopf algebra, (B, 3) be a Hom-bialgebra and
(B,-,p,B) be a right H-Hom-Hopf module. We assume that (B, p, ) is a right
H-Hom-comodule algebra and (B, -, 8) is a right H-Hom-module coalgebra, set A =
Bl = {a € B| p(a) = B(a) ® 1}. Define the following operations on A® H,

(a@h)(b@g) = ((87%(a)- @ (hi))(B72(0) - @~ *(g11))) - Sa™? (h12g12)
®a ! (hags),
Ala® h) = B*(a10)0)) - Sa™>(a10y1)) ® @~ *(ar1))a " (ha)
@B (as(0)(0)) - S (az(0)1)) @ @ *(agqry)a™" (ha),
e(a® h) =e(a)e(h),

for all a,b € A, h,g € H, then (A® H,f ® «) is a Hom-bialgebra, we write it as
AU, H. Moreover, B ~ AU H as Hom-bialgebras.

Proof. By Proposition 3.1, we have B ~ Al,H as Hom-algebras with the isomor-
phism

p:A®H — B, pla®h)=a-h, Va,b€ A h,g € H.

By Proposition 3.2, we have B ~ A0'H as Hom-coalgebras with the same isomor-
phism ¢. Since B is a Hom-bialgebra, it follows that A ® H is a Hom-bialgebra
with the multiplication B ~ AU,H on and the comultiplication on B ~ Al H.
Moreover, B ~ ALJ H as Hom-bialgebras. (|

4. Hom-crossed product algebras and cleft extensions

In this section, let H be a Hom-Hopf algebra, B be a right H-Hom-Hopf module
and (B, p) be a right H-Hom-comodule algebra. Set A = B®H we can define a
weak action of H on A, thus obtain the Hom-crossed product algebra Af,H and
B ~ Af,H as Hom-algebras. Next, we dicuss the relation between cleft extension

and Hom-comodule algebra with Hom-Hopf module structure.

Lemma 4.1. Let (H,S,a) be a Hom-Hopf algebra, (B, -, p, ) be a right H-Hom-
Hopf module and (B, p) be a right H-Hom-comodule algebra, set A = B°H  define
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the map
~H®A—=A h—a=(1-a3hy))B3 a) Sa"'(hy), YVh€ H,a € A,
and an element o € Hom(H ® H, A), for any h,g € H,
a(h,g) = ((1-a™*(h))(1-a"*(g1))) - Sa™>(haga).
If the following condition holds,
(ab) - a(h) = B(a)(b- h), Ya € A,be B,h € H, (4.1)

then

(1) — is a weak action of H on A;

(2) (C1), (C2), (C3) are satisfied.

Proof. (1) We first check that — is well defined. Since (B,-,p, ) is a right H-
Hom-Hopf module and (B, p) is a right H-Hom-comodule algebra, A = BH Tt is
easy to get

p(((1-a™?(h1))B™ (@) - Sa™ (ha)) = ((1- a™*(h1))a) - S(ha) @1

From Eq.(4.1), we can get

(h1 = a)(1-hy) = (1-a(h))B(a), Vh € H,a € A, (4.2)
In fact
(hy = a)(1- hs)
= (10 (k)8 (@) - Sa™ (hn2)) (L - ha)
(10 ()s M @) - Sa () - alhe)
= ((1-a7"(h1))a) - (Sa™ (ha1)a " (ha2))
= (1-a(h)Bla).

For alla € A,b € B,h € H, we can obtain

Il
—~ —~~ ~

and h = 1=¢(h)l, 1—a=p(a). Thus — is a weak action of H on A.
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(2) Tt is obvious that (C1) holds. Now we verify that (C2) holds. On the one
hand,

(b1 = (a™H(g1) = a))o(alhz), a(g2))

(h = (@™ (g1) = a))((1- a3 (ha1))(1- a™*(g21))) - Sa™2(h22g22))

= (@ 3(hi1) = (@ H(g) = B7%(@))(1- @ *(m2))(1 - a *(g12))) - S(h2g2)
((1-a2(h))(@*(g11) = B7Ha))(1 - a™2(g12))) - S(h2g2)

(1-a H (h))((1-a™2(g1))a)) - S(haga).

On the other hand,

a(a(hn),a(g1)) (@™ (hag2) — B(a))

= ((1-a™(h))(1-a3(g11))) - Sa(h12912)) (1 - @ *(h2rgar))a) -
Sa~?(hazg22))

= (((((1-a™®(hn))(1-a>(g11))) - Sa™H(h12912)) (1 - @ *(ha1g21)))B(a)) -
Sa (haagas)

= (((((1-a™®(hn))(1-a>(g11))) - Sa™ (h12g12)) - @ > (ha1g21)) B(a)) -
Sa~! (hazgao)

= (- a*(hn))(1-a™H(gn))) - (Sa™*(hizg12)a ™ (ha1g21)))B(a)) -
Sa™ (hazgan)

= ((1-a7'(h))((1-a%(g1))a)) - S(ha2g2).

Similarly we can obtain (C3) holds. The proof is completed. O

Theorem 4.2. Let (H, S, «) be a Hom-Hopf algebra, (B, -, p, ) be a right H-Hom-
Hopf module and (B, p) be a right H-Hom-comodule algebra, set A = B*H  if for
alla € A,b € B and h € H, Eq.(4.1) holds. Then we get a Hom-crossed product
algebra A, H and B ~ A, H as Hom-algebras.

Proof. By Lemma 4.1, we get a Hom-crossed product algebra Af,H with the

multiplication given by
(@@ n)(b@g) = a((a " (hn) = B72(b))o(a*(hi2),a %(91))) ® @' (haga).

We note that B ~ A ® H as right H-Hom-Hopf modules, and the isomorphic map
is given by

g:B— A®H, g(b)=8""(boyo)) - Sa™*(boyay) @ @ 2(b))-
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Then we only need to prove that g is a Hom-algebra map. In fact, for all b, b € B,

we have

g(b)g(d)
= (B (b)) - S (boy1)) ® a2 (b)) (B~ (boy o)) - S (boy1y)

®a~2(by)))
= (B b)) - S (b)) (@™ (bayin) = (B (boy0)) - S~ (boyn))))

(a3 (bayiz), o~ (b)) © @ (byzbry)
= (B o) - S b)) (1 a7 (b)) (B~ (b)) -

S (bioyy))(1 - a7 (by11)) - Sa™C(bayizbiayia) © @~ (bay2biays)
= (5_4(b(0)(0))'5(0¢_( ) (1 ( 1)11))(»3_6(17/(0)(0))'
(Sa_7(b,(0)(1))a_ (b/(1)11))>) -Sa™? (b(1)12b(1)12)) ®a_3(b(1)2b/(1)2)
= (B3 (boybgo)) - Sa ™ (baybry)) ® a3 (bayabyg)
= g(bb).

The proof is completed. O

Now, we discuss the relation between cleft extensions and Hom-comodule alge-

bras with Hom-Hopf module structure.

Proposition 4.3. Let (B, p,~, ) be a cleft extension. We assume that H acts on
B to the right by

b-h=(B"(boy)y (@ ?(by)v(a?(by2)a " (h)),

then

(1) (B,-,p) is a right H-Hom-module and Eq.(4.1) holds;
(2) (B, p,B) is a right H-Hom-Hopf module.

Proof. Note that « is convolution invertible right H-Hom-comodule map, we have

Y HR) 0y @Y HR) ) =7 (he) @ S(ha).
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(1) We first verify that (B, -, 8) is a right H-Hom-module. For all b € B,h,h’ €

H, we calculate
(b-h)-a(h)

= (B2 (@ (b)) (baya)a" (h)) - a(h)

= (BB (b))~ @ (bay))r(@* (bay2)a™ (7))

T HaT (B2 b))y a P (b))

@ (B2 b))y~ @ (bay) (@ (bay2))a™ (7)) 1)2)h

= (B2((B72(b) 0y (@ (ban)) (@ > (bay)a™ (1) o))

)
’Y( ( 1)2)04 1(h))) 1)1)))

)

Y H a2 (B2 (b)) ()Y (a3 (b)) () v(a 2 (bay2)a (h) 1))1))

a2 ((B72(boy) ayy™ @ (bay)) (@™ (bay)a™ (h))a
= (BB (b)) (@™ (b)) (@™ (byzn)a ™" (h1)))
7 @ (B7 (b)) S  (bayin) ) (@  (bayzz)a ™ (h2))1))
Y@ (B2 (o)1) S (b)) (@ (bayzz)a (h2)))2)h)
= (B2(B72(boy))r ™ (@ (bayar) Dv(a™  (bayear)a ! (h)))
7 T (B2 (b)) S (b)) (o™ (bayzzz) ™" (h2))1))
V(@2 (B (boy1))Se (b)) (@™ (brayzaz)a ™ (ha)))2)h )
= (BB b))y (@ (bay221)))y (@ P (b1y2021)”  (ha)))
7 TP (B2 (byn) S (bayz1)) (@~ (bayzzzz) o™ (h2)))1))
V(@ (B2 (b)) Sa™> (baya)) (@~ (byzazm)a™ (h2)))2)h)
= (BB~ (by))v (a2 (by20)) (e * (bayazr)a ' (ha)))
7 HaT (B2 (bayn) Sa? (bayz)) (@™ (byazz)a ™ (h2))1))
V(@ (B3 (bay11) Sa (brayr2)) (@ (byzze)e ™ (ha)))2) )
= (B2 (@™ (bayer)))v(@™ (bayzar)a > (hn)))
“H((e(by) ta (@ (bayzza) ™ (ha)) 1))y (La (a7 (bayzes)
= (((5 *(boy)r e b)) (@ (bayz)a™ (h)))rv ™ ((a
V(@™ (bayzz)a > (ha))2)h')

)
(

= (B0 (@™ (b)) (V@™ (bayzr)a ™ (h1))y~ (@~  (bayezr o

7((075(b(1)222)073(h22))h/)
= ((B(b))v (a (b)) (v (@ P (bayiz)a*(ha1))y (e
V(@™ (bayaz)a 2 (ha))h)

))2h')

75(b(1)21)04

“(ha)))2)l)
2 (bayz2)a? (ha))1))

“H(h21))))

“H(h12))))
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= ((B72(boy)r @2 (b)) (e(byzn)e(ha)1m ) )v((a* (byas) a2 (ha))R)
= (B b))y (@2 (bay))) (@ 3 (bayz))a "t (R)R)
= Bb)- (hh'),

and b-1 = (8200} (o~ (by)))v(a2(bya)) = B(B). Thus (B, 3, ) is a right
H-Hom-module.
(2) Now we prove (B, -, p, ) is a right H-Hom-Hopf module.

p(b-h)
= p((B72(b)y™ @ (bay) (@ (bay)a™ (k)
= (B2 @ (ban))v(@* (baya)a™ (h))
@ (a2 (boy1y)Sa™ (bayn)) (@™ (bayaz)a ™ (h2))
= (B~ b)) Ha  (bayz)))v(@  (bayiz)a " (ha))
@(a 2 (bay)Sa (bayan)) (@ (bayaza)a™ " (h2)
= (87 )y @ (banz))v(a™( '
@@ (baynn)Sa (bayz)) (@ > (bayz)a ™" (he
B b))y e (bayi2))) (@ (bayzr)a ™ (b )®€(b(1)11)(072(b(1)22)h2)
B b))y Ha 2 (bay))) (@ (b )a ™ (ha)
B b))y Ha? (bay))v(@? (bay)a™ () @ a” (b(l)Z)h2
2(by)r ™ @ (boyay) (@™ (boyayz)a™ () @ bihe
= by - b ® bayha.

3(bayar)a”

(
(
(
(5~

The proof is completed. O

By Theorem 4.2 and Proposition 4.3, we can get the following result.

Corollary 4.4. Let (B,p,~,5) be a cleft extension. Then we get a Hom-crossed
product algebra A, H and B ~ Af,H as Hom-algebras.

In Theorem 4.2, we get B is isomorphic to a Hom-crossed product algebra, that
is B ~ Af,H as Hom-algebras. Now, if we slightly change the condition (4.1), we

can get B is isomorphic to a Hom-smash product algebra.

Lemma 4.5. Let (H,S,«) be a Hom-Hopf algebra, (B, -, p, ) be a right H-Hom-
Hopf module and (B, p) be a right H-Hom-comodule algebra satisfying the following

condition

(bb') - a(h) = B(b)(b - k), Vb,b € B,h € H. (4.3)
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Set A = B°H  define the map
~H@A—= A h—a=(1-a30))p  a))-Sa" (ha).
Then (A, —) is a left H-Hom-module algebra.

Proof. We only need prove (A, —) is a left H-Hom-module. Ya € A, h,g € H,

(h) = (g —a)
= a(h) = ((1-a™3(g1))87"(a)) - Sa™"(g2))

It is easy to see 1 — a = B(a), so (4, —) is a left H-Hom-module. O

Theorem 4.6. Let (H,S,a) be a Hom-Hopf algebra and (B, -, p,3) be a right H-
Hom-Hopf module. Assume (B, p) is a right H-Hom-comodule algebra satisfying
Eq.(4.3). Set A= BH | then we get a Hom-smash product A{H with the multipli-

cation given by
(a@h)(a ®h)=alhy — () ®a " (ha)h,
and B ~ AfH as Hom-algebras.
Proof. It is easy to prove by Lemma 4.5. O

From Corollary 4.4, we know that if (B, p,v,) is a cleft extension, then we
get B is isomorphic to the Hom-crossed product algebra Aff, H. Next, we give an

equivalent characterization about cleft extension.

Theorem 4.7. Let (H,«) be a Hom-Hopf algebra and (B, p, B) be a right H-Hom-
comodule algebra, and set A= B“°" ={a € B|p(a) = B(a)®1}, then AC B is a
cleft extension if and only if (B,-,p, ) is a right H-Hom-Hopf module, and there
exists a convolution invertible linear map v : H — B satisfying v(h) = 1-a~1(h).

Proof. =): Assume that A C B is a cleft extension, then there exists a convolution
invertible Hom-comodule map 7 : H — B such that (1) = 1, so we have y~!(1) =
1. Define a map

-2 BOH — B, b-h = (B2 (bo))v ™ (@ (bay)))v(a > (baya)a” (h)), Vb € B,h € H,
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clearly, v(h) = 1-a~%(h). By Proposition 4.3, we see that (B, -, p,[) is a right
H-Hom-Hopf module.

<): It is sufficient to show + is a right Hom-comodule map, using the fact that
(B, -, p,B) is a right H-Hom-Hopf module and y(h) = 1-a~*(h), we get

py(h) = p(1-a Y (h))=1-a *(h)) @ ha = y(hy) @ ha, Yh € H.
The proof is completed. O
By the above results, we have the following conclusion.

Theorem 4.8. Let (H,«) be a Hom-Hopf algebra and (B, p,v, ) be a cleft exten-

sion, set A = BH  then
B~ AO,H = A, H
as Hom-algebras.
Proof. By Proposition 3.1 and Theorem 4.2, we have B ~ AL,H and B ~ A, H

as Hom-algebras. Since (B, p,, 8) is a cleft extension, we get (B, -, p, 3) is a right
H-Hom-Hopf module by Proposition 3.3, where the module structure is defined by

b-h=(B8"2(boy)y (@ (b)) > (bayz)a " (h)).

Now we prove AL, H has the same multiplication with Af,H

(B72%(a) - a™H(h11))(B72(b) - @™ *(g11))) - Sa”*(h12912) © a ™" (haga)
(B8 () )y~ @ (B~ (@) y)))v(a (B (@) aye)a™> (h11)))
)™ (g11))) - Sa” (h12g12) @ @™ (hags)
a)y(a™*(hin)) (B2 ()v(a*(911)))) - Sa > (h1agra) @ @ (hag)
B2 (@) v(a™* (h11)) ) (B~2(0) 0yv(@*(911))(0))
7 Ha (B2 (@) v (ha) () (B2 (D) iy (@™ (911))(1)))1)))
e (B2 (@)ayy(a™ () ) (B2 () av(e™(911))1y))2)Sa™ * (hnz2gr2))
®a~ ! (h2g2)
= ((B7%(a)y(a (hu))) (B~ (0)v(@*(g111)r (@ (hi21g1121)))
(@ % (hi122g1122)Sa ™ (h12g12)) ® @' (haga)
= (B (@)@ (hu)))(B2(0)v(@ (911))))7 (@ (h112g112)))
v(@ (hiagi2)Sa™ (ha1g21)) ® ™ (haagas)
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= (((ﬁfS(G)W(OFS(hn)) (B2 ®)v(@*(gr)r @ H(h2gr2)))
v(a™®(ha11gan1 ) © a”?(h22g22)

= (B (a)y(a* B2y gy~ (@™ (hizg12)) © @~ (hago)

= a(y(@?(h)((B2(0)y(a>(g11)))7 ™~ a  (hi2g12)))) @ @ (haga)

= a((a™(hi1) = B72(b))o(a > (ha), @ % (g1)))ba ™ (haga),

for all h,g € H,a,b € A, we define
~H®A— A h—a= (@)  a)y  (a (ha)),
and

o:H@H — A, o(h,g)=7(a"(h)(v(a">(g1))7 (@ (hag2)))-

Therefore, B ~ AO,H = Af,H as Hom-algebras. O
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