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ABSTRACT. Let R = @, czRn be a strongly graded ring of type Z and Ry
is a prime Goldie ring. It is shown that the following three conditions are
equivalent: (i) Rg is a Z-invariant Krull ring, (ii) R is a Krull ring and (iii) R
is a graded Krull ring. We completely describe all v-invertible R-ideals in @,

where @ is a quotient ring of R.
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1. Introduction

Let R = @&,z R, be a strongly graded ring of type Z, that is, R, R, = Rp4m
for all n,m € Z, where Z is the ring of integers and Ry is a prime Goldie ring with
quotient ring Qo and Ry C Qo. Let Cy = {cop € Ry | ¢p is regular} is a regular
Ore set of R and QY = RCy ™', the quotient ring of R at Co, which is of the form
QY = BnezQoRyn (QoR, = R,Qop). It follows that Q9 = Qo[X, X !, 0], a skew
Laurent polynomial ring over )y, where o is an automorphism of )y and X is a
unit in QY with X € Ry (see [2] or [7]). We denote by @ the quotient ring of R.

A graded right R-submodule I of Q9 is called a graded right R-ideal if I contains
a regular homogeneous element in @Y and al C R for some regular homogeneous
element ¢ in @Y. In a similar way, we define a graded left R-ideal in Q9. Note
that if I is a graded right R-ideal in @9, then I = IyR, where Iy = I N Qg is a
right Rop-ideal in Qg since QY is a strongly graded ring of type Z (see [5, Corollary
1.3.8]). We refer the readers to [3] and [5] for some properties and definitions of

order theory and graded rings which are not mentioned in this paper, respectively.

2. Main results

We use the following notation: for a right R-ideal I in @ define (R: 1), ={q €
Q | ¢I C R}, a left R-ideal in @ and for a left R-ideal J in Q (R : J), = {q €
Q| Jg C R}, aright R-ideal in Q. Let I be a right ideal of R and r € R. We define
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r~1.I={se R |rsel}. Wefirst study some properties of graded right ideals of
R.

Lemma 2.1. Let I = IR be a graded right R-ideal in Q9. Then
(1) (R: IyR); = R(Ro : In); and is a graded left R-ideal in Q9.
(2) If I is a graded right ideal of R and v, € R, then r,;' - I is a graded right
ideal and r;t -1 = (r;t - (IgR,))R, where r;t - (IgRy,) = {so € Ro | rnso €
IoR,}. In particular, for ro € Ry, g - (IpR) = (rg* - Io)R.

Proof. (1) It is clear.

(2) Let 8 = 8y, + -+ + Sp, € 7,1 - (IgR), where ny > -+ > ng. Then IHR >
TnS = TnSpy, ++++ + Tpsp, and so 78n; € IoR(nqn,) € IR for any j (1<j<k).
Thus s,,; € r1- (IpR) and hence r; ! - (IoR) is a graded right ideal. Furthermore
so € (r;1 (IpR))o if and only if r,s0 € IgR,, if and only if s € r;;* - (IoR,,), and
so (ryt - (IgR))o = 7,1 - (IoRy,). Hence r;* - I = (r;;t - (IgR,))R follows. The last

statement is now clear. O

Definition 2.2. A graded right ideal I of R is called graded essential if IN.J # (0)
for any non-zero graded right ideal J of R.

Lemma 2.3. Let I = IyR and J = JyR be graded right ideals of R. Then

(1) INnJ=(IyNJo)R and so I NJ is also a graded right ideal.
(2) T is graded essential if and only if Iy is essential, that is, Iy N Cy # (.

Proof. The proof is obvious. O
By considering that R C @, we define
Fr={F: right ideal of R| (R:7"'-F); = R for all € R}

is a right Gabriel topology on R (see [3], p.116).

Similarly,
Frp={F": leftideal of R | (R: F' -7~ '), = R for all r € R}

is a left Gabriel topology on R, where F'-r—1 ={s€ R| sr € F'}.
For a right ideal I of R, we define the 7-closure of I,

c;(I)={reR|rF CI for some F € Fr}

and [ is called 7-closed if I = ¢l,(I). Similarly we can define a 7-closed left ideal
of R. Recall that R is 7-Noetherian if R satisfies the ascending chain conditions on

T-closed right ideals as well as 7-closed left ideals.
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Furthermore, we consider that Ry C Qg and define
Fo = {Fy : right ideal of Ry | (Ro : 75" - Fo); = Ro for all g € Ry},
a right Gabriel topology on Ry, and
Fy={F;: right ideal of Ry | (Ro: -1y "), = Ro for all g € Ry},

a left Gabriel topology on Ry. Note that any Fyy € Fy is an essential right ideal by
[3, Proposition 2.2.1].

For graded case we introduce the following topology.

Definition 2.4. A non-empty set F’ of graded right ideals of R is called a graded

right Gabriel topology on R if the following two conditions are satisfied:
a. Forany F € F',a,! - F e F foralla, € R,.

b. Let G = GoR be a graded right ideal of R and F' € F’ such that r;1-G €
F' for any r,, € F,,. Then G € F'.

If 7' is a graded right Gabriel topology on R, then the following conditions are
satisfied:

(i) For any F € F' and a graded right ideal G such that F' C G, then G € F'.
(ii) If F and G are graded right ideals such that F, G € F', then so is FF N G.

Moreover, we consider that R C 9, and we define
F, = {F: graded essential right ideal of R | (R:7r,' - F); =R
for any r,, € R,, and n € Z}.

We prove in Lemma 2.6 that F, is a graded right Gabriel topology on R.
Lemma 2.5. Let Fy be a right ideal of Ro. Then Fy € Fy if and only if FoR € Fy.

Proof. Suppose Fy € Fy. Let 1, € R,,. Then we claim that r - (FoR) NCo # 0.
Let ¢o € Fy NCoy (see [3, Proposition 2.2.1]). Then there are dy € Cy and s, €
R, such that r,dy = cos,. Thus dy € 7, - (FyR) as claimed. It follows that
(rt - (FoR)QY = Q9. Let ¢ € (R :7,' - (FyR));. Then ¢ € Q9. By Lemma
2.1, (R : r;1 - (IpR)); is a graded left R-ideal and so we may assume that ¢ is
homogeneous, say, ¢ € QoR; = R;Qo. Write 1 = > b;a; € R_,, - R, = Ry, where
b; € R_,, and a; € R,,. For fixed b;, qb;(rp,b;)~' - FoR C q(r;' - (FoR)) € R. So
qbi(rnbi)™ ' - Fy € RiR_,, = Ry, and R, _;qb;(1,b;)~" - Fy C Ry follows. Thus
R,_1gb; C (Ro : (rpbi)™!' - Fy); = Ry since Fy € Fo, that is, qb; € R;—,, and so
qbia; € Ri_, - R, = R; for all i. Thus ¢ € R; and hence (R : r;! - (FoR)), = R,
that is, FoRR € Fy.
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Suppose F' = FyR € F,. Then, by Lemma 2.3, Fy NCy # 0. For any ry € Ry,
R=R:ry" (FoR) = (R: (ry" - Fo)R); = R(Ry : r5" - Fy); by Lemma 2.1.
Hence Ry = (Ry : 1y - Fo)i, that is, Fy € Fy. O

Lemma 2.6. F, is a graded right Gabriel topology on R.

Proof. It is enough to prove the condition (b). Let G = GoR and F = FyR be
graded right ideals such that F' € F, and r;;! - (GoR) € F, for any r, € F,,. By
Lemma 2.5, Fy € Fy and for any r € Fy, since ry ' -G € Fy, R=(R:r;" - G); =
(R: (rg"-Go)R); = R(Ry : 5 * - Go); by Lemma 2.5.

Thus Ry = (Rp : ro_l-GO)l for all rg € Fy, that is, Gy € Fo. Hence G = GoR € Fy
by Lemma 2.5. O

Let I = IpR be a graded right ideal. As in ungraded case, we define
cly, (I) ={r € R|rF C I for some I' € F,}.

Lemma 2.7. Let I = IyR be a graded right ideal. Then
(1) cl, (1) is a graded right ideal.
(2) clr,(I) = clry(lo)R, where clr,(Io) = {ro € Ro | roFo C Iy for some Fy €
Fo}t.

Proof. (1) cl;, (1) is closed under addition since Fy is a graded right Gabriel topol-
ogy on R. For any r, € R, and x € cl, (I), there is an F' = FyR € F, such
that F C I. Then I 2 zFyR 2 ar,r,' - (FyR) implies xr, € cl; (I). Thus
for any r = rp, + - +rp, € R, a1y, € clr (I) for any j (1 < j < k) and so
xr € cly, (I). Hence cl,, (I) is a right ideal of R. To prove that cl,, (I) is graded, let
T =Tp, +- -+, €cly (I). Then there is an Fy € Fo such that x[oR C I = IhR
by Lemma 2.5. Since xFy C IyR, xn;Fy C IoR,; for any j (1 < j < k) and
zn, FoR C IyR,, R = IhR. Hence x,; € cl. (I), that is, cl. (I) is graded.

(2) is easy to prove by using Lemma 2.5 and (1). O

A graded right ideal I is called 74-closed if cl. (1) = I. Similarly
) : . , -1y _
Fy ={G : graded essential left ideal of R | (R: G -7, "), = R}

is a graded left Gabriel topology on R, where G -r;;! = {s € R | sr,, € G}. For any
graded left ideal J, we define

clr,(J)={r € R| Gr C J for some G € F,}
and J is 74-closed if cl, (J) = J.

R is called a 74-Noetherian if R satisfies the ascending chain conditions on 7,4-

closed right ideals as well as 7,-closed left ideals.
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Proposition 2.8. The following three conditions are equivalent:

(1) Ro is T-Noetherian.
(2) R is Tg-Noetherian.
(3) R is T-Noetherian.

Proof. (1) < (2) This follows from Lemma 2.7.

(1) = (3) This follows exactly from the same proof of [7, Theorem 4.2].

(3) = (1) Let Er(Q/R) be the injective hull of Q/R as a right R-module, Iy be a
right ideal of Ry and g be a right Ry-homomorphism from Iy to Er(Q/R). We
define a map ¢ : I[yR — Er(Q/R) by

!
p(z) = Z@o(ai)ﬁ, where x = zaﬂ’i € IyR (a; € I and ; € R),
i=0
which extends g to IpR. If ¢ is well-defined, then it is easy to see that ¢ is a right
R-homomorphism. To prove ¢ is well-defined, for any r;, let r; = rin, + -+ + Tin,,
where ri,; € Ry, (n1 > ng > -+ > ny, including r;,; = 0). Then x = 0 if and

only if Zé.:l a;’jn, =0,..., 2221 a;rjn, = 0. If £ =0, then

l

p(x) = Z@o(ai)h‘ = pola1)rin, + -+ ©o(a1)T1n,
i=1

+  @olaz)ron, + -+ @olaz)ran,

+  wola)rim, + -+ wo(a)rin, -

For any s_,, € R_,,,

l l

1
(Z ©0(a;)Tjn)5—ny = Z ©0(a;)7jny S—ny = Z ©0(a;7jn, S—n,)
j=1

Jj=1 Jj=1

l l
= @O(Z 57 jny S—ny ) = @O((Z ajTjny)S—ny) = o(0) = 0.
j=1 j=1

Thus 0 = (Zé’:l wo(a;j)rjn, ) R—pn, and 22:1 wo(a;j)rjn, = 0 follows. Similarly,
0= 2221 wo(a;j)rjp, for any p (1 < p < k). Hence ¢(z) = 0, that is, ¢ is well-
defined.

Hence ¢ is extended to ¢’ from R to Er(Q/R) and so there is a y € Er(Q/R)
such that ¢'(1) =y, that is, ¢/(r) = yr for all € R. In particular, ¢(rg) = yro
for all 7o € Ro. Hence Er(Q/R) is injective as a right Rp-module. Since Qo/Rg C
Q/R C Er(Q/R), it follows that Er,(Qo/Ro) C Fr(Q/R). Hence Ry is right
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7-Noetherian (by [6, Proposition 2.4] p. 264). Similarly Ry is left 7-Noetherian.

Hence Ry is 7-Noetherian. ([l

Recall that an Ry-ideal Ay in Qg is called Z-invariant if R, Aqg = AgR,, for all
n € Z. it is easy to see that Ay is Z-invariant if and only if A = AR is an R-ideal
in Q9 ([8, Lemma 2]).

Ry is called a Z-invariant mazimal order in Qg if O;(Ag) = Ry = O,.(Ap) for any
non-zero Z-invariant ideal Ay of Ry. We say that Ry is a Z-invariant Krull ring if
it is a Z-invariant maximal order and 7-Noetherian.

R is called a graded Krull ring if R is a graded maximal order in 9 and is
Tg-Noetherian (see [7] p. 205, for definition of graded maximal order). In [7] they
obtained that if Ry is a Krull ring, then R is a Krull ring. Combining Proposition

2.8 with [4, Theorem 1], we have the following theorem.

Theorem 2.9. Let R = ®,czR,, be a strongly graded ring of type Z and Ry be a
prime Goldie ring. Then the following conditions are equivalent:

(1) Ry is a Z-invariant Krull ring.

(2) R is a graded Krull ring.

(3) R is a Krull ring.

Next, in case R is a Krull ring, we describe all v-invertible R-ideals in @) by using
the v-invertible Ry-ideals in Qg and the propoerties of Q9. Here an R-ideal A in @
is called v-invertible if ,((R: A)jA) = R= ((R: A)y)y-

Let I be a right R-ideal in Q. We define I, = (R : (R : I);), containing I. I is
called a right v-ideal in @ if I = I,,. Similarly we can define a left v-ideal in Q.

In particular, an R-ideal A in @ is called a v-ideal if A, = A = ,A. Note that
for each R-ideal A, A, = ,A if R is a maximal order ([3] p.110).

The following lemma was obtained in [8].

Lemma 2.10. (1) [8, Lemma 2] Let Ao be a Z-invariant ideal of Ry. Then
(AoR)y = (Ao)u R
(2) [8, Lemma 3] Let P be a prime ideal of R and Py = PN Ry. Then PyR is
a prime ideal of R.
(3) [8, Lemma 6] Let A be a graded R-ideal in Q9 with Ag = AN Qo # (0).
Then A = AgR = RAq and Ag is Z-invariant.

In the remainder of this section, let R = @,z R, be a Krull ring. Let D(R) and
D(Ryp) be the set of all v-R-ideals in @ and the set of all Z-invariant v-Ry-ideals in
Qo, respectively. Then D(R) is a free Abelian group generated by maximal v-ideals
of R with respect to multiplication A o B = (AB), for A, B € D(R) by (see the
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proof of [3, Theorem 2.1.2]). Similarly D(Rp) is a free Abelian group generated by
maximal Z-invariant v-ideals of Ry. (see the proof of [3, Theorem 2.1.2]. Note that
the intersection of Z-invariant ideals is also Z-invariant.)

Let D9(R) be the set of all graded v-R-ideals in Q9.

Lemma 2.11. The mapping ¢ : D(Rg) — DI(R) given by p(Ag) = AR is iso-
morphic as an Abelian group, where Ay € D(Ry).

Proof. Let Ay € D(Ry). Then by Lemma 2.10, (AgR), = (4g)y R = ApR and
so ¢(Ap) € DI(R). Tt is clear that ¢ is one-to-one since AgR N Ry = Ay for any
Ro-ideal Ag in Qo. For Ao, By € D(Ry), ¢(Ao © Bo) = p((AoBo)v) = (Ao Bo)u R =
(AoBoR)y, = (AgRBoR), = (ApR) o (BoR) = ¢(Ap) o p(By). That is ¢ is a
semigroup homomorphism. To prove ¢ is onto, let A € DI9(R). Then A = AoR =
RAy and Ay is a Z-invariant v- Rg-ideal in Q¢ by Lemma 2.10, that is Ag € D(Rp).

U

Lemma 2.12. Let M be an ideal of R. Then M is a mazimal v-ideal of R with
M N Ry =(0) if and only if M = M’ N R, where M’ is a mazimal ideal of Q9.

Proof. Note Q9 is a principal ideal ring. Let A’ be a non-zero proper ideal of Q9
and A = A'N R. Then we prove A’ = AQ?, AN Ry = (0) and A is a v-ideal.
For a’ € A’, there is a ¢g € Cy with a’cg € A and so a’ € AQY. Thus A’ = AQI.
Because A" C Q9, AN Ry = (0) holds. Since A’ = A = (AQY), = A,QY by [1,
Lemma 3.2], A is a v-ideal.

Thus it follows that if M is a maximal v-ideal of R with M N Ry = (0), then
M’ = MQ9 is a maximal ideal of Q9 with M = M' N R.

Conversely let M’ be a maximal ideal of @Y. Then it is clear that M = M’ N R
is a maximal v-ideal of R with M N Ry = (0). O

Let Do(R) be the free Abelian subgroup of D(R) generated by maximal v-ideals
M of R with M N Ry = (0). By Lemma 2.12, Dy(R) is isomorphic to D(Q9).

Lemma 2.13. (1) Let M be a mazimal v-ideal of R with Mo = M N Ry # (0).
Then My is a mazimal Z-invariant v-ideal of Ry and M = MyR.
(2) Let My be a mazimal Z-invariant v-ideal of Ry. Then M = MyR is a

maximal v-ideal of R.

Proof. (1) By Lemma 2.10, My is Z-invariant. Since M = M, 2 (MpR), =
My,R 2 My, by Lemma 2.10, My is a v-ideal of Ry. Since R is a Krull ring, (R :
M), C (R: MgR); = (R: MgR),. Hence MgR(R : M); C MoR(R : MoR), C R
and MoR(R : M) ;M C MyR. If M D MyR, then MyR(R : M); C MyR because
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MR is a prime ideal of R by Lemma 2.10, and so (R : M); C O,.(MyR) = R, that
is, M, = R, a contradiction. Thus M = MyR. Now it is easily proved that M is
a maximal Z-invariant v-ideal of R.

(2) This is clear from the proof of (1). |

Let M be a maximal v-ideal of R. Then either M = MyR, where My is a Z-
invariant maximal v-ideal of Ry or M = M’ N R, where M’ is a maximal ideal of
@9, which follows from Lemma 2.11 and Lemma 2.12. Thus we have the following

theorem.

Theorem 2.14. Suppose R = ®necz R, is a Krull ring. Then
D(R) = DY(R) x Dy(R) = D(Ryp) x D(Q9).
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