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Abstract. In this work the boundedness and compactness properties of upper triangular one-band block operator
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1. Introduction

It is known that the traditional infinite direct sum of Hilbert spaces Hn, n ≥ 1 is defined as

H =

∞⊕
n=1

Hn =

u = (un) : xn ∈ Hn, n ≥ 1,
∞∑

n=1

‖un‖
2
Hn
< +∞

 .
Recall that H is a Hilbert space with norm induced by the inner product (see [7])

(u, v)H =

∞∑
n=1

(un, vn)Hn , u, v ∈ H.

It is known that a lot of many physical problems of today arising in the modelling of processes of multiparticle
quantum mechanics, quantum field theory and in the physics of rigid bodies support to study the theory of linear
operators in the direct sum of Hilbert spaces (see [13, 19] and references in it).

Investigation of these problems with the view of spectral analysis of finite or infinite dimensional real and complex
entires special matrices (upper and lower triangular double-band or third-band or Toeplitz types) in sequences spaces
ω, c, c0, bs, bωp, lp have been widely studied in current literature (for example, see [1–6, 8, 12, 18].
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On the other hand some spectral analysis of 2 × 2 and 3 × 3 types block operator matrices have been provided
in [11, 14, 15, 17]. Note that the structure of spectrum of diagonal operator matrices has been obtained in [16] and the
compactness properties and belonging to Schatten-von Neumann classes of diagonal operator matrices in the direct
sum of Hilbert spaces has been examined in [10].

In the present paper, we study the compactness properties of upper triangular one-band operator matrices in the
infinite direct sum of Hilbert spaces. Then, belonging to Schatten-von Neumann classes of this type operators will be
examined.

2. Boundedness and Compactness of Upper Triangular One-Band Block OperatorMatrices

In this section, we will investigate the continuity and compactness properties of lower one-band diagonal block
operator matrices which have the following form

A =



0 A1
0 A2

0 A3 0
. . .

. . .

0 0 An
. . .

. . .


in the direct sum H =

∞⊕
n=1

Hn of Hilbert Spaces Hn, n ≥ 1 in case An ∈ L(Hn+1,Hn), n ≥ 1.

Firstly, let us prove the following:

Theorem 2.1. In order for A ∈ L(H) the sufficient condition is

sup
n≥1
‖An‖ < ∞.

Proof. Let A ∈ L(H). In this case for every x = (xn) ∈ H we have

‖Ax‖2H =

∞∑
n=1

‖Anxn+1‖
2
Hn

≤

∞∑
n=1

‖An‖
2‖xn+1‖

2
Hn+1

≤

∞∑
n=1

(
sup
n≥1
‖An‖

)2

‖xn‖
2
Hn

=

(
sup
n≥1
‖An‖

)2

‖x‖2H ,

that is, for each x = (xn) ∈ H we obtain that

‖Ax‖H ≤
(
sup
n≥1
‖An‖

)
‖x‖.

From this it is clear that
A ∈ L(H). �

Theorem 2.2. If A ∈ C∞(H), then for any n ≥ 1, An ∈ C∞(Hn+1,Hn). On the other hand, in case when An ∈

C∞(Hn+1,Hn), n ≥ 1 and
lim
n→∞
‖An‖ = 0,

then A ∈ C∞(H) .
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Proof. The necessity of the theorem has been proved in [16]. To show the validity of second assertion of theorem
consider the following sequence of operators in form

Tn :=



0 A1
0 A2

0 A3 0
. . .

. . .

0 0 An

0 0
0 0

. . .
. . .


: H → H, n ≥ 1.

In this case, for each n ≥ 1, Tn ∈ C∞(H). Moreover, for any n ≥ 1 and x = (xn) ∈ H we have

‖(A − Tn)x‖2H =

∞∑
m=n

‖Am+1xm+2‖
2
Hm+1

≤

∞∑
m=n

‖Am+1‖
2‖xm+2‖

2
Hm+2

≤

(
sup
m≥n
‖An‖

)2

‖x‖2H .

Hence
‖A − Tn‖ ≤ sup

m≥n
‖An‖, n ≥ 1.

From this and condition of theorem it is obtained that

lim
n→∞

Tn = A

in operator norm topology.
On the other hand, since Tn ∈ C∞(H), n ≥ 1 then by a well-known theorem of compact operators theory in [9],

A ∈ C∞(H). �

3. Characteristic Numbers of Upper Triangular One-Band Block OperatorMatrices

We prove the following for singular numbers of operator A.

Theorem 3.1. The characteristic numbers of the operator A ∈ C∞(H)

{sm(A) : m ≥ 1} =

∞⋃
n=1

{sk(An) : k ≥ 1} ∪ {0}.

Proof. For the operator A

A∗A =

∞⊕
n=1

A∗nAn.

and
√

A∗A =

∞⊕
n=1

√
A∗nAn.

holds. From this and Theorem 2. 3 [16] we obtaine that

σp

(√
A∗A

)
=

∞⋃
n=1

σp

( √
A∗nAn

)
∪ {0}.

Hence, we have

{sm(A) : m ≥ 1} =

∞⋃
n=1

{sk(An) : k ≥ 1} ∪ {0}. �
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With the use of this theorem, we can present the following results.

Corollary 3.2. If A ∈ Cp(H), 1 ≤ p ≤ ∞, then for every n ≥ 1 An ∈ Cp(Hn+1,Hn).

Proof. For p = ∞ this proposition has been proved in Theorem 2.2. Let us 1 ≤ p < ∞. Since A ∈ Cp(H), then the

series
∞∑

m=1
sp

m(A) is convergent. With the use of following inequality

∞∑
k=1

sp
k (An) ≤

∞∑
m=1

sp
m(A), n ≥ 1

one can see that the series
∞∑

k=1
sp

k (An) is also convergent. This means that for every n ≥ 1, An ∈ Cp(Hn+1,Hn). �

Theorem 3.3. A ∈ Cp(H), 1 ≤ p < ∞ if and only if the series
∞∑

n=1

∞∑
k=1

sp
k (An) is convergent.

Proof. If A ∈ Cp(H), then the series
∞∑

m=1
sp

m(A) is convergent. In this case by the Theorem 3.1 and important theorem

on the convergence of rearrangement series it is obtained that the series
∞∑

n=1

∞∑
k=1

sp
k (An) is convergent.

On the contrary, if the series
∞∑

n=1

∞∑
k=1

sp
k (An) is convergent, the series

∞∑
m=1

sp
m(A) being a rearrangement of the above

series is also convergent. So A ∈ Cp(H). �

Corollary 3.4. For n ≥ 1, An ∈ Cpn (Hn,Hn+1) and p = sup
n≥1

pn < ∞. Then A ∈ Cp(H) if and only if the series

∞∑
n=1

∞∑
k=1

sp
k (An) converges.

Indeed, in this case for each n ≥ 1, An ∈ Cpn (Hn+1,Hn). Then from Theorem 3.3 it is obtained that the validity of
proposition.

Corollary 3.5. For each n ≥ 1, An ∈ Cpn (Hn+1,Hn) and p = sup
n≥1

pn < ∞. If the series
∞∑

n=1

∞∑
k=1

spn
k (An) convergent, then

A ∈ Cp(H).

Remark 3.6. The similar problems can be studied for the block operator-matrices in form

A =



0 . . . . . . A1
0 A2

0 A3 0
. . .

. . .

0 0 An
. . .

. . .


, A : H → H.

Example: Let

Hn =
(
C2, | . |

)
, n ≥ 1,

An =

(
0 αn

αn 0

)
, n ≥ 1, α ∈ C, |α| < 1.
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Then, we have ‖An‖ = |α|n and lim
n→∞
‖An‖ = 0.

In the direct sum H =
∞⊕

n=1
Hn consider the following upper triangular one-band block operator matrix in form

A =



0 0
0

(
0 α
α 0

)
0 0

0

(
0 α2

α2 0

)
. . .


.

Then A ∈ C∞(H) and characteristic numbers of A are in form

sn(A) = |α|n, n ≥ 1.

Moreover, for any p, 1 ≤ p < ∞, A ∈ σp(H).
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