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On M-term approximations of the Nikol’skii -
Besov class
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Abstract

In this paper, we consider a Lebesgue space with a mixed norm of
periodic functions of many variables. We obtain the exact estimation
of the best M-term approximations of Nikol’skii’s and Besov’s classes
in the Lebesgue space with the mixed norm.
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1. Introduction

Let T = (21, ...,xm) € T™ =[0,2m)™ and p; € [1,400), j = 1,...,m. Ls(T™) denotes
the space of Lebesgue measureable functions f(Z) defined on R™, which have 27 period

with respect to each variable such that
1

27 27 % P::limf/l Pm
||f||p—[/0 [[/ |f<:z>|p1dx1} } dxm] < oo,

where p = (p1,...,Pm), 1 < pj < +o0, j =1,...,m (see [18], p. 128, [4], p. 54). In the
case p1 = ... = pm = p, we write L,(T™).
Any function f € Li (T™) = L (T™) can be expanded to the Fourier series
> aw(f) ™,
mezm
where {aw(f)} are Fourier coefficients of a function f € L; (T™) with respect to a multiple
trigonometric system {e“ﬁ’f)}ﬁezm and Z™ is the space of points in R™ with integer
coordinates.
For a function f € L(T™) and a number s € Z; = N U {0}, let us introduce the
notation

So(f,Z) = ao(f)
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and

()= Y an(f)e ™,
nep(s)

where (7, T) = Z y;r; and

p(s) = {E = (ki) km) €Z™: [2°7'] < max |kj| < 23}7
j=1,....m

where [a] is the integer part of the number a.
Let us consider Nikol’skii’s and Besov’s classes ([4, 7, 18]). Let 1 < p; < +o0o,
j=1,...m,1<60<o00,r>0,and

H;—{fELp(Tm): sup 2°" ||0s(f }

SEZLy

Bpo = {f € Lp(T™) : (Z 277 |16, (f ) <1

SEZLy
It is known that for 1 < 6 < 6; < oo the following holds

Bj1 C Bpe C Bpe, C Bpoo = Hy.

=

M o . .
Let f € Lz(T™) and {k(J)}‘ be a system of vectors k) = (kij),...7k§i)) with

em (f); = ,;(ijlgfb.
)05

integer coordinates. Consider the quantity
)

M .
(k) z)
F= bt
j=1 5

where b; is an arbitrary number. The quantity eas ( f)ﬁ is called the best M-term ap-
proximation of a function f € Lz(T™). For a given class F' C Lz(T™) let

em (F), =supen (f),-
feF

The best M-term approximation was defined by S.B. Stechkin [22]. Estimations of M-
term approximations of different classes were provided by R.S. Ismagilov [13], E.S. Be-
linsky [6], V.E. Maiorov [17]|, B.S. Kashin [14], R. DeVore [8], V.N. Temlyakov [23],
A.S. Romanyuk [19], Dinh Dung [10], D.B. Bazarkhanov [5], L. Duan [11], M. Hansen
and W. Sickel [12], S.A. Stasyuk [20, 21], and others (see bibliography in [1], [2], [8], [21],
[23]).

For the case p1 = ... = pyy = pand 1 = ... = ¢gn = ¢, R.A. De Vore and
V.N. Temlyakov [9] proved the following theorem.
1.1. Theorem. (see [9]). Let1 <p,q,0 < oo, r(p,q) =m (% — é) fl1<p<qg<2

+

orl<g<p<ooandr(pq) = max{%, %} in other cases. Then, for r > r(p,q), the

following relation holds
_r (;,max 11 )
em(Bpg)g <M ™ N7 B
where a4 = max {a;0} .
Moreover, 1nthecaseofm(1 —%) <r< ﬂ and 1 < p <2< g < oo, S.A. Stasyuk
—g
2

[20, 21] proved that ear(Bj g)q < M
The main goal of the present paper is to find the order of the quantity e (F), for
the class F' = Bp .
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Let us denote by C(p, ¢, r,y) positive quantities, which depend on the parameters in
the parentheses, such that the parameters, in general, are distinct in distinct formulas.
A (y) < B (y) means that there are positive numbers C; and C> such that C; - A (y) <
B(y) < C2- Aly).

To prove the main results, we need the following auxiliary results.

1.2. Theorem. (see [24]). Letn = (ni,...,nm), n; €N, j=1,...,m, and
Tw(Z) = Z c,;ei@’@.
[kjl<ng,j=1,..., m
Then, for 1 <p; < q; < o0, j=1,...m, the following inequality holds

1 1

m
ITally <27 [T ITall, -
j=1

1.3. Theorem. (see [16]). Let p € (1,00). Then there exist positive constants C1(p)
and Cz(p) such that for each function f € L,(T™) the following estimation is valid

> 1
Al < |(SB0P)* | <l
s=0
Let Qar be a set containing no more than M vectors k= (K1, ..., km) with integer

coordinates and P(2a,Z) be any trigonometric polynomial, which consists of harmonics
with “indices” in Q.

1.4. Lemma. (see [2]). Let2 < q; < 400 and j = 1,...,m. Then, for any trigonometric
polynomial P(Qn) and for any natural number M < N, there exists a trigonometric
polynomial P(Qr) such that the following estimation holds

1P(2n) = P(Qar)llg < CLNM )2 | P()]:,

and, moreover, Qy C Q.

2. Main results

Let us prove the main results.

2.1. Theorem. Let p = (p1,..,Pm), 4 = (q1,--,qm), 1 < p; < 2 < g; < 00, and
1<6< .

o (1 1 1
1. Ifg;1 (p—j— q—j) <T<J;1p—j, then

enr (Bpo); = M7<21‘§1 ) (“_El(p?*?j))

2. Ifr=>3" p%, then

j=1

3. Ifr> > L, then
="
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Proof. Firstly, we are going to consider the upper bound in the first item. Taking
into account the inclusion B, C Hz, 1 < § < +oo, it suffices to prove it for the class
Hj.

Let 1 < p; < gj < oo and N be the set of natural numbers. For a number M € N
choose a natural number n such that 2"™ < M < 2**YD™ For a function f € Hp, it is

known that
oo

f@) =Y 68(f2)

s=0
and
16s(f)llz <27°", 1<pj<oo, j=1,.,m.

We will seek an approximation polynomial P(Qas,Z) in the form

P(QM,:E):iés(f,:i)+ > P, ), (1)

where the polynomials P(Q,, Z) will be constructed for each ds(f, Z) in accordance with
Lemma 1.4 and the number o > 1 will be chosen during the construction.

m m
Let J;(p% — é) <r< ];1 p%» Suppose

03

s( 3 L—r) —nal ¥ L-r
N, = [2’”"2 <J‘§1 73 >2 (_7- 175 >] 11,
where [y] is the integer part of the number y.
Now we are going to show that the polynomials (1) have no more than M harmonics
(in terms of order). By the definition of the number N, we have

n—1
Stk = (ko k) 1 [2°71 < max k| <2°}+ > N, <C2""+
= j=1,....m

n<s<an

= —r

s L —na(}: Jf—r)
+ > |22 <J‘:1PJ )2 =) 41 <02 4 (a—1)n < 02" =< M,

n<s<an

where A denotes the number of elements in the set A.
Next, by the property of the norm, we have

If =P@a)llg <C|| > (©6:(f) = POw))| +

n<s<an _
q

+ Z 5s(Nl = Ji(n) + J2(n). (2)

an<s<+oo 3

Let us estimate J2(n). Applying the inequality of different metrics for trigonometric
polynomials (Theorem 1.2), we can obtain

1 1

s S (A-2
Bm)< Y (NHla<C Y 23':1(] ])H(SS(f)Hﬂ

an<s<4oo an<s<4oo
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pwmee v o EED) o(CEGR)
an<s<+4oo

Let us estimate J1(n). Using the property of the norm, Lemma 1.4 and the inequality of
different metrics (Theorem 1.2), we get

Jin) < Y0 () - PO, <C Y (NZ12™) 2 8. (), <

n<s<an n<s<an

sy (11
c (N??”")?zj:l(‘” 2)\|as<f>n

n<s<an

IN

_<
5>

1 s3 L
<C Y NJF2 T
n<s<an

na a 1)1 na 1
S 02_%2 2 <j§1 P 7”> Z 23<j§1 p; T’> 2 < 02_71,27712 2 (j:l ; T‘). (4)

n<s<an

—1
Suppose a = m (2 > 1) . Then, from the inequality (4), we get

m -1 m m -1 m
—am 1 — 11 _ a1 — 11
Jl(ﬂ) < C2 <2j=1 ’1j> < jgl(pj 95 )) - M <2j§1 qj) < j2=:1<”j a5 )) (5)

-1
(52 (~EGE-)
J2(n) < CM ( i=1 % j:1<p1 qJ) ) ©6)
By (5) and (6), we get from the inequality (2) the following
m -1 m
(2£5) (EE-D)
lf—PQum)l|lg < CM ( j=1% -7:1(’)’ q’> ,
for any function f € Hj in the case of > (X — X)) <r< Y L.
=1 Py a;j =1 pj

From the inclusion B; , C Hj; and the definition of the M-term approximation, it

follows that
ext (Bpg), < M7<2j§1§> <Tij§1(”77"7)>

m
in the case of > (+ — L) <r< Y L.
F=AZIT

Let us consider the lower bound. We will use the well-known formula (see [19], p. 79)

ew(Pa=int s | [ f@P@). (7)
2 PeLy |IP| <1 1/Tm
where ¢ = (g1', ..., qm”), q%- + ﬁ =1,j=1,...,m, and L3, is the set of functions that

are orthogonal to the subspace of trigonometric polynomials with harmonics in the set
Qur.
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Consider the function

Fin(7) = > efhe).

=1,...,

Let Qar be a set of M vectors with integer coordinates. Suppose

*

9(@) = Fan(@) — Y &,

where the sum > contains those terms in the function Fj,(Z) with indices only in
ke
Q. By the inequality (see [18], p. 88)

13-k
(D DI TR R (8

and Perseval’s equality for 1 < ¢;' < 2, j = 1,...,m, we obtain

(A1) A nm nm
gl < 1Fanlly +@m)= " 2 30 &®P ) <o@% +M2) <02 (9)
kEQ
Now we consider the function
Pi(z) = 022" ) g (2). (10)

Then (9) implies that the function P; satisfies the assumptions of the formula (7) for
some constant Cz > 0.
Consider the function

-1
7nm<2 ) %) <r7 > <%71)>
h@=ce2 \VEm) TR R @), (1)
By the inequality (8), we get

D276 ()l <
s=0

m -1 m . |:nm<2j§1 %)71] & 1
S CQ—n'm (2]_;1 E) (”“*J_E (E71)> Z 237"233'21(17?]') S 03.
s=0

Hence C’g,_lfl € By
For the functions (10) and (11), we have, by the formula (7), the following

>

f1(z) Py (%) dz

T"’L
—1
—nm| 2 72“: i> <7'7 g %71 ) nm
> (C2 < j=1% j=1(”] ) 9= (HFQ,TLHS . M) >

m -1 m
—nm 1 r— 1 1
> 02 (2_7;:1 qj) ( j§1<pj a5 )) . (12)

Hence, it follows from (12) by the inclusion By ; C By o that

m -1 m
. (i
em(fi)g = C2 nm< = qj) (T jgl(pj qf))

enr(fi)g > inf
Qpm
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1
1
19

m
in the case of > (pi — qi)
- J J

m
<r< Yy ﬁ. So we have proved the first item.
j=1 j=1"7

o

J

Now we consider the case r = Y . Let f € B} ,. Suppose a = m (2
and
nm l— sTr
No = [27nd 8,27 ] + 1.
Then, by definition of the numbers N, and Holder’s inequality, we obtain

n—1
1. . s—1 . s
;ﬂ{kf(kl,-.-,km)-p J< max k| <27}+ 30 No <

.....

n<s<an

ol

<2 + (0 — D+ 2""n® (o — 1)n) o7 <Z |5S(f)|f;2”9> < C2"™ < M.
s=0

Suppose 8 = max{qi, ..., Gm }. Then

i) =1 > G —P@w))| <O Do 6:(f) - P(2.))

n<s<an _ n<s<an

q B
Next, by Theorem 1.3, we have

Ay <clll S 16 - P@x.)P
n<s<an
B
Since 8 > 2, then by applying the property of the norm, Lemma 1.4 and the inequality
of different metrics for trigonometric polynomials (see Theorem 1.2), we obtain

1

1
2 2
Jm) < | D0 s -P@IE| <c| > NR2s(Hly | <
n<s<an n<s<an
1
25 58 (L -1 ’
<ol 3o o~ ST Tanlz] - (13)

n<s<an

Next, sincer = > ﬁ, we have, by the definition of the numbers N, and using Holder’s
j=1"

inequality, the following

[N

Jin) <c@a 0 [N 27 el | <

n<s<an

1 1 1
20 2(1-%)

<o RS 27 88 >t

n<s<an n<s<an

nm

<02 " nt T8 =< M2 (log(1 + M) 6.

Thus,
Ji(n) < CM ™2 (log(1 + M))" 8 (14)

m
in the case of r = > L.
i=1 "
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m

To estimate J2(n), we apply Holder’s inequality, and taking into account r = 3 %
2 p;

1 ’

and « = m <2 > ql) , we obtain
j=1
o )
Jn)<C > 2 ST g Ny < (15)
na<s<+oo
1 m % m
o g o B L e B o
(Z 27 l6.(f > o2 AV <02 AU =0 =M
na<s<+oo

y (14) and (15), the inequality (2) implies that
If = P(@u)llg < OM % (log(1 + M))*

m
in the case of r = ) pi It proves the upper bound estimation in the second item.
j=1"’

s 1
Let r > ];1 Pt Suppose

m

Then
n—1
7. s—1
Zojj{k:(kl,..., m) 271 max k| <27+ > N <

.....

n<s<an

<02V + (a—1)n < C2"™ < CM.
If f € Hy, then, by using the definition of the numbers Ny and r > 3 p%’ we obtain
j=1

from (13) the following

m

YOS N;12sm2259‘§1<é_%> 165 (£

N[=

2] <
n<s<an
_nf, & (L Y R e & (1
<92 2( ]§1(p7 )) Z 9 < j§1p7> <2 <+J§1(2 p7)>
n<s<an
Thus,
k(B a-b)
Ji(n) < CM =N (16)

m
in the case of 7 > " %.
P

—1
m m

To estimate J2(n), we suppose o = [ 7+ > (% — i) r+ > (i - i) and
i=1 Pj —1 \9i Pj

get

< CM_%<T+J'§1(%_I%J'>) (17)
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for a function f € H;. By (16) and (17), it follows from (2) that

m

Ilf—P(Qu)llg < CM‘L (“é(%‘é))

. - 1
for any function f € Hj in the case of r > J; e
It follows from Bj, C Hy that

function

91(Z) = Z Z H k;l cosk;x;. (18)
s=1kep(s) =1

Then

m

53(91,58) = Z H ktj_l COSijj.

kep(s)i=1

It is known that for a function ds(Z) = > ][] coskjz; the following relation holds
kep(s)i=1

sg(lf

)
ldsllp <2 =t ™", 1<p;<+oo, j=1,...,m.

1

Therefore, by the Marcinkiewicz theorem on multipliers (see [18]), we have

1

18, (g0l < G2~ |d,llp < C2 =27
s\91)llp sllp >

m
Hence, since r = > -, we obtain
j=1

1
Pj

1
oo 0
(E 2°7° ||5s(91)||z> < Cin’v.

s=0

Therefore, the function f2(Z) = C’l_lnfégl (Z) belongs to the class By 5, 1 < p; < +o00,
7=1...m.
Now, we are going to construct a function P;, which satisfies the conditions of the

formula (7). Let
v1(Z) = Z Z Hcos kjxz;

s=1kep(s) =1

and s be an arbitrary set of M vectors k= (k1 ..., km) with integer coordinates.
Consider the function
* m
ui(Z) = Z Hcoskj:rj
keQy, j=1

which contains only those terms in (18) with indices in Q7. Suppose wi(Z) = v1(Z) —
u1(Z). Then, since 1 < q;/ < 2, 5 = 1,...,m, we obtain, by Perseval’s equality, the
following
1
lwillz < llvillg + lualle < florll +CM=.
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By the property of the norm and the estimation of the norm of the Dirichlet kernel in
the Lebesgue space, we have

n
lorllg <> 1ds (wn)lly <
s=1

m
1

n m _L 1
< CZQSEl(l qj’) < anj; %y
s=1
Therefore, taking into account % < %, j=1,....,m, we get

fwi]ly < C27F + M2) < (275"

Hence, the function

Pi(z) = Cy 127 2wy ()
satisfies the conditions of the formula (7). Then, by substituting the functions f> and P;
into (7) and by orthogonality of the trigonometric system, we obtain

em (f2);2C > ZHA: 27"

n1<s<nkep(s) J=1

m

_1
2

Cm2)™ Y 27Tt =02 2 0T (n— ) >
ni<s<n
> C(In2)™2 " n'~% < M3 (log(1+ M))' "7,

where ni is a natural number such that n; < %
So, for the function fa € By g, it has been proved that

enm (f2), 2 CM~ (1og(1+M))1“

m

in the case of 7 = —plv . Hence
h j
]:1

en ( ;*‘9)6 > C’M_%(log(l + M))'"e

m
in the case of r = ) %. It proves the lower bound estimation in the second item.
j=1"7

m
Let us prove the lower bound estimation for the case r > 3 %. Since in this case an
j=1"7

upper bound estimation of the quantity er (B},ﬂ)q does not depend on 6 and B;; C By 4,
1 < 0 < 400, it suffices to prove the lower bound estimation for B ;
For a number M € N, we choose a natural number n such that 2" < M < 2(r+hm
and 2M < #p(n), where fp(n) denotes the number of elements in the set p(n).
Consider the following function

Ja(@) = (5 0) 3 ik,

k€p(n)

Then ||ds(f3)|lz = 0 provided s # n and

[LARIFE ECR) HH

J=1 kj=2n—1 P



By the estimation of the norm of the Dirichlet kernel (see [18], p. 181), we have

2" —1
ik x. n(1—-L
H z : ezk]z] §C2 ( p].)7
k].zgnfl Py

for p; € (1,0), 7 =1, ...,m. Therefore
0n(f3)llz < C27".

Hence
D 27 16s(fs)l, < Cs,
s=0

i.e. the function C3'f3 € By 1. Next, we consider the functions

and

kep(n)NQps

Suppose w2 (Z) = v2(Z) — u2(Z). By Perseval’s equality,
1 nm
luallz < M2, [v2flz < C272 .
From these relations, we obtain, by the properties of the norm, the following

[wall2 < flvall2 + [lualla < Ca272".

307

Therefore, the function Py (Z) = C;'27 "2  w, () satisfies the conditions of the formula
(7). Since 2 < g < 00, j =1,...,m, we have en (f3), < Cem (f3)§. Now, by the formula

(7), we get
em (f3); > Cenr (f3), >

> C'Si)nf fs(i)pQ(a_:)di =

= 0512*%7"05%(17%)) inf[tp(n) — £ (p(n) N Qar)] >

>C2 ( =1
It follows from the relation 2™ =< M that

(B (-2 )
eM(fS)qZCM ( j:1<2 PJ)

m
in the case of r > p%- for the function C5 ' f3 € B} ;. Hence
j=1



308

Therefore,
—% T g l_% )
em (B;,Q)q 2 CM < +j:1(2 pg)

m
in the case of 7 > )

;. So Theorem 2.1 has been proved.
j=1"7

2.2. Theorem. Let p= (p1, ..., pm), §= (q1, -, qm), 1 <pj < q; <2, and1 <6 < +oo0.
SN (L _ 1
Ifr>];(pj qj)7 then

— r— 3 (A-2 )
eM <B£,9)(7XM ( j=1(p] q;) .

Proof. For a number M € N, we choose a natural number n such that M =< 2"™. By
the inequality of distinct metrics (see Theorem 1.2) and by Holder’s inequality, we have

1 =380l < 3 18:(Hlle <
s=0 s=n
< e [5e UEG B
s=0 s=n

< C'Qn(T_jgl(pif_qij)) < CM_#(r_j§1<%_%j>>

for f € Bp, % + 9% = 1. Therefore

Hence
| k(-2 (E-2))
em (Bpo), < CM ( J‘=1(p] %) :
It proves the upper bound estimation.
For the lower bound estimation, let us consider the function

-1

f4(j) = nir+j§1<1’j )Vn(f)7

where V,,(Z) is a multiple of the Valle-Poisson sum.
Next, following the proof in [9] (pp. 46-47) and applying Theorem 1.2, we obtain the
lower bound estimation of the quantity es (B;jg)q.

2.3. Theorem. Let p = (p1,...sPm), T = (q1y.-sqm ), 2 < pj < q; < 00, j=1,...,m, and
1<0 < +oo. Ifr > 7, then

enm (B;yg)q, = M .

Proof. By the inclusion B;, C B3, C Hj, we have
em (B;,a)q <em (Bg,e)q <ewm (H3),-

By Theorem 2.1, ]

em (Hy), < CM™m,
for p; =2, j=1,...,m. Hence

en (Bpg), <CM ™.

It proves the upper bound estimation.
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Let us consider the lower bound estimation. Consider Rudin-Shapiro’s polynomial
(see [15], p. 155) of the type

9
Rs(x) = Z exe™ x e 0,2n], e = 1.
s=2s5—1

It is known that ||Rs|lec = n[loa;( ] |Rs(z)| < C2% (see [15], p. 155). For a given number

ze[0,27
M choose a number n such that M =< 2"™. Now we consider the function

fs(@) =275 Y ] Raay).

s=1 1

Then, by the continuity, we have f5 € Lz(T™) and

oo n m
sOr 0 —n(Zt+r sOr 2
D276 (Fs)llp =27 E T Y 2 [T Ra(ap)lp <

s=0 s=1 1

n
<oTnFED Y g EH < o
=1
Hence, the function C’glf5 € By . Now, we construct a function P(Z), which satisfies
the conditions in the formula (7). Suppose

v3(z) = > [[Rs(y), us(@) =D _J]Rs(xy),

s=1 1

where the sign * means that the polynomial u3(Z) contains only those harmonics of vs,
which have indices in Q. Suppose w3(Z) = v3(Z) — uz(Z). Then, since 1 < ¢;’ = q?ﬂl <
J

2, 5 =1,...,m, we have the following (by Perseval’s equality)
l[wsllgr < flwslz < C127%".

Therefore, for the function P3(Z) = C;'27 "2 w3 (%) the inequality ||Ps|l; < 1 holds.
Now, using the formula (7), we obtain

ent (Bpo), > en(fa)g > 27" (EHI2778 (2" — M) > C27 I > oM

So
en (Bpg), > CM ™.

It proves Theorem 2.3.

Remark. In the case p; =p, ¢; =¢q, j=1,....,m, and r > m(% — %), the results of
R.A. DeVore and V.N. Temlyakov [9] follow from Theorem 2.1-2.3. If 1 <p <2 < g < o0
and m(% - %) < r < 7, the results of S.A. Stasyuk [20, 21] follow from the first and
second items of Theorem 2.1. Theorem 2.1 - 2.3 were announced in [3].
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