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On moduli of smoothness and approximation by
trigonometric polynomials in weighted Lorentz

spaces

Sadulla Z. JAFAROV∗

Abstract

We investigate the approximation properties of the functions by
trigonometric polynomials in weighted Lorentz spaces with weights sat-
isfying so called Muckenhoupt's Ap condition. Relations between mod-
uli of smoothness of the derivatives of the functions and those of the
functions itself are studied. In weighted Lorentz spaces we also prove a
theorem on the relationship between the derivatives of a polynomial of
best approximation and the best approximation of the function. More-
over, we study relationship between modulus of smoothness of the func-
tion and its de la Vallée-Poussin sums in these spaces.

Keywords: moduli of smoothness, weighted Lorentz spaces, Muckenhoupt

weight, trigonometric approximation, best approximation.

2000 AMS Classi�cation: 26D10, 41A20, 41A25, 41A27,41A28, 42A10, 46E30.

Received : 20.11.2015 Accepted : 17.03.2016 Doi : 10.15672/HJMS.20164517215

1. Introduction and the main results

Let T = [−π, π]. A function ω : T→ [0,∞] will be called a weight function if ω is
locally integrable and almost everywhere (a.e.) positive. The function ω generates the
Borel measure

ω(E) =

∫
E

ω(x)dx.

By

f∗ω(t) = inf {ν ≥ 0 : ω ({x ∈ T: |f(x)| > ν}) ≤ t}
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we denote the nondecreasing rearrangement of a function f : T→ [0,∞]. We denote also

f∗∗(t) :=
1

t

t∫
0

f∗ω(u)du.

Let 0 < p <∞, 0 < q <∞. A measurable and a.e. �nite function f on T belongs to the
Lorentz space Lpqω (T) if

‖f‖Lpqω :=

∫
T

(t
1
p f∗∗(t))q

dt

t

1/q

<∞.

Note that Lorentz spaces, introduced by G. Lorentz in the 1950 s. [24 ], [25 ]. As seen the
weighted Lorentz spaces Lpqω (T) is expressed not only in terms of the parameter p, but
also in terms of the second parameter q. If p = q, then Lpqω (T) is the weighted Lebesgue
space Lpω(T) [10, p. 20]. �f q < r, then the space Lpqω (T) is contained in Lprω (T). Detailed
information about properties of the Lorentz spaces can be found in [12], [20], [26] and
[31].

Let 1 < p < ∞, p′ = p
p−1

and let ω be a weight function on T. ω is said to satisfy
Muckenhoupt's Ap-condition on T if

sup
J

 1

|J |

∫
J

ω (t) dt

 1

|J |

∫
J

ω1−p′ (t) dt

p−1

<∞ ,

where J is any subinterval of T and |J | denotes its length. Note that the weight functions
belonging to the Ap− class, introduced by Muckenhoupt [27], play a very important role
in di�erent �elds of mathematical analysis.

We use c, c1, c2, ... to denote constants (which may, in general, di�er in di�erent
relations) depending only on numbers that are not important for the questions of interest.
We shall also employ the symbol A � B, denoting that cA ≤ B ≤ C, where c, C are
constants.

Let α ∈ Z+ and f ∈ L1(T). Suppose that x, h are real, and let us take into

∆α
t f(x) :=

α∑
j=0

(−1)j
(
α

j

)
f (x+ (α− j)t),

where
(
α
j

)
:= α(α−1)(α−2)...(α−j+1)

j!
, j > 1 is the Binomial coe�cients and

(
α
0

)
: = 1,

(
α
1

)
:

= α.
Let 1 < p, q <∞, ω ∈ Ap(T), f ∈ Lpqω (T). We put

σαδ f(x) :=
1

δ

δ∫
0

|∆α
t f(x)| dt.

If f ∈ Lpqω (T), ω ∈ Ap(T) according to [6 ] the Hardy-Littlewood Maximal function is
bounded in Lpqω (T), ω ∈ Ap(T). Then we have

‖σαδ f‖Lpqω ≤ c1 ‖f‖Lpqω . <∞.

For 1 < p, q < ∞, ω ∈ Ap(T), f ∈ Lpqω (T), α ∈ Z+ we de�ne the α − th mean modulus
of smoothness ωα(f, .)Lpqω by

ωα(f, h)Lpqω := sup
|δ|≤h

‖σαδ f(x‖Lpqω
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Let f ∈ Lpqω (T), α ∈ Z+ the modulus of smoothness ωα(f, .)Lpqω is a nondecreasing,
nonnegative, function and

ωpα(f1 + f2, .) Lpqω ≤ ωpα(f1, .) Lpqω + ωpα(f2, .) Lpqω ,

lim
δ→0+

ωα(f, δ)Lpqω = 0.

For f ∈ Lpqω (T), we de�ne the α− th derivative of f as function g ∈ Lpqω (T) satisfying

(1.1) lim
h→0+

∥∥∥∥∆α
h(f)

hα
− g
∥∥∥∥
L
pq
ω

= 0,

in which case we write g = f (α).
Let

(1.2)
a0
2

+

∞∑
k=1

Ak(f, x), Ak(f, x) := ak(f) cos kx+ bk(f) sin kx

be the Fourier series of thefunction L1(T). The nth partial sums, and de la Vallée-Poussin
sum of the series (1.2 ) are de�ned, respectively, as

Sn(f) =
a0
2

+

n∑
k=1

Ak(f, x),

Vn(f) =
1

n

2n−1∑
ν=1

Sν(f).

We denote by En(f)Lpqω (n = 0, 1, 2, ...) the best approximation of f ∈ Lpqω (T) by
trigonometric polynomials of degree not exceeding n, i. e.,

En(f)Lpqω := inf
{
‖f − Tn‖Lpqω : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most n.
Let Wα

pq,ω(T) (r = 1, 2, ...) be the linear space of functions f ∈ Lpqω (T), 1 < p, q <∞,
ω ∈ Ap(T), such that f (α) ∈ Lpqω (T). It becomes a Banach space with the norm

‖f‖Wα
pq,ω(T) := ‖f‖Lpqω +

∥∥∥f (α)
∥∥∥
L
pq
ω

.

The problems of approximation theory in the weighted and nonweighted Lorentz space
have been investigated in [1], [21], [35] and [37]. The approximation problems by trigono-
metric polynomials in di�erent spaces have been investigated by several authors (see, for
example, [2-5], [7], [9], [11], [13-19], [22], [23], [28-30], [33] and [34]).

In this work we study the approximation problems of functions by trigonometric poly-
nomials in the weighted Lorentz space Lpqω (T) with Muckenhoupt weights. Relations
between moduli of smoothness of the derivatives of a function and those of the function
itself are investigated. We also prove a theorem on the relationship between derivatives
of a polynomial of best approximation and the best approximation of the function in
the weighted Lorentz space Lpqω (T). In addition, in the weighted Lorentz space Lpqω (T)
relationship between modulus of smoothness of the function and its de la Vallée-Poussin
sums is studied. Similar problems in de�erent spaces were investigated in [9], [30], [32].

Our main results are the following.
Theorem 1.1. Let 1 < p, q < ∞, ω ∈ Ap(T), f ∈ Lpqω (T) and Tn a trigonometric

polynomial of degree n satisfying the following conditions:

‖f − Tn‖Lpqω = o

(
1

n

)
and

∥∥g − T ′n∥∥Lpqω = o(1), n→∞.
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Then we obtain f ′ = g, that is, the function g satis�es the condition (1.1).
Using the same method as in the proof of Theorem 1.1 we have the following Corollary.
Corollary1.1. Let 1 < p, q < ∞, ω ∈ Ap(T), f, g1, ..., gk ∈ Lpqω (T) and Tn be a

trigonometric polynomial satisfying, for i = 1, ..., k, the conditions

‖f − Tn‖
L
pq
ω

= o
(

1

nk

)
, n→∞,∥∥∥gi − T (i)

n

∥∥∥
L
pq
ω

= o
(

1

nk−i

)
, n→∞.

Then we obtain gi = g′i−1 (f = g0) in the sense of (1.1).
Theorem 1.2. Let 1 < p <∞ and 1 < q ≤ 2 or p > 2 and q ≥ 2. Then, for a given

ω ∈ Ap(T ), f ∈ Lpqω (T ) and integers α, r satisfying α > r we have

ωα−r
(
f (r), t

)
L
pq
ω

≤ c2


t∫

0

ωα (f, u)sLpqω
usr+1

du


1/s

,

where s = min ( q, 2).
Theorem 1.3. Let 1 < p, q < ∞, ω ∈ Ap(T ), f ∈ Lpqω (T ), α, r ∈ Z+ (α > r > 0)

and let Tn(f) ∈ Πn be the polynomial of best approximation to f in Lpqω (T ). In order
that

∥∥∥T (α)

n (f)
∥∥∥
L
pq
ω

= O(nα−r)

it is necessary and su�cient that

En(f )Lpqω = O(n−r).

Theorem 1.4. Let 1 < p, q <∞, ω ∈ Ap(T ), α ∈ Z+. If f ∈ Lpqω , then
1.

c3ωα(f,
1

n
)
L
pq
ω

≤

(
n−α

∥∥∥V (α)
n ( f)

∥∥∥
L
pq
ω

+ ‖f(x)− Vn( f)‖Lpqω

)

≤ c4ωα(f,
1

n
)Lpqω(1.3)

where the constants c4 and c5 are dependent on α, p and q.
2.

c5ωα(f,
1

n
)
L
pq
ω

≤

(
n−α

∥∥∥S(α)
n (f)

∥∥∥
L
pq
ω

+ ‖f(x)− Sn( f)‖
L
pq
ω

)

≤ c6ωα(f,
1

n
)Lpqω ,(1.4)

where the constants c6and c7 are dependent on α, p and q.

2. Proofs of main results

We need the following results obtained in [35].
Lemma 2.1. Let ω ∈ Ap(T ), 1 < p, q < ∞. If f ∈ Lpqω (T ) and α = 1, 2, ..., then

there exists a constant c7 > 0 depending α, p and q such that

En(f)
L
pq
ω
≤ c7ωα(f,

1

n
)
L
pq
ω
.

holds where n = 0, 1, 2, ...
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Lemma 2.2. Let ω ∈ Ap(T ) and α ∈ Z+, 1 < p, q < ∞. If Tn ∈ Πn, n ≥ 1, then
there exists a constant c8 > 0 depending only on α, p and q such that

ωα(Tn, h)
L
pq
ω

≤ c8hα
∥∥∥T (α)

n

∥∥∥
L
pq
ω

, 0 < h ≤ π

Lemma 2.3. Let ω ∈ Ap(T ), 1 < p, q < ∞. If Tn ∈ Πn, n ≥ 1 and α ∈ Z+, then
there exists a constant c9 > 0 depending only on α, p and q such that∥∥∥T (α)

n

∥∥∥
L
pq
ω

≤ c9nα ‖Tn‖Lpqω .

Proof of Theorem 1.1. We take ε > 0. We choose a natural number n0 = n0(ε) such
that for n ≥ n0

(2.1) ‖f − Tn‖
L
pq
ω

≤ ε 1

n
,

∥∥g − T ′n∥∥
L
pq
ω

≤ ε.

Taking account of (2.1) for h satisfying the condition
√
ε
n
≤ h ≤ 1

n
we obtain

(2.2)

∥∥∥∥f(·+ h)− f(·)
h

− T (·+ h)− Tn(·)
h

∥∥∥∥p
L
pq
ω

≤ 2
p
2

Considering [8] we have

∆r
hTn(x) =

r∑
i=0

(
r
i

)
(−1)iTn

(
x+

( r
2
− i
)
h
)

=

=

∞∑
j=r

r∑
i=0

(
r
i

)
(−1)i

( r
2
− i
)j hj

j!
T (j)
n (x) =

(2.3) = hrT (r)
n (x) +

∞∑
j=r+1

η(r, j)j−rT (j)
n (x),

where − r
2
< η(r, j) < r

2
and η(r, j) = 0 if j − r is odd. Then using (2.3) and Lemma 2.3

for
√
ε
n
≤ h < 2

√
ε

n
we �nd that∥∥∥∥Tn(·+ h)− Tn(·)
h

− T ′n(·)
∥∥∥∥p
L
pq
ω

≤
∞∑
m=2

(
hm−1

m!

)p ∥∥∥T (m)
n

∥∥∥p
L
pq
ω

≤

(2.4) ≤
∞∑
m=2

(hn)(m−1)p ‖Tn‖p
L
pq
ω

≤ 4
ε

1− 2pεp/2
‖Tn‖p

L
pq
ω

≤ c12εp ‖Tn‖p
L
pq
ω

.

Using (2.2), (2.4) and (2.1) for
√
ε
n
≤ h < 2

√
ε

n
we reach∥∥∥∥f(·+ h)− f(·)

h
− g
∥∥∥∥p
L
pq
ω

≤
∥∥∥∥f(·+ h)− f(·)

h
− Tn(·+ h)− Tn(·)

h

∥∥∥∥p
L
pq
ω

+

+

∥∥∥∥Tn(·+ h)− Tn(·)
h

− T ′n(·)
∥∥∥∥p
L
pq
ω

+

+
∥∥T ′n − g∥∥p

L
pq
ω

≤ c10
(
εp/2 + εp ‖f‖p

L
pq
ω

+ εp
)

From the last inequality we have g = f ′ in the sense of (1.2). Then the proof of Theorem
1.1 is completed.

Proof of Theorem 1. 2. The function ωm(F, t)
L
pq
ω

non-decreasing and according to
reference [34] the following inequality holds:

(2.5) ωα(F, 2t)Lpqω ≤ c11ωα(F, t)Lpqω
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It is su�cient to prove theorem for t = 2−n. Then using of (2.5) we obtain
2−n∫
0

ωα (f, u)sLpqω
usr+1

du


1/s

�

{
∞∑
ν=n

2νsrωα(f, 2−ν)sLpqω

}1/s

.

Therefore for all n it is su�cient to prove the following inequality:

(2.6) ωα−r(f
(r) , 2−n)Lpqω ≤

{
∞∑
ν=n

2νsrωα(f, 2−ν)sLpqω

}1/s

.

By [34] for any trigonometric polynomial Qn of degree cn and F ∈ Lpqω (T) we obtain

(2.7) ωα(F , 1/n)Lpqω ≤ c12
(
‖F −Qn‖Lpqω + n−α

∥∥∥Q(α)
n

∥∥∥
L
pq
ω

)
.

Therefore we aim to �nd Q2n of degree c2n such that both
∥∥∥f (r) −Q2n

∥∥∥
L
pq
ω

and

2−n(α−r)
∥∥∥Q(α−r)

2n

∥∥∥
‖f‖

L
pq
ω

are bounded by the right-hand side of inequality (2.6). Let

Tn ∈ Πn (n = 0, 1, 2, ...) be the polynomial of best approximation to f. It is known
that [34] the set of trigonometric polynomials is dense in Lpqω (T) . Then we have
‖f − T2ν‖Lpqω → 0 as ν →∞.

Let f ∈ Lpqω (T) has the Fourier series

f(x) ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) =

∞∑
k=0

Ak(f).

We de�ne trigonometric polynomial νNf as

νNf =

∞∑
k=0

ν(
k

N
)Ak(f),

where ν ∈ C∞ [0,∞), ν(x) = 1 for x ≤ 1 and ν(x) = 0 for x ≥ 1. Note that trigonometric
polynomial νNf has the following properties:

I) νNf is a trigonometric polynomial of degree smaller than N ;
II) If g is a trigonometric polynomial of degree [N/2] , then νNg = g;
III) ‖νNf ‖Lpqω ≤ c ‖f ‖Lpqω .

According to reference [34] we have

‖νNf − f‖Lpqω ≤ c13EN/2(f)
L
pq
ω
,

where Ek(f)
L
pq
ω

is the best approximation of f ∈ Lpqω (T) trigonometric polynomials of

degree not exceeding k. We now choose the Qn of (2.7) for F = f (r) to be (νnf )(r). It
is cleary that ‖f − νnf ‖Lpqω = o(1) as n→∞.

The following identity holds:

ν2kf − ν2nf =

k−1∑
m=n

(ν2m+1f − ν2mf ) ≡
k−1∑
m=n

γmf.

Then

(ν2kf)(r) − (ν2nf)(r) =

k−1∑
m=1

(γmf)(r) .
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Using the Littlewood- Paley inequality for the weighted Lorentz spaces Lpqω (T) in [21]
we have

c14

∥∥∥(ν2kf)(r) − (ν2nf)(r)
∥∥∥
L
pq
ω

≤

∥∥∥∥∥∥
(
k−1∑
m=n

{
(γmf)(r)

}2
)1/2

∥∥∥∥∥∥
L
pq
ω

≤ c15

∥∥∥(ν2kf)(r) − (ν2nf)(r)
∥∥∥
L
pq
ω

.(2.8)

According to [21, Lemma 4.2 and 4.3] we get

(2.9)

∥∥∥∥∥∥
(
k−1∑
m=n

{
(γmf)(r)

}2
)1/2

∥∥∥∥∥∥
L
pq
ω

≤

(
k−1∑
m=n

∥∥∥(γmf)(r)
∥∥∥s
L
pq
ω

)1/s

,

where s = min (q, 2) .
Note that νnf is the near best approximation to f in Lpqω . Then using [35] we reach

the following equivalence

(2.10) ωα(f, 1/n) � ‖f − νnf ‖Lpqω + n−α
∥∥∥(νnf )(α)

∥∥∥
L
pq
ω

.

From (2.8 )- (2.10 ) and Lemma 2.3 we conclude that∥∥∥(ν2kf)(r) − (ν2nf)(r)
∥∥∥
L
pq
ω

≤ c16

(
k−1∑
m=n

2mrs ‖(γmf)‖sLpqω

)1/s

≤ c17

(
k−1∑
m=n

2mrsωα(f, 2−m)sLpqω

)1/s

,

where c1 independent of m, k and f.
Use of Q2n = ν2nf and (2.10) gives us

2−n(α−r)
∥∥∥((ν2nf)(r))(α−r)

∥∥∥
L
pq
ω

= 2−n(α−r)
∥∥∥(ν2nf)(α)

∥∥∥
L
pq
ω

≤ 2nrωα(f, 2−n)Lpqω ≤ c18

(
∞∑
m=n

2mrsωα(f, 2−m)sLpqω

)1/s

.

The proof of Theorem 1.2 is completed.
Proof of Theorem 1. 3. We suppose that

(2.11) En(f)Lpqω = ‖f − Tn(f)‖
L
pq
ω

= O(n−r), (r > 0).

Taking into account Lemma 2.3 and the relations (2.11) we obtain∥∥∥T (α)

n (f)
∥∥∥
L
pq
ω

≤ c19nα ‖Tn(f)‖Lpqω ≤ n
α ‖f − Tn(f)‖Lpqω +‖Tn(f)‖

L
pq
ω

≤ c20nα−r.

Now we suppose that

(2.12)
∥∥∥T (α)

n (f)
∥∥∥
L
pq
ω

= O(nα−r).



1682

Using Lemma 2.1, Lemma 2.2 and (2.2) we get

‖T2n(f)− Tn(T2n(f))‖Lpqω ≤ En(T2n(f))Lpqω ≤ c21ωα(T2n,
1

n
)
L
pq
ω
.

≤ c22n
−α
∥∥∥T (α)

2n

∥∥∥ ≤ c23n−α(nα−r) ≤ c24n−r.(2.13)

On the other hand, since Tn(T2n(f)) is a polynomial of order n the following inequality
holds:

‖T2n(f)− Tn(T2n(f))‖Lpqω = ‖f − Tn(T2n(f))− (f − T2n(f))‖Lpqω
≥ ‖f − Tn(T2n(f))‖Lpqω − ‖f − T2n(f))‖

L
pq
ω

≥ En(f)Lpqω − E2n(f)Lpqω ≥ 0.(2.14)

Use of (2.13) and (2.14) gives us

(2.15) 0 ≤ En(f)Lpqω − E2n(f)Lpqω ≤ c25n
−r.

Since En(f)Lpqω → 0 from the inequality (2.15) we conclude that

∞∑
k=n0

{
E2k (f)Lpqω − E2k+1(f)Lpqω

}
≤ c26

∞∑
k=n0

2−kr.

Then from the last inequality we obtain

(2.16) E2n0 (f)Lpqω ≤ c272−n0r.

It is clear that inequality (2.16) is equivalent to En(f)Lpqω ≤ c28(n−r). This completes
the proof.

Proof of Theorem 1. 4. In view of Lemma 2.2 the inequality

(2.17) ωα(Tn,
1

n
)Lpqω ≤ c29n

−α
∥∥∥T (α)

n

∥∥∥
L
pq
ω

,

holds, where Tn is a trigonometric polynomial of order n. Using the properties of smooth-
ness ωα(f, .)Lpqω and (2.17), we reach

ωα(f,
1

n
)Lpqω ≤

(
ωα(f − Tn,

1

n
)Lpqω + ωα(Tn,

1

n
)Lpqω

)
≤ c30

(
‖f − Tn‖Lpqω + n−α

∥∥∥T (α)
n

∥∥∥
L
pq
ω

)
.(2.18)

Considering [34] there exists a constant c > 0 depending only on α, p and q such that

(2.19) n−α
∥∥∥T (α)

n

∥∥∥
L
pq
ω

≤ c31ωα(Tn,
1

n
)Lpqω .

By virtue of Lemma 2.1

(2.20) En(f)Lpqω ≤ c32ωα(f,
1

n
)Lpqω .

It is known that [34] for the de la Vallée-Poussin mean the inequality

(2.21) ‖f − Vn(f)‖Lpqω ≤ c33En(f)Lpqω .
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holds. Use of (2.19 )-(2. 21) gives us

n−α
∥∥∥V (α)

n (f)
∥∥∥
L
pq
ω

+ ‖f − Vn(f)‖Lpqω

≤ c34

(
ωα(Vn,

1

n
)
L
pq
ω

+ En(f)Lpqω

)
≤ c35

(
ωα(f,

1

n
)
L
pq
ω

+ ωα(f − Vn,
1

n
)Lpqω + En(f)Lpqω

)
≤ c36ωα(f,

1

n
)
L
pq
ω
.

The last inequality and (2.18) imply that (1.3).
According to [35] there exists a constant c25 such that

(2.22) ‖f − Sn(f)‖
L
pq
ω

≤ c37En(f)Lpqω .

If the inequality (2.22) and the scheme of proof of the estimation (1.3) is used we obtain
the estimation (1.4).

Theorem 1.4 is proved.
Acknowledgement. The author would like to thank referee for all precious advices
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