On moduli of smoothness and approximation by trigonometric polynomials in weighted Lorentz spaces

Sadulla Z. JAFAROV*

Abstract

We investigate the approximation properties of the functions by trigonometric polynomials in weighted Lorentz spaces with weights satisfying so called Muckenhoupt's A_{p} condition. Relations between moduli of smoothness of the derivatives of the functions and those of the functions itself are studied. In weighted Lorentz spaces we also prove a theorem on the relationship between the derivatives of a polynomial of best approximation and the best approximation of the function. Moreover, we study relationship between modulus of smoothness of the function and its de la Vallée-Poussin sums in these spaces.

Keywords: moduli of smoothness, weighted Lorentz spaces, Muckenhoupt weight, trigonometric approximation, best approximation.
2000 AMS Classification: $26 \mathrm{D} 10,41 \mathrm{~A} 20,41 \mathrm{~A} 25,41 \mathrm{~A} 27,41 \mathrm{~A} 28,42 \mathrm{~A} 10,46 \mathrm{E} 30$.

Received: 20.11.2015 Accepted : 17.03.2016 Doi: 10.15672/HJMS. 20164517215

1. Introduction and the main results

Let $\mathbb{T}=[-\pi, \pi]$. A function $\omega: \mathbb{T} \rightarrow[0, \infty]$ will be called a weight function if ω is locally integrable and almost everywhere (a.e.) positive. The function ω generates the Borel measure

$$
\omega(E)=\int_{E} \omega(x) d x \text {. }
$$

By

$$
f_{\omega}^{*}(t)=\inf \{\nu \geq 0: \omega(\{x \in \mathbb{T}:|f(x)|>\nu\}) \leq t\}
$$

[^0]we denote the nondecreasing rearrangement of a function $f: \mathbb{T} \rightarrow[0, \infty]$. We denote also
$$
f^{* *}(t):=\frac{1}{t} \int_{0}^{t} f_{\omega}^{*}(u) d u
$$

Let $0<p<\infty, 0<q<\infty$. A measurable and a.e. finite function f on \mathbb{T} belongs to the Lorentz space $L_{\omega}^{p q}(\mathbb{T})$ if

$$
\|f\|_{L_{\omega}^{p q}}:=\left(\int_{\mathbb{T}}\left(t^{\frac{1}{p}} f^{* *}(t)\right)^{q} \frac{d t}{t}\right)^{1 / q}<\infty
$$

Note that Lorentz spaces, introduced by G. Lorentz in the 1950 s. [24], [25]. As seen the weighted Lorentz spaces $L_{\omega}^{p q}(\mathbb{T})$ is expressed not only in terms of the parameter p, but also in terms of the second parameter q. If $p=q$, then $L_{\omega}^{p q}(\mathbb{T})$ is the weighted Lebesgue space $L_{\omega}^{p}(\mathbb{T})[10, \mathrm{p} .20]$. If $q<r$, then the space $L_{\omega}^{p q}(\mathbb{T})$ is contained in $L_{\omega}^{p r}(\mathbb{T})$. Detailed information about properties of the Lorentz spaces can be found in [12], [20], [26] and [31].

Let $1<p<\infty, p^{\prime}=\frac{p}{p-1}$ and let ω be a weight function on \mathbb{T}. ω is said to satisfy Muckenhoupt's A_{p}-condition on \mathbb{T} if

$$
\sup _{J}\left(\frac{1}{|J|} \int_{J} \omega(t) d t\right)\left(\frac{1}{|J|} \int_{J} \omega^{1-p \prime}(t) d t\right)^{p-1}<\infty
$$

where J is any subinterval of \mathbb{T} and $|J|$ denotes its length. Note that the weight functions belonging to the A_{p} - class, introduced by Muckenhoupt [27], play a very important role in different fields of mathematical analysis.

We use c, c_{1}, c_{2}, \ldots to denote constants (which may, in general, differ in different relations) depending only on numbers that are not important for the questions of interest. We shall also employ the symbol $A \asymp B$, denoting that $c A \leq B \leq C$, where c, C are constants.

Let $\alpha \in \mathbb{Z}^{+}$and $f \in L^{1}(\mathbb{T})$. Suppose that x, h are real, and let us take into

$$
\Delta_{t}^{\alpha} f(x):=\sum_{j=0}^{\alpha}(-1)^{j}\binom{\alpha}{j} f(x+(\alpha-j) t)
$$

where $\binom{\alpha}{j}:=\frac{\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-j+1)}{j!}, j>1$ is the Binomial coefficients and $\binom{\alpha}{0}:=1,\binom{\alpha}{1}:$ $=\alpha$.

Let $1<p, q<\infty, \omega \in A_{p}(\mathbb{T}), f \in L_{\omega}^{p q}(\mathbb{T})$. We put

$$
\sigma_{\delta}^{\alpha} f(x):=\frac{1}{\delta} \int_{0}^{\delta}\left|\Delta_{t}^{\alpha} f(x)\right| d t
$$

If $f \in L_{\omega}^{p q}(\mathbb{T}), \omega \in A_{p}(\mathbb{T})$ according to [6] the Hardy-Littlewood Maximal function is bounded in $L_{\omega}^{p q}(\mathbb{T}), \omega \in A_{p}(\mathbb{T})$. Then we have

$$
\left\|\sigma_{\delta}^{\alpha} f\right\|_{L_{\omega}^{p q}} \leq c_{1}\|f\|_{L_{\omega}^{p q} .}<\infty .
$$

For $1<p, q<\infty, \omega \in A_{p}(\mathbb{T}), f \in L_{\omega}^{p q}(\mathbb{T}), \alpha \in \mathbb{Z}^{+}$we define the $\alpha-$ th mean modulus of smoothness $\omega_{\alpha}(f, .)_{L_{\omega}^{p q}}$ by

$$
\omega_{\alpha}(f, h)_{L_{\omega}^{p q}}:=\sup _{|\delta| \leq h} \| \sigma_{\delta}^{\alpha} f\left(x \|_{L_{\omega}^{p q}}\right.
$$

Let $f \in L_{\omega}^{p q}(\mathbb{T}), \alpha \in \mathbb{Z}^{+}$the modulus of smoothness $\omega_{\alpha}(f, .)_{L_{\omega}^{p q}}$ is a nondecreasing, nonnegative, function and

$$
\begin{aligned}
\omega_{\alpha}^{p}\left(f_{1}+f_{2}, .\right)_{L_{\omega}^{p q}}^{p q} & \leq \omega_{\alpha}^{p}\left(f_{1}, .\right)_{L_{\omega}^{p q}}^{p q}+\omega_{\alpha}^{p}\left(f_{2}, .\right)_{L_{\omega}^{p q}}^{p q} \\
\lim _{\delta \rightarrow 0^{+}} \omega_{\alpha}(f, \delta)_{L_{\omega}^{p q}} & =0 .
\end{aligned}
$$

For $f \in L_{\omega}^{p q}(\mathbb{T})$, we define the $\alpha-t h$ derivative of f as function $g \in L_{\omega}^{p q}(\mathbb{T})$ satisfying

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}}\left\|\frac{\Delta_{h}^{\alpha}(f)}{h^{\alpha}}-g\right\|_{L_{\omega}^{p q}}=0 \tag{1.1}
\end{equation*}
$$

in which case we write $g=f^{(\alpha)}$.
Let

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} A_{k}(f, x), A_{k}(f, x):=a_{k}(f) \cos k x+b_{k}(f) \sin k x \tag{1.2}
\end{equation*}
$$

be the Fourier series of thefunction $L^{1}(\mathbb{T})$. The nth partial sums, and de la Vallée-Poussin sum of the series (1.2) are defined, respectively, as

$$
\begin{aligned}
& S_{n}(f)=\frac{a_{0}}{2}+\sum_{k=1}^{n} A_{k}(f, x) \\
& V_{n}(f)=\frac{1}{n} \sum_{\nu=1}^{2 n-1} S_{\nu}(f)
\end{aligned}
$$

We denote by $E_{n}(f)_{L_{\omega}^{p q}} \quad(n=0,1,2, \ldots)$ the best approximation of $f \in L_{\omega}^{p q}(\mathbb{T})$ by trigonometric polynomials of degree not exceeding n, i. e.,

$$
E_{n}(f)_{L_{\omega}^{p q}}:=\inf \left\{\left\|f-T_{n}\right\|_{L_{\omega}^{p q}}: T_{n} \in \Pi_{n}\right\}
$$

where Π_{n} denotes the class of trigonometric polynomials of degree at most n.
Let $W_{p q, \omega}^{\alpha}(\mathbb{T})(r=1,2, \ldots)$ be the linear space of functions $f \in L_{\omega}^{p q}(\mathbb{T}), 1<p, q<\infty$, $\omega \in A_{p}(\mathbb{T})$, such that $f^{(\alpha)} \in L_{\omega}^{p q}(\mathbb{T})$. It becomes a Banach space with the norm

$$
\|f\|_{W_{p q, \omega}^{\alpha}(\mathbb{T})}:=\|f\|_{L_{\omega}^{p q}}+\left\|f^{(\alpha)}\right\|_{L_{\omega}^{p q}} .
$$

The problems of approximation theory in the weighted and nonweighted Lorentz space have been investigated in [1], [21], [35] and [37]. The approximation problems by trigonometric polynomials in different spaces have been investigated by several authors (see, for example, [2-5], [7], [9], [11], [13-19], [22], [23], [28-30], [33] and [34]).

In this work we study the approximation problems of functions by trigonometric polynomials in the weighted Lorentz space $L_{\omega}^{p q}(\mathbb{T})$ with Muckenhoupt weights. Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. We also prove a theorem on the relationship between derivatives of a polynomial of best approximation and the best approximation of the function in the weighted Lorentz space $L_{\omega}^{p q}(\mathbb{T})$. In addition, in the weighted Lorentz space $L_{\omega}^{p q}(\mathbb{T})$ relationship between modulus of smoothness of the function and its de la Vallée-Poussin sums is studied. Similar problems in defferent spaces were investigated in [9], [30], [32].

Our main results are the following.
Theorem 1.1. Let $1<p, q<\infty, \omega \in A_{p}(\mathbb{T}), f \in L_{\omega}^{p q}(\mathbb{T})$ and T_{n} a trigonometric polynomial of degree n satisfying the following conditions:

$$
\left\|f-T_{n}\right\|_{L_{\omega}^{p q}}=o\left(\frac{1}{n}\right) \text { and }\left\|g-T_{n}^{\prime}\right\|_{L_{\omega}^{p q}}=o(1), \quad n \rightarrow \infty .
$$

Then we obtain $f^{\prime}=g$, that is, the function g satisfies the condition (1.1).
Using the same method as in the proof of Theorem 1.1 we have the following Corollary.
Corollary1.1. Let $1<p, q<\infty, \omega \in A_{p}(\mathbb{T}), \quad f, g_{1}, \ldots, g_{k} \in L_{\omega}^{p q}(\mathbb{T})$ and T_{n} be a trigonometric polynomial satisfying, for $i=1, \ldots, k$, the conditions

$$
\begin{aligned}
\left\|f-T_{n}\right\|_{L_{\omega}^{p q}} & =\mathrm{o}\left(\frac{1}{n^{k}}\right), n \rightarrow \infty, \\
\left\|g_{i}-T_{n}^{(i)}\right\|_{L_{\omega}^{p q}} & =\circ\left(\frac{1}{n^{k-i}}\right), \quad n \rightarrow \infty .
\end{aligned}
$$

Then we obtain $g_{i}=g_{i-1}^{\prime}\left(f=g_{0}\right)$ in the sense of (1.1).
Theorem 1.2. Let $1<p<\infty$ and $1<q \leq 2$ or $p>2$ and $q \geq 2$. Then, for a given $\omega \in A_{p}(T), f \in L_{\omega}^{p q}(T)$ and integers α, r satisfying $\alpha>r$ we have

$$
\omega_{\alpha-r}\left(f^{(r)}, t\right)_{L_{\omega}^{p q}} \leq c_{2}\left\{\int_{0}^{t} \frac{\omega_{\alpha}(f, u)_{L_{\omega}^{p q}}^{s}}{u^{s r+1}} d u\right\}^{1 / s}
$$

where $s=\min (q, 2)$.
Theorem 1.3. Let $1<p, q<\infty, \omega \in A_{p}(T), f \in L_{\omega}^{p q}(T), \alpha, r \in \mathbb{Z}^{+}(\alpha>r>0)$ and let $T_{n}(f) \in \Pi_{n}$ be the polynomial of best approximation to f in $L_{\omega}^{p q}(T)$. In order that

$$
\left\|T_{n}^{(\alpha)}(f)\right\|_{L_{\omega}^{p q}}=O\left(n^{\alpha-r}\right)
$$

it is necessary and sufficient that

$$
E_{n}(f)_{L_{\omega}^{p q}}=O\left(n^{-r}\right) .
$$

Theorem 1.4. Let $1<p, q<\infty, \omega \in A_{p}(T), \alpha \in \mathbb{Z}^{+}$. If $f \in L_{\omega}^{p q}$, then 1.

$$
\begin{align*}
c_{3} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}} & \leq\left(n^{-\alpha}\left\|V_{n}^{(\alpha)}(f)\right\|_{L_{\omega}^{p q}}+\left\|f(x)-V_{n}(f)\right\|_{L_{\omega}^{p q}}\right) \\
& \leq c_{4} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}} \tag{1.3}
\end{align*}
$$

where the constants c_{4} and c_{5} are dependent on α, p and q.
2.

$$
\begin{align*}
c_{5} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}} & \leq\left(n^{-\alpha}\left\|S_{n}^{(\alpha)}(f)\right\|_{L_{\omega}^{p q}}+\left\|f(x)-S_{n}(f)\right\|_{L_{\omega}^{p q}}\right) \\
& \leq c_{6} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}}, \tag{1.4}
\end{align*}
$$

where the constants c_{6} and c_{7} are dependent on α, p and q.

2. Proofs of main results

We need the following results obtained in [35].
Lemma 2.1. Let $\omega \in A_{p}(T), 1<p, q<\infty$. If $f \in L_{\omega}^{p q}(T)$ and $\alpha=1,2, \ldots$, then there exists a constant $c_{7}>0$ depending α, p and q such that

$$
E_{n}(f)_{L_{\omega}^{p q}} \leq c_{7} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{w}^{p q}} .
$$

holds where $n=0,1,2, \ldots$

Lemma 2.2. Let $\omega \in A_{p}(T)$ and $\alpha \in Z^{+}, 1<p, q<\infty$. If $T_{n} \in \Pi_{n}, n \geq 1$, then there exists a constant $c_{8}>0$ depending only on α, p and q such that

$$
\omega_{\alpha}\left(T_{n}, h\right)_{L_{\omega}^{p q}} \leq c_{8} h^{\alpha}\left\|T_{n}^{(\alpha)}\right\|_{L_{\omega}^{p q}}, 0<h \leq \pi
$$

Lemma 2.3. Let $\omega \in A_{p}(T), 1<p, q<\infty$. If $T_{n} \in \Pi_{n}, n \geq 1$ and $\alpha \in Z^{+}$, then there exists a constant $c_{9}>0$ depending only on α, p and q such that

$$
\left\|T_{n}^{(\alpha)}\right\|_{L_{\omega}^{p q}} \leq c_{9} n^{\alpha}\left\|T_{n}\right\|_{L_{\omega}^{p q}} .
$$

Proof of Theorem 1.1. We take $\varepsilon>0$. We choose a natural number $n_{0}=n_{0}(\varepsilon)$ such that for $n \geq n_{0}$

$$
\begin{equation*}
\left\|f-T_{n}\right\|_{L_{\omega}^{p q}} \leq \varepsilon \frac{1}{n}, \quad\left\|g-T_{n}^{\prime}\right\|_{L_{\omega}^{p q}} \leq \varepsilon . \tag{2.1}
\end{equation*}
$$

Taking account of (2.1) for h satisfying the condition $\frac{\sqrt{\varepsilon}}{n} \leq h \leq \frac{1}{n}$ we obtain

$$
\begin{equation*}
\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-\frac{T(\cdot+h)-T_{n}(\cdot)}{h}\right\|_{L_{\omega}^{p q}}^{p} \leq 2^{\frac{p}{2}} \tag{2.2}
\end{equation*}
$$

Considering [8] we have

$$
\begin{align*}
& \Delta_{h}^{r} T_{n}(x)=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} T_{n}\left(x+\left(\frac{r}{2}-i\right) h\right)= \\
& =\sum_{j=r}^{\infty} \sum_{i=0}^{r}\binom{r}{i}(-1)^{i}\left(\frac{r}{2}-i\right)^{j} \frac{h^{j}}{j!} T_{n}^{(j)}(x)= \\
& =h^{r} T_{n}^{(r)}(x)+\sum_{j=r+1}^{\infty} \eta(r, j)^{j-r} T_{n}^{(j)}(x), \tag{2.3}
\end{align*}
$$

where $-\frac{r}{2}<\eta(r, j)<\frac{r}{2}$ and $\eta(r, j)=0$ if $j-r$ is odd. Then using (2.3) and Lemma 2.3 for $\frac{\sqrt{\varepsilon}}{n} \leq h<\frac{2 \sqrt{\varepsilon}}{n}$ we find that

$$
\begin{align*}
& \left\|\frac{T_{n}(\cdot+h)-T_{n}(\cdot)}{h}-T_{n}^{\prime}(\cdot)\right\|_{L_{\omega}^{p q}}^{p} \leq \sum_{m=2}^{\infty}\left(\frac{h^{m-1}}{m!}\right)^{p}\left\|T_{n}^{(m)}\right\|_{L_{\omega}^{p q}}^{p} \leq \\
& \leq \sum_{m=2}^{\infty}(h n)^{(m-1) p}\left\|T_{n}\right\|_{L_{w}^{p q}}^{p} \leq 4 \frac{\varepsilon}{1-2^{p} \varepsilon^{p / 2}}\left\|T_{n}\right\|_{L_{w}^{p q}}^{p} \leq c_{12} \varepsilon^{p}\left\|T_{n}\right\|_{L_{w}^{p q}}^{p} . \tag{2.4}
\end{align*}
$$

Using (2.2), (2.4) and (2.1) for $\frac{\sqrt{\varepsilon}}{n} \leq h<\frac{2 \sqrt{\varepsilon}}{n}$ we reach

$$
\begin{aligned}
& \left\|\frac{f(\cdot+h)-f(\cdot)}{h}-g\right\|_{L_{\omega}^{p q}}^{p} \leq\left\|\frac{f(\cdot+h)-f(\cdot)}{h}-\frac{T_{n}(\cdot+h)-T_{n}(\cdot)}{h}\right\|_{L_{\omega}^{p q}}^{p}+ \\
& +\left\|\frac{T_{n}(\cdot+h)-T_{n}(\cdot)}{h}-T_{n}^{\prime}(\cdot)\right\|_{L_{\omega}^{p q}}^{p}+ \\
& +\left\|T_{n}^{\prime}-g\right\|_{L_{\omega}^{p q}}^{p} \leq c_{10}\left(\varepsilon^{p / 2}+\varepsilon^{p}\|f\|_{L_{\omega}^{p q}}^{p}+\varepsilon^{p}\right)
\end{aligned}
$$

From the last inequality we have $g=f^{\prime}$ in the sense of (1.2). Then the proof of Theorem 1.1 is completed.

Proof of Theorem 1. 2. The function $\omega_{m}(F, t)_{L_{\omega}^{p q}}$ non-decreasing and according to reference [34] the following inequality holds:

$$
\begin{equation*}
\omega_{\alpha}(F, 2 t)_{L_{\omega}^{p q}} \leq c_{11} \omega_{\alpha}(F, t)_{L_{\omega}^{p q}} \tag{2.5}
\end{equation*}
$$

It is sufficient to prove theorem for $t=2^{-n}$. Then using of (2.5) we obtain

$$
\left\{\int_{0}^{2^{-n}} \frac{\omega_{\alpha}(f, u)_{L_{\omega}^{p q}}^{s}}{u^{s r+1}} d u\right\}^{1 / s} \asymp\left\{\sum_{\nu=n}^{\infty} 2^{\nu s r} \omega_{\alpha}\left(f, 2^{-\nu}\right)_{L_{\omega}^{p q}}^{s}\right\}^{1 / s} .
$$

Therefore for all n it is sufficient to prove the following inequality:

$$
\begin{equation*}
\omega_{\alpha-r}\left(f^{(r)}, 2^{-n}\right)_{L_{\omega}^{p q}} \leq\left\{\sum_{\nu=n}^{\infty} 2^{\nu s r} \omega_{\alpha}\left(f, 2^{-\nu}\right)_{L_{\omega}^{p q}}^{S}\right\}^{1 / s} \tag{2.6}
\end{equation*}
$$

By [34] for any trigonometric polynomial Q_{n} of degree cn and $F \in L_{\omega}^{p q}(\mathbb{T})$ we obtain

$$
\begin{equation*}
\omega_{\alpha}(F, 1 / n)_{L_{\omega}^{p q}} \leq c_{12}\left(\left\|F-Q_{n}\right\|_{L_{\omega}^{p q}}+n^{-\alpha}\left\|Q_{n}^{(\alpha)}\right\|_{L_{\omega}^{p q}}\right) . \tag{2.7}
\end{equation*}
$$

Therefore we aim to find $Q_{2^{n}}$ of degree $c 2^{n}$ such that both $\left\|f^{(r)}-Q_{2^{n}}\right\|_{L_{\omega}^{p q}}$ and $2^{-n(\alpha-r)}\left\|Q_{2^{n}}^{(\alpha-r)}\right\|_{\|f\|_{L_{\omega}^{p q}}}$ are bounded by the right-hand side of inequality (2.6). Let $T_{n} \in \Pi_{n}(n=0,1,2, \ldots)$ be the polynomial of best approximation to f. It is known that [34] the set of trigonometric polynomials is dense in $L_{\omega}^{p q}(\mathbb{T})$. Then we have $\left\|f-T_{2^{\nu}}\right\|_{L_{\omega}^{p q}} \rightarrow 0$ as $\nu \rightarrow \infty$.

Let $f \in L_{\omega}^{p q}(\mathbb{T})$ has the Fourier series

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)=\sum_{k=0}^{\infty} A_{k}(f) .
$$

We define trigonometric polynomial $\nu_{N} f$ as

$$
\nu_{N} f=\sum_{k=0}^{\infty} \nu\left(\frac{k}{N}\right) A_{k}(f),
$$

where $\nu \in C^{\infty}[0, \infty), \nu(x)=1$ for $x \leq 1$ and $\nu(x)=0$ for $x \geq 1$. Note that trigonometric polynomial $\nu_{N} f$ has the following properties:
I) $\nu_{N} f$ is a trigonometric polynomial of degree smaller than N;
II) If g is a trigonometric polynomial of degree $[N / 2]$, then $\nu_{N} g=g$;
III) $\left\|\nu_{N} f\right\|_{L_{\omega}^{p q}} \leq c\|f\|_{L_{\omega}^{p q}}$.

According to reference [34] we have

$$
\left\|\nu_{N} f-f\right\|_{L_{\omega}^{p q}} \leq c_{13} E_{N / 2}(f)_{L_{\omega}^{p q}},
$$

where $E_{k}(f)_{L_{\omega}^{p q}}$ is the best approximation of $f \in L_{\omega}^{p q}(\mathbb{T})$ trigonometric polynomials of degree not exceeding k. We now choose the Q_{n} of (2.7) for $F=f^{(r)}$ to be $\left(\nu_{n} f\right)^{(r)}$. It is cleary that $\left\|f-\nu_{n} f\right\|_{L_{\omega}^{p q}}=o(1)$ as $n \rightarrow \infty$.

The following identity holds:

$$
\nu_{2^{k}} f-\nu_{2^{n}} f=\sum_{m=n}^{k-1}\left(\nu_{2^{m+1}} f-\nu_{2^{m}} f\right) \equiv \sum_{m=n}^{k-1} \gamma_{m} f .
$$

Then

$$
\left(\nu_{2^{k}} f\right)^{(r)}-\left(\nu_{2^{n}} f\right)^{(r)}=\sum_{m=1}^{k-1}\left(\gamma_{m} f\right)^{(r)}
$$

Using the Littlewood- Paley inequality for the weighted Lorentz spaces $L_{\omega}^{p q}(\mathbb{T})$ in [21] we have

$$
\begin{align*}
& c_{14}\left\|\left(\nu_{2^{k}} f\right)^{(r)}-\left(\nu_{2^{n}} f\right)^{(r)}\right\|_{L_{\omega}^{p q}} \\
\leq & \left\|\left(\sum_{m=n}^{k-1}\left\{\left(\gamma_{m} f\right)^{(r)}\right\}^{2}\right)^{1 / 2}\right\|_{L_{\omega}^{p q}} \\
\leq & c_{15}\left\|\left(\nu_{2^{k}} f\right)^{(r)}-\left(\nu_{2^{n}} f\right)^{(r)}\right\|_{L_{\omega}^{p q}} . \tag{2.8}
\end{align*}
$$

According to [21, Lemma 4.2 and 4.3] we get

$$
\begin{equation*}
\left\|\left(\sum_{m=n}^{k-1}\left\{\left(\gamma_{m} f\right)^{(r)}\right\}^{2}\right)^{1 / 2}\right\|_{L_{\omega}^{p q}} \leq\left(\sum_{m=n}^{k-1}\left\|\left(\gamma_{m} f\right)^{(r)}\right\|_{L_{\omega}^{p q}}^{s}\right)^{1 / s}, \tag{2.9}
\end{equation*}
$$

where $s=\min (q, 2)$.
Note that $\nu_{n} f$ is the near best approximation to f in $L_{\omega}^{p q}$. Then using [35] we reach the following equivalence

$$
\begin{equation*}
\omega_{\alpha}(f, 1 / n) \asymp\left\|f-\nu_{n} f\right\|_{L_{\omega}^{p q}}+n^{-\alpha}\left\|\left(\nu_{n} f\right)^{(\alpha)}\right\|_{L_{\omega}^{p q}} . \tag{2.10}
\end{equation*}
$$

From (2.8)- (2.10) and Lemma 2.3 we conclude that

$$
\begin{aligned}
& \left\|\left(\nu_{2^{k}} f\right)^{(r)}-\left(\nu_{2^{n}} f\right)^{(r)}\right\|_{L_{\omega}^{p q}} \\
\leq & c_{16}\left(\sum_{m=n}^{k-1} 2^{m r s}\left\|\left(\gamma_{m} f\right)\right\|_{L_{\omega}^{p q}}^{s}\right)^{1 / s} \\
\leq & c_{17}\left(\sum_{m=n}^{k-1} 2^{m r s} \omega_{\alpha}\left(f, 2^{-m}\right)_{L_{\omega}^{p q}}^{s}\right)^{1 / s},
\end{aligned}
$$

where c_{1} independent of m, k and f.
Use of $Q_{2^{n}}=\nu_{2^{n}} f$ and (2.10) gives us

$$
\begin{aligned}
2^{-n(\alpha-r)}\left\|\left(\left(\nu_{2^{n}} f\right)^{(r)}\right)^{(\alpha-r)}\right\|_{L_{\omega}^{p q}} & =2^{-n(\alpha-r)}\left\|\left(\nu_{2^{n}} f\right)^{(\alpha)}\right\|_{L_{\omega}^{p q}} \\
& \leq 2^{n r} \omega_{\alpha}\left(f, 2^{-n}\right)_{L_{\omega}^{p q}} \leq c_{18}\left(\sum_{m=n}^{\infty} 2^{m r s} \omega_{\alpha}\left(f, 2^{-m}\right)_{L_{\omega}^{p q}}^{s}\right)^{1 / s} .
\end{aligned}
$$

The proof of Theorem 1.2 is completed.
Proof of Theorem 1. 3. We suppose that
(2.11) $\quad E_{n}(f)_{L_{\omega}^{p q}}=\left\|f-T_{n}(f)\right\|_{L_{\omega}^{p q}}=O\left(n^{-r}\right), \quad(r>0)$.

Taking into account Lemma 2.3 and the relations (2.11) we obtain

$$
\left\|T_{n}^{(\alpha)}(f)\right\|_{L_{\omega}^{p q}} \leq c_{19} n^{\alpha}\left\|T_{n}(f)\right\|_{L_{\omega}^{p q}} \leq n^{\alpha}\left\|f-T_{n}(f)\right\|_{L_{\omega}^{p q}}+\left\|T_{n}(f)\right\|_{L_{\omega}^{p q}} \leq c_{20} n^{\alpha-r} .
$$

Now we suppose that

$$
\begin{equation*}
\left\|T_{n}^{(\alpha)}(f)\right\|_{L_{\omega}^{p q}}=O\left(n^{\alpha-r}\right) \tag{2.12}
\end{equation*}
$$

Using Lemma 2.1, Lemma 2.2 and (2.2) we get

$$
\begin{align*}
\left\|T_{2 n}(f)-T_{n}\left(T_{2 n}(f)\right)\right\|_{L_{\omega}^{p q}} & \leq E_{n}\left(T_{2 n}(f)\right)_{L_{\omega}^{p q}} \leq c_{21} \omega_{\alpha}\left(T_{2 n}, \frac{1}{n}\right)_{L_{\omega}^{p q}} \\
& \leq c_{22} n^{-\alpha}\left\|T_{2 n}^{(\alpha)}\right\| \leq c_{23} n^{-\alpha}\left(n^{\alpha-r}\right) \leq c_{24} n^{-r} \tag{2.13}
\end{align*}
$$

On the other hand, since $T_{n}\left(T_{2 n}(f)\right)$ is a polynomial of order n the following inequality holds:

$$
\begin{align*}
\left\|T_{2 n}(f)-T_{n}\left(T_{2 n}(f)\right)\right\|_{L_{\omega}^{p q}} & =\left\|f-T_{n}\left(T_{2 n}(f)\right)-\left(f-T_{2 n}(f)\right)\right\|_{L_{\omega}^{p q}} \\
& \left.\geq\left\|f-T_{n}\left(T_{2 n}(f)\right)\right\|_{L_{\omega}^{p q}}-\| f-T_{2 n}(f)\right) \|_{L_{\omega}^{p q}} \\
& \geq E_{n}(f)_{L_{\omega}^{p q}}-E_{2 n}(f)_{L_{\omega}^{p q}} \geq 0 . \tag{2.14}
\end{align*}
$$

Use of (2.13) and (2.14) gives us

$$
\begin{equation*}
0 \leq E_{n}(f)_{L_{\omega}^{p q}}-E_{2 n}(f)_{L_{\omega}^{p q}} \leq c_{25} n^{-r} \tag{2.15}
\end{equation*}
$$

Since $E_{n}(f)_{L_{\omega}^{p q}} \rightarrow 0$ from the inequality (2.15) we conclude that

$$
\sum_{k=n_{0}}^{\infty}\left\{E_{2^{k}}(f)_{L_{\omega}^{p q}}-E_{2^{k+1}}(f)_{L_{\omega}^{p q}}\right\} \leq c_{26} \sum_{k=n_{0}}^{\infty} 2^{-k r}
$$

Then from the last inequality we obtain

$$
\begin{equation*}
E_{2^{n_{0}}}(f)_{L_{\omega}^{p q}} \leq c_{27} 2^{-n_{0} r} . \tag{2.16}
\end{equation*}
$$

It is clear that inequality (2.16) is equivalent to $E_{n}(f)_{L_{\omega}^{p q}} \leq c_{28}\left(n^{-r}\right)$. This completes the proof.

Proof of Theorem 1. 4. In view of Lemma 2.2 the inequality

$$
\begin{equation*}
\omega_{\alpha}\left(T_{n}, \frac{1}{n}\right)_{L_{\omega}^{p q}} \leq c_{29} n^{-\alpha}\left\|T_{n}^{(\alpha)}\right\|_{L_{\omega}^{p q}} \tag{2.17}
\end{equation*}
$$

holds, where T_{n} is a trigonometric polynomial of order n. Using the properties of smoothness $\omega_{\alpha}(f, .)_{L_{\omega}^{p q}}^{p q}$ and (2.17), we reach

$$
\begin{align*}
\omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}} & \leq\left(\omega_{\alpha}\left(f-T_{n}, \frac{1}{n}\right)_{L_{\omega}^{p q}}+\omega_{\alpha}\left(T_{n}, \frac{1}{n}\right)_{L_{\omega}^{p q}}\right) \\
& \leq c_{30}\left(\left\|f-T_{n}\right\|_{L_{\omega}^{p q}}+n^{-\alpha}\left\|T_{n}^{(\alpha)}\right\|_{L_{\omega}^{p q}}\right) . \tag{2.18}
\end{align*}
$$

Considering [34] there exists a constant $c>0$ depending only on α, p and q such that
(2.19) $n^{-\alpha}\left\|T_{n}^{(\alpha)}\right\|_{L_{\omega}^{p q}} \leq c_{31} \omega_{\alpha}\left(T_{n}, \frac{1}{n}\right)_{L_{\omega}^{p q}}$.

By virtue of Lemma 2.1

$$
\begin{equation*}
E_{n}(f)_{L_{\omega}^{p q}} \leq c_{32} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}} \tag{2.20}
\end{equation*}
$$

It is known that [34] for the de la Vallee-Poussin mean the inequality
(2.21) $\left\|f-V_{n}(f)\right\|_{L_{\omega}^{p q}} \leq c_{33} E_{n}(f)_{L_{\omega}^{p q}}$.
holds. Use of (2.19)-(2. 21) gives us

$$
\begin{aligned}
& n^{-\alpha}\left\|V_{n}^{(\alpha)}(f)\right\|_{L_{\omega}^{p q}}+\left\|f-V_{n}(f)\right\|_{L_{\omega}^{p q}} \\
\leq & c_{34}\left(\omega_{\alpha}\left(V_{n}, \frac{1}{n}\right)_{L_{\omega}^{p q}}+E_{n}(f)_{L_{\omega}^{p q}}\right) \\
\leq & c_{35}\left(\omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}}+\omega_{\alpha}\left(f-V_{n}, \frac{1}{n}\right)_{L_{\omega}^{p q}}+E_{n}(f)_{L_{\omega}^{p q}}\right) \\
\leq & c_{36} \omega_{\alpha}\left(f, \frac{1}{n}\right)_{L_{\omega}^{p q}} .
\end{aligned}
$$

The last inequality and (2.18) imply that (1.3).
According to [35] there exists a constant c_{25} such that

$$
\begin{equation*}
\left\|f-S_{n}(f)\right\|_{L_{\omega}^{p q}} \leq c_{37} E_{n}(f)_{L_{\omega}^{p q}} \tag{2.22}
\end{equation*}
$$

If the inequality (2.22) and the scheme of proof of the estimation (1.3) is used we obtain the estimation (1.4).

Theorem 1.4 is proved.
Acknowledgement. The author would like to thank referee for all precious advices and very helpful remarks.

References

[1] G. A. Akishev, On order of approximation of function classes in Lorentz spaces with anisotropic norm, Matemat. Zametki, 81 (2007), no. 1, 3-16.
[2] R. Akgun, Approximation in weighted Orlicz spaces, Math. Slovaca 61 (2011), no. 4, 601608.
[3] R. Akgun, Polynomial approximation in weighted Lebesgue spaces, East J. Approx. 17 (2011), no. 3, 253-266.
[4] R. Akgun, V. Kokilashvili, On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces, Banach J. Math. Anal. 5 (2011), no.1, 70-82.
[5] P. L. Butzer, H. Dyckhoff, E. Görlich and R. L. Stens, Best trigonometric approximation, fractional order derivatives and Lipschitz classes, Canad. J. Math. 29 (1977), no. 4, 781-793.
[6] H. M. Chang, R. A. Hunt and D.S. Kurtz, The Hardy-Littlewood maximal functions on $L(p, q)$ spaces with weights, Indiana Univ. Math. J. 31 (1982) 109-120.
[7] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, New York, 1993
[8] Z. Ditzian, V. H. Hristov and K. G. Ivanov, Moduli of smoothness and K-functionals in $L_{p}, 0<p<1$, Constr. Approx. 11 (1995), no. 1, 67-83.
[9] Z. Ditzian and S. Tikhonov, Moduli of smoothness of functions and their derivatives, Studia. Math. 180 (2007), no.2, 143-160.
[10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogenous type, Pitman Monographs, 1998.
[11] A. Guven, Trigonometric approximation of functions in weighted L^{p} spaces, Sarajevo J. Math. 5 (17) (2009),no. 1, 99-108.
[12] R. A. Hunt, On $L(p, q)$ spaces, L'Ens. Math., 12 (1966), 249-279.
[13] E. A. Haciyeva, Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolskii-Besov spaces, author's summary of dessertation, Tbilisi, 1986, (in Russian).
[14] I. I. Ibragimov and D. I. Mamedkhanov, A constructive characterization of certain class of functions, (Russian) Dokl. Akad. Nauk SSSR 223 (1975), no. 1, 35-37.
[15] D. M. Israfilov, Approximation by - p Faber polynomials in weighted Smirnov class $E^{p}(G, \omega)$ and the Bieberbach polynomials, Constr. Approx. 17 (2001), no. 3, 335-351.
[16] D. M. Israfilov and A. Guven, Approximation by trigonometric polynomials in weighted Orlicz spaces, Studia Math. 174 (2006), no.2, 147-168.
[17] S. Z. Jafarov, Approximation by polynomials and rational functions in Orlicz spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 870-877.
[18] S. Z. Jafarov, and J. M. Mamedkhanov, On approximation by trigonometric polynomials in Orlicz spaces, Georgian Math. J. 19 (2012), 687-695.
[19] S. Z. Jafarov, On approximation in weighted Smirnov- Orlicz classes, Complex Var. Elliptic Equ. 570 (2012), no. 5, 567-577.
[20] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz Spaces, World Scientific Publishing Co. Inc. River Edge, NJ, 1991.
[21] V. Kokilashvili and Y. E. Yildirir, On the approximation by trigonometric polynomials in weighted Lorentz spaces, J. Function spaces Appl. 8 (2010), no. 1, 67-86.
[22] N. X. Ky, On approximation by trigonometric polynomials in L_{u}^{p}-spaces, Studia Sci. Math. Hungar. 28 (1993), 183-188.
[23] N. X. Ky, Moduli of mean smoothness and approximation with A_{p}-weights, Annales Univ. Sci. Budapest, 40 (1997), 37-48.
[24] G. Lorentz, Some new function spaces, Annals of Mathematics 51 (1950), 37-55.
[25] G. Lorentz, On the theory of spaces Λ, Pacific Journal of Mathematics 1 (1951), 411-429.
[26] Loukas Grafakos, Classical Fourier analysis, 249 of Graduate Texts in Mathematics,Springer, New York, second edition, 2008.
[27] Muckenhoupt B, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[28] H. N. Mhaskar, Indroduction to the theory of weighted polynomial approximation, Series in Approximation and Decompositions 7, World Sci., River Edge, NJ, 1996.
[29] A.- R. K. Ramazanov, On Approximation by polynomials and rational functions in Orlicz spaces, Anal. Math. 10 (1984), no. 2, 117-132.
[30] G. Sunouchi, Derivatives of a polynomial of best approximation, Jber. Deutsch. Math.Verein. 70 (1968), 165-166.
[31] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ, Press, Princeton, 1971.
[32] B. V. Simonov, S. Yu. Tikhonov, Embeding theorems in constructive approximation, Mat. Sb., 199:9 (2008), 107-148
[33] A. F. Timan, Approximation Theory of Functions of Real Variables, (Russian), Fizmatgiz, Moscow, 1960.
[34] R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers Dordrecht, 2004.
[35] Y. E. Yildirir and D. M. Israfilov, Approximation theorems in weighted Lorentz spaces, Carpathian J. Math. 26 (2010), no. 1, 108-119.
[36] Y. E. Yildirir and D. M. Israfilov, Simultaneous and converse approximation theorems in weighted Lebesgue spaces, Math. Inequal. Appl. 14 (2011), no. 2, 359-371.
[37] H. Yurt, A. Guven, Multivariate approximation theorems in weighted Lorentz spaces, Mediterr. J. Math. (in press).

[^0]: *Department of Mathematics, Pamukkale University 20070 Denizli, Turkey; Institute of Mathematics and Mechanics, NAS of Azerbaijan, 9 B. Vakhabzade Street, 1141 Baku, Azerbaijan Email: sjafarov@pau.edu.tr

