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The existence and location of eigenvalues of the
one particle Hamiltonians on lattices
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Abstract

We consider a quantum particle moving in the one dimensional lattice
Z and interacting with a inde�nite sign external �eld v̂. We prove that
the associated Hamiltonian H can have one or two eigenvalues, situated
as below the bottom of the essential spectrum, as well as above the its
top. Moreover, we show that the operator H can have two eigenvalues
outside of the essential spectrum and one of them is situated below the
bottom of the essential spectrum, and other one above its top.
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1. Introduction

We consider the Hamiltonian H of a quantum particle moving in the one-dimensional
lattice Z and interacting with a inde�nite sign external �eld v̂, i.e., the potential has
positive and negative values.

In [9] of B.Simon the existence of eigenvalues of a family of continuous Schrödinger
operators H = −∆ + λV, λ > 0 in one and two-dimensional cases have been considered.
The result that H has bound state for all λ > 0 if only if

∫
V (x)dx < 0 is proven there

for all V (x) with
∫

(1 + |x|2)|V (x)|dx < +∞.
In [3] it is presented that under certain conditions on the potential a one-dimensional

Schrödinger operator has a unique bound state in the limit of weak coupling while under
other conditions no bound state in this limit. This question is studied for potentials
obeying

∫
(1 + |x|)|V (x)|dx < +∞.

The questions further discussed in R. Blankenbecker M.N. Goldberger and B.Simon
[1].
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All these results require the use of the modi�ed determinant. Throughout physics,
stable composite objects are usually formed by the way of attractive forces, which allow
the constituents to lower their energy by binding together. Repulsive forces separate
particles in free space. However, in structured environment such as a periodic potential
and in the absence of dissipation, stable composite objects can exist even for repulsive
interactions [10].

The Bose-Hubbard model, which have been used to describe the repulsive pairs, is the
theoretical basis for explanation of the experimental results obtained in [10].

Since the continuous Schrödinger operator has essential spectrum ful�lling semi-axis
[0,+∞) and its eigenvalues appear below the bottom of the essential spectrum, it is a
model, which well described the systems of two-particles with the attractive interaction.

Zero-range potentials are the mathematically correct tools for describing contact in-
teractions. The latter re�ects the fact that the zero-range potential is e�ective only in
the s-wave [11].

The existence of eigenvalues of a family of Schrödinger operators H = −∆−µV, λ >
0 with perturbation V of rank one in one and two-dimensional lattices have been con-
sidered in [7]. The result that H has a unique bound state for all µ > 0 is proven there
and for the unique eigenvalue e(µ) lying below the bottom of the essential spectrum an
asymptotic is found as µ→ 0.

In [2] for the Hamiltonian H of two fermions with attractive interaction on a neigh-
boring sites in the one-dimensional lattice Z has been considered and an asymptotics of
the unique eigenvalue lying below the bottom of its essential spectrum has been proven.

For a family of the generalized Friedrichs models Hµ(p), µ > 0, p ∈ T 2 with the
perturbation of rank one, associated to a system of two particles moving on the two-
dimensional lattice Z has been considered in [6] and the existence or absence of a positive
coupling constant threshold µ = µ0(p) > 0 depending on the parameters of the model
has been proved.

In[5]a family Hµ(p), µ > 0, p ∈ T of the generalized Friedrichs models with the
perturbation of rank one, associated to a system of two particles, moving on the one-
dimensional lattice Z is considered. The existence of a unique eigenvalue E(µ, p), of
the operator Hµ(p) lying below the essential spectrum is proved. For any p from a
neighborhood of the origin, the Puiseux series expansion for eigenvalue E(µ, p) at the
point µ = µ(p) ≥ 0 is found.

The main goal of this paper is to investigate the existence and location of eigenvalues
of the one-particle Hamiltonian H with the zero-range interaction µ 6= 0 and with inter-
actions λ 6= 0 on a neighboring sites. We prove that the Hamiltonian H may have one
or two eigenvalues, situating as below the bottom of the essential spectrum, as well as
above its top. Moreover, the operator H can have two eigenvalues outside of the essential
spectrum, where one of them is situated below the bottom of the essential spectrum and
other one above its top.

This results are new and in accord with the known results of [9, 3, 1, 7, 6, 5].

2. The coordinate representation of the one particle Hamiltonian

Let Z be the one dimensional lattice(integer numbers ) and `2(Z) be the Hilbert
space of square summable functions on Z and `2,e(Z) ⊂ `2(Z) be the subspace of func-

tions(elements) f̂ ∈ `2(Z) satisfying the condition

f̂(x) = f̂(−x), x ∈ Z
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The one particle operator Ĥµλ acting on `2,e(Z) is of the form

(2.1) Ĥµλ := Ĥ0 + V̂µλ,

where Ĥ0 is the Teoplitz type operator

(2.2) (Ĥ0ϕ̂)(x) :=
∑
s∈Z

ε̂(s)ϕ̂(x+ s), ϕ̂ ∈ `2,e(Z),

and

(2.3) (V̂µλϕ̂)(x) := v̂µλ(x)ϕ̂(x), ϕ̂ ∈ `2,s(Z).

The functions ε̂(s) and v̂µλ(s) are de�ned on Z as follows

ε̂(s) =


1, |s| = 0
− 1

2
, |s| = 1

0, |s| > 1,

and

v̂µλ(s) =


µ, |s| = 0
λ
2
, |s| = 1

0, |s| > 1,

where µ, λ ∈ R are real numbers.
We remark that Ĥµλ is a bounded self-adjoint operator on `2,e(Z).

3. The momentum representation of the Hamiltonian

Let T = (−π;π] be the one dimensional torus and L2(T, dν) be the Hilbert space of

integrable functions on T, where dν is the (normalized) Haar measure on T, dν(p) = dp
2π
.

Let L2,e(T, dν) ⊂ L2(T, dν)
be the subspace of elements f ∈ L2(T, dν) satisfying the condition

f(p) = f(−p), a.e. p ∈ T.

In the momentum representation the operator Hµλ acts on L2,e(T, dν) and is of the form

Hµλ = H0 + Vµλ,

where H0 is the multiplication operator by function ε(p) = 1− cos p:

(H0f)(p) = ε(p)f(p), f ∈ L2,e(T, dν),

and Vµλ is the integral operator of rank 2

(Vµλf)(p) =

∫
T

(
µ+ λ cos p cos t

)
f(t)dt, f ∈ L2,e(T, dν).

4. Spectral properties of the operators Hµ0 and H0λ

Since the perturbation operator Vµ0 resp.V0λ is of rank 1, according the well known
Weyl's theorem the essential spectrum σess(Hµ0) resp.σess(H0λ) ofHµ0 resp. H0λ doesn't
depend on µ ∈ R resp.λ ∈ R and coincides to the spectrum σ(H0) of H0 (see [8]), i.e.,

σess(Hµ0) = σess(H0λ) = σ(H0) = [min
p∈T

ε(p), max
p∈T

ε(p)] = [0, 2].

For any µ, λ ∈ R we introduce the Fredholm determinant ∆(µ, λ; z), associating to
the one particle Hamiltonian Hµ,λ, as follows

(4.1) ∆(µ, λ; z) =
[
1− µa(z)

][
1− λc(z)

]
− µλb2(z),
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where

a(z) :=

∫
T

dν

z − ε(q) ,(4.2)

b(z) := −
∫
T

cos qdν

z − ε(q) ,(4.3)

c(z) :=

∫
T

cos2 qdν

z − ε(q) .(4.4)

are regular functions in z ∈ C \ [0, 2].
In the following theorem we have collected results on a unique eigenvalue of the oper-

ator Hµ0 resp. H0λ depending on the sign of µ 6= 0 resp. λ 6= 0.

4.1. Theorem. For any 0 6= µ ∈ R resp. 0 6= λ ∈ R the operator Hµ0 resp. H0λ has

a unique eigenvalue ζ(µ) resp. ζ(λ) lying outside of the essential spectrum:

(i) If µ > 0 resp. λ > 0, then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(2,+∞).
(ii) If µ < 0 resp.λ < 0, then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(−∞, 0).
(iii) If µ > 0 resp.λ < 0 then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(2,+∞) resp. (−∞, 0).
(iv) If µ < 0 resp.λ > 0 then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(−∞, 0) resp. (2,+∞).

The proof of Theorem 4.1 is a consequence of the formulated below Lemmas and
corollaries, which can be deduced from the simple properties of determinant ∆(µ, 0; z)
resp.∆(0, µ; z).

4.2. Lemma. The number z ∈ C\ [0, 2] is an eigenvalue of the operator Hµ,0 resp. H0,λ

if and only if ∆(µ, 0; z) = 0 resp.∆(0, λ; z) = 0.

4.3. Lemma. Let µ, λ ∈ R.Then

lim
z→±∞

∆(µ, 0 ; z) = 1,

lim
z→±∞

∆(0, λ ; z) = 1,

lim
z→±∞

∆(µ, λ ; z) = 1.

4.4. Lemma. The functions a(·), b(·), c(·) are regular in the region C \ [0, 2], posi-

tive and monotone decreasing in the intervals (−∞, 0) and (2,+∞) and the following

asymptotics are true:

a(z) = C1(z − 2)−
1
2 +O(z − 2)

1
2 , as z → 2+,

b(z) = C1(z − 2)−
1
2 + 1 +O(z − 2)

1
2 , as z → 2+,

c(z) = C1(z − 2)−
1
2 − 1 +O(z − 2)

1
2 , as z → 2+,

where C1 > 0 and

a(z) = −C0(−z)−
1
2 +O(−z)

1
2 , as z → 0−,

b(z) = −C0(−z)−
1
2 − 1 +O(−z)

1
2 , as z → 0−,

c(z) = −C0(−z)−
1
2 − 1 +O(−z)

1
2 , as z → 0−,

where C0 > 0.
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Proof. Since the functions under integral sign are positive the monotonicity of the Lebesgue
integral gives that the functions a(z) and c(z) are positive. Now, we show that the func-
tion

b(z) := −
∫
T

cos qdν

z − ε(q)

is positive. Representing b(z) as

b(z) = −
∫ 0

−π

cos qdν

z − ε(q) −
∫ π

0

cos qdν

z − ε(q)
and then changing of variables q := q + π we have that

b(z) :=

π∫
0

2 cos2 qdν

(z − 1)2 − cos2 q
> 0

The asymptotics of functions a(·), b(·), c(·) can be found in [2]. �

The Lemma 4.4 yields the following Corollary, which gives asymptotics for the func-
tions ∆(µ, 0; z) and ∆(0, λ; z).

4.5. Corollary. The following asymptotics are true:

(i) If µ, λ > 0. Then

lim
z→2+

∆(µ, 0; z) = −∞,

lim
z→2+

∆(0, λ; z) = −∞,

(ii) If µ, λ < 0.Then

lim
z→2+

∆(µ, 0; z) = +∞,

lim
z→2+

∆(0, λ; z) = +∞,

(iii) If µ, λ > 0. Then

lim
z→0−

∆(µ, 0; z) = +∞,

lim
z→0−

∆(0, λ; z) = +∞,

(iv) If µ, λ < 0. Then

lim
z→0−

∆(µ, 0; z) = −∞,

lim
z→0−

∆(0, λ; z) = −∞,

5. Spectral properties of the operator Hµλ

The perturbation operator Vµλ is of rank 2 and hence by the well known Weyl's
theorem the essential spectrum σess(Hµλ) of Hµλ doesn't depend on µ, λ ∈ R and
coincides to the spectrum σ(H0) of H0 (see [8]), i.e.,

σess(Hµλ) = σ(H0) = [min
p∈T

ε(p), max
p∈T

ε(p)] = [0, 2].
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5.1. Remark. Note that since

(Vµλf, f) = µ|
∫
T

f(t)dν|2 + λ|
∫
T

cos tf(t)dν|2, f ∈ L2,e(T, dν)),

the operator Vµλ is not only positive or only negative and hence the operator Hµλ may
have eigenvalues as below the bottom of the essential spectrum, as well as above the its
top.

The following lemma describes the relations between the operator Hµ,λ and determi-
nant ∆(µ, λ; z) de�ned in (4.1).

5.2. Lemma. The number z ∈ C\ [0, 2] is an eigenvalue of the operator Hµ,λ if and only

if ∆(µ, λ; z) = 0.

Proof. Let the operator Hµ,λ has an eigenvalue z ∈ C \ [0, 2], i.e., the equation

(5.1) (z −Hµ,λ)ψ(q) = (z − ε(q))ψ(q)− µ
∫
T

ψ(t)dν(t)− λ cos p

∫
T

cos tψ(t)dν(t) = 0

has a non-zero solution ψ ∈ L2,e( T, dν). We introduce the following linear continuous
functionals de�ned on the Hilbert space ψ ∈ L2,e( T, dν)

c1 := c1(ψ) :=

∫
T

ψ(t)dν(t)(5.2)

c2 := c2(ψ) :=

∫
T

cos(t)ψ(t)(5.3)

Then we easily �nd that the solution of the equation (5.1) has form

(5.4) ψ(q) = µ
c1

z − ε(q) + λ
c2 cos(q)

z − ε(q) .

Putting the expression (5.6) for ψ to (5.2) and (4.7) we get the following homogeneous
system of linear equations with respect to the functionals c1 and c2

(5.5)


c1 = µc1

∫
T

dν
z−ε(q) + λc2

∫
T

cos(q)dν
z−ε(q)

c2 = µc1
∫
T

cos qdν
z−ε(q) + λc2

∫
T

cos2 qdν
z−ε(q)

Hence, we can conclude that this homogenous system of linear equations has nontrivial
solutions if and only if the associated determinant ∆(µ, λ; z) has zero z ∈ C \ [0, 2].

On the contrary, let a number z ∈ C \ [0, 2] be a zero of determinant ∆(µ, λ; z). Then
it easily can be checked that z is eigenvalue of Hµ,λ and the function

(5.6) ψ(q) = µ
c1

z − ε(q) + λ
c2 cos q

z − ε(q) ,

is the associated eigenfunction, where the vector (c1, c2) is a non-zero solution of the
system (5.5). �

The following asymptotics for the determinant ∆(µ, λ, z) can be received applying the
asymptotics of the functions a(·), b(·), c(·) in Lemma 4.4.
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5.3. Lemma.

∆(µ, λ, z) = C+

− 1
2
(µ, λ)(z − 2)−

1
2 + C+

0 (µ, λ) +O(z − 2)
1
2 , as z → 2+,(5.7)

∆(µ, λ, z) = C−− 1
2
(µ, λ)(−z)−

1
2 + C−0 (µ, λ) +O(−z)

1
2 , as z → 0−,(5.8)

where

C+

− 1
2
(µ, λ) = B2(µλ− µ− λ), B2 > 0(5.9)

C+
0 (µ, λ) = 1 + λ− µλ,(5.10)

C−− 1
2
(µ, λ) = B0(µλ+ µ+ λ), B0 > 0(5.11)

C−0 (µ, λ) = 1− λ− µλ.(5.12)

The Lemma 5.3 yields the following results for the determinant ∆(µ, λ; z).

5.4. Corollary. For the determinant ∆(µ, λ; z) the following results are true:

(i) Assume C+

− 1
2

(µ, λ) > 0 and C−− 1
2

(µ, λ) > 0. Then

lim
z→2+

∆(µ, λ; z) = +∞.

lim
z→0−

∆(µ, λ; z) = +∞.

(ii) Assume C+

− 1
2

(µ, λ) = 0, µ > 1 and C−− 1
2

(µ, λ) = 0, µ < −1. Then

lim
z→2+

∆(µ, λ; z) < 0,

lim
z→0−

∆(µ, λ; z) < 0.

(iii) Assume C+

− 1
2

(µ, λ) < 0 and C−− 1
2

(µ, λ) < 0.Then

lim
z→2+

∆(µ, λ; z) = −∞,

lim
z→0−

∆(µ, λ; z) = −∞.

(iv) Assume C+

− 1
2

(µ, λ) = 0, µ < 1 and C−− 1
2

(µ, λ) = 0, µ > −1.Then

lim
z→2+

∆(µ, λ; z) > 0,

lim
z→0−

∆(µ, λ; z) > 0.

To formulate the main theorem we introduce the regions G+
02,G

+
11 and G+

20 associated
to the function C+

− 1
2

(µ, λ) and also the regions G−20,G
−
11 and G−02 associated to the function

C−− 1
2

(µ, λ) as follows

G2,+ = {(µ, λ) ∈ R2 : C+

− 1
2
(µ, λ) > 0, µ > 1},(5.13)

G1,+ = {(µ, λ) ∈ R2 : C+

− 1
2
(µ, λ) = 0, µ > 1 or C+

− 1
2
(µ, λ) < 0},(5.14)

G0,+ = {(µ, λ) ∈ R2} : C+

− 1
2
(µ, λ) = 0, µ < 1 or C+

− 1
2
(µ, λ) > 0(5.15)

(5.16)
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and

G2,− = {(µ, λ) ∈ R2 : C−− 1
2
(µ, λ) > 0, µ < −1, }(5.17)

G1,− = {(µ, λ) ∈ R2 : C−− 1
2
(µ, λ) = 0, µ < −1 or C−− 1

2
(µ, λ) < 0},(5.18)

G0,− = {(µ, λ) ∈ R2} : C+

− 1
2
(µ, λ) = 0, µ > −1 or C−− 1

2
(µ, λ) > 0.(5.19)

(5.20)

The main results are given in the following theorem, where the existence and location
of eigenvalues of the one-particle Hamiltonian H with inde�nite sign interaction vµλ are
stated.

The Hamiltonian Hµλ can have one or two eigenvalues, situating as below the bottom
of the essential spectrum, as well as above its top. Moreover, the operator Hµλ has two
eigenvalues outside of the essential spectrum, depending on µ 6= 0 and λ 6= 0, where one
of them is situated below the bottom of the essential spectrum and the other one above
its top.

Figure 1.

5.5. Theorem. (i) Assume (µ, λ) ∈ G0,− ∩ G2,+. Then the operator Hµλ has no

eigenvalue below the essential spectrum and it has two eigenvalues ζ1(µ, λ) and

ζ2(µ, λ) satisfying the following relations

2 < ζ1(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < ζ2(µ, λ).

(ii) Assume (µ, λ) ∈ G0,− ∩ G1,+. Then the operator Hµλ has no eigenvalue below

the essential spectrum and it has one eigenvalue ζ2(µ, λ) satisfying the following

relation

ζ2(µ, λ) > 2.
(iii) Let (µ, λ) ∈ G1,− ∩ G1,+. Then the operator Hµλ has two eigenvalues ζ1(µ, λ)

and ζ2(µ, λ) satisfying the following relations

ζ1(µ, λ) < 0 and ζ2(µ, λ) > 2.
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(iv) Assume (µ, λ) ∈ G1,−∩G0,+. Then the operator Hµλ has one eigenvalue ζ1(µ, λ)
satisfying the relation ζ1(µ, λ) < 0 it has no eigenvalue above the essential spec-

trum.

(v) Assume (µ, λ) ∈ G2,−∩G0,+. Then the operator Hµλ has two eigenvalues ζ1(µ, λ)
and ζ2(µ, λ) satisfying the following relations

ζ1(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < ζ2(µ, λ) < 0

and it has no eigenvalue above the essential spectrum.

5.6. Remark. The sets G02,G01,G11,G10 and G20 which appears in Theorem 5.5 are
shown in the �gure 1.

Proof. (i) Assume (µ, λ) ∈ (µ, λ) ∈ G0,−∩G2,+ and z < 0. Then an application the

Cauchy�Schwarz inequality for the functions [ε(q)− z]−
1
2 and cos q [ε(q)− z]−

1
2

yields the inequality

∆(µ, λ; z) =
(
1 + µ

∫
T

dν

ε(q)− z
)

+
(
1 + λ

∫
T

cos2 qdν

ε(q)− z
)

+ µλ
[ ∫
T

dν

ε(q)− z

∫
T

cos2 qdν

ε(q)− z −
( ∫

T

cos qdν

ε(q)− z
)2]

> 0,

i.e., ∆(µ, λ; z) has no zero in the interval (−∞, 0). Lemma 5.2 gives that the
operator Hµλ has no eigenvalue below the bottom of the essential spectrum.

Let (µ, λ) ∈ (µ, λ) ∈ G0,− ∩G2,+ and z > 2.
Since µ, λ > 0 the function ∆(µ, 0; ·) resp. ∆(0, λ; ·) is monotone increasing

in (1,+∞). Applying Lemma 4.3 we have

lim
z→+∞

∆(µ, 0; z) = 1 resp. lim
z→+∞

∆(0, λ; z) = 1.

Corollary 4.5 gives that

lim
z→1+

∆(µ, 0; z) = −∞, resp. lim
z→1+

∆(0, λ; z) = −∞.

The continuous function ∆(µ, 0; ·) and ∆(0, λ; ·) has a zero ζ(µ) resp.
ζ(λ) in the interval (1,+∞). The representation (4.1) of the determinant ∆(µ, λ ; z)
gives the inequality ∆(µ, λ ; ζ(µ)) < 0 resp. ∆(µ, λ ; ζ(λ)) < 0. Denote by

ζmin(µ, λ) = min{ζ(µ), ζ(λ)}
ζmax(µ, λ) = max{ζ(µ), ζ(λ)}.

The representation (4.1) of determinant ∆(µ, λ; z) gives the inequality
∆(µ, λ; ζmin(µ, λ)) < 0. Corollary 5.3 yields

lim
z→1+

∆(µ, λ; z) = +∞

Hence there exist a number z1(µ, λ) ∈ (1, ζmin(µ, λ)) such that

∆(µ, λ; z1(µ, λ; 0)) = 0.

Lemma 5.2 gives the existence of the eigenvalue of the operator in the interval
(1, ζmin(µ, λ)).

The monotonicity of function ∆(µ, 0; z) resp. ∆(λ, 0; z) gives for z > ζ(µ)
resp. z > ζ(λ) the relation

∆(µ, 0; z) > ∆(µ, 0; ζ(µ)) = 0, resp. ∆(λ, 0; z) > ∆(λ; ζ(λ)) = 0.
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Applying Lemma 4.4 we have in the interval (2,+∞) the inequality

∂∆(µ, λ; z)

∂z
= −µ∆(0, λ; z)a′(z)− λ∆(µ, 0, ; z)c′(z)− 4µλb(z)b′(z) > 0,

i.e., the function ∆(µ, λ; ·) is monotone increasing in the interval (ζmax(µ, λ),+∞).
Lemma 4.3, i.e., the relation

lim
z→+∞

∆(µ, λ; z) = 1,

yields the existence a unique number z2(µ, λ) ∈ (ζmax(µ, λ) such that

∆(µ, λ; z2(µ, λ; 0)) = 0.

Lemma 5.2 gives that the operator has two eigenvalues above the top of the
essential spectrum. These eigenvalues obeys the relations (5.5).

(ii) Assume (µ, λ) ∈ G0,− ∩G1,+ and z < 0.
As in the case (i) we can show that operator Hµλ has no eigenvalue below

the essential spectrum.
It is easy to show that the operator Hµ0 has only one eigenvalue at the point

(µ, 0) ∈ G0,− ∩G1,+, µ > 0.
Lemma 4.3 and Corollary 5.4 give that

lim
z→−∞

∆(µ, 0; z) = 1

and

lim
z→2+

∆(µ, 0; z) < 0.

Hence, the continuous function ∆(µ, 0; ·) in z ∈ (2,+∞) has a unique zero
ζ1(µ, 0) ∈ (2,+∞).

If (µ, λ) ∈ G0,− ∩ G1,+ is an other point belonging to the region, then there
is a line
Γ[(µ, 0), (µ, λ)] ∈ G0,−∩G1,+, which connects the points (µ, 0) and (µ, λ)(because
this is a region).The compactness of Γ[(µ, 0), (µ, λ)] ∈ G0,− ∩ G1,+ yields that
at the point (µ, λ) the function ∆(µ, λ; z) has only one zero. Thus, Lemma 5.2
yields that the operator has only one eigenvalue above the top of the essential
spectrum.

(iii) Assume (µ, λ) ∈ G1,− ∩G1,+.
In this case applying Lemma 4.3 and Corollary 5.4 we have

lim
z→2+

∆(µ, λ; z) = −∞,

lim
z→0−

∆(µ, λ; z) = −∞,

and

lim
z→±∞

∆(µ, λ; z) = 1.

Hence, the continuous function ∆(µ, λ; ·) in z ∈ (−∞, 0)∪(2,+∞) has two zeros
ζ1(µ, λ) in the interval (−∞, 0) and ζ2(µ, λ) in the interval (2,+∞).

Thus, Lemma 5.2 yields that the operator has two eigenvalues: one of them
lays below the bottom of the essential spectrum and other one lays above the
top.

The other cases (iv) and (v) of Theorem 5.5 can be proven by the same way
as the cases (i) and (ii).

�
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