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Quasi-primary submodules satisfying the primeful
property II
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Abstract
In this paper we continue our study about quasi-primary submodules
(probably satisfying the primeful property), that was defined and stud-
ied in Part I (see [8]). We define a quasi-primary decomposition for
submodules of a module over a commutative ring with identity and
study various types of the corresponding minimal forms. In particu-
lar, we discuss these decompositions for submodules of multiplication
modules and also arbitrary modules over Noetherian rings.
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1. INTRODUCTION
Throughout this paper all rings are commutative with identity, and all modules are uni-
tary. Recently, the decomposition theory associated with various generalizations of prime
and primary ideals has been the domain of concerns of many researches (see for example
[18, 21, 24]). Here we follow this topic in the context of quasi-primary submodules; the
recent generalization of quasi-primary ideals. Some concepts which are used frequently
in this paper have been gathered in the following definition.

1.1. Definition. Let N be a proper submodule of an R-module M .
(1) N is prime(resp. primary) if rx ∈ N for r ∈ R and x ∈ M implies either

r ∈ (N : M) (resp. r ∈
√

(N : M)) or x ∈ N (see [5, 14, 22, 15, 17]).
(2) The intersection of all prime submodules of M containing N , denoted radN , is

called prime radical of N (see [3, 10, 13, 16, 19, 26]).
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(3) N is quasi-primary if rx ∈ N for r ∈ R and x ∈M , then either r ∈
√

(N : M) or
x ∈ radN . Clearly every primary submodule is quasi-primary, but not conversely
in general (see Example 1.2 and Example 2.3).

(4) N satisfies the primeful property provided that for every prime ideal p containing
(N : M) there exists a prime submodule P contains N such that (P : M) = p.
In particular, M is primeful if the zero submodule of M satisfies the primeful
property. Every submodule of a finitely generated module satisfies the primeful
property (see [8, 12]).

(5) N has a quasi-primary decomposition if N = N1 ∩N2 ∩ · · · ∩Ns, where each Ni
is a quasi-primary submodule of M . If Ni # N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Ns,
then the above quasi-primary decomposition is called
(5.1) reduced, if the ideals

√
(Ni : M) are distinct primes.

(5.2) module-reduced, if the submodules radNi are distinct primes.
(5.3) shortest, if none of the intersection (Ni1 : M)∩ (Ni2 : M)∩ · · · ∩ (Nit : M)

(t > 1) is a quasi-primary ideal.
(6) An R-module M is said to be a multiplication module, if every submodule of

M has the form IM for some ideal I of R. For example any cyclic module is a
multiplication module. However, there is a multiplication module which is not
finitely generated [7, p.770]. Also, free modules with finite rank greater than
one are finitely generated modules which are not multiplication modules [15,
Corollary 2.5 and Theorem 3.5]. It is well-known that M is a multiplication
R-module if and only if for each submodule N of M , N = (N : M)M . (see for
more study [1, 7, 23]).

(7) The support of M, written Supp(M), is defined to be the set of prime ideals p
of R such that Mp 6= 0 (see [6, 20]).

(8) A prime ideal p of R is associated to M if p is the annihilator of an element of
M . The set of all primes associated to M is denoted by Ass(M) (see [6, 20]).

1.2. Example. Indeed, every power of a prime ideal as well as that of a primary or
a quasi-primary ideal is quasi-primary; but a power of a prime ideal is not necessarily
primary (for example see [2, Example after proposition 4.1, part 3]). Now we follow
this fact to give an example in the module setting. It is well-known that if F is a free
R-module and I is an ideal of R, then (IF : F ) = I and rad(IF ) =

√
IF [25, Proposition

2.2]. It is routine to verify that q is a quasi-primary (resp. primary, prime) ideal of R if
and only if qF is a quasi-primary (resp. primary, prime) submodule of F [8, Theorem
2.19]. These show that there is a rich supply of quasi-primary submodules which are not
primary.

Recall that a proper ideal q of R is quasi-primary if rs ∈ q for r, s ∈ R implies r ∈ √q
or s ∈ √q (see [8, 9]). It is well-known that q is a quasi-primary ideal of R if and only
if √q is a prime ideal of R [9, p.176]. For a submodule N of a multiplication R-module
M which satisfies the primeful property, we prove that N is a quasi-primary submodule
of M if and only if (N : M) is a quasi-primary ideal of R if and only if radN is a
prime submodule of M if and only if N = qM for some quasi-primary ideal q of R with
ann(M) ⊆ q (Theorem 2.2). We use this fact to investigate the relationships between
reduced and module-reduced and shortest quasi-primary decompositions of submodules
of multiplication modules (Corollary 2.6 and Proposition 2.11 and Theorem 2.13). Also
we give some uniqueness theorems as follow:
Theorem 2.13. Let M be a multiplication R-module and N a submodule of M . Let
N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary decompositions
of N as intersection of quasi-primary submodules satisfying the primeful property. Then
s = t and the prime ideals pi =

√
(Ni : M) must be, without regard to their order,
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identical to the prime ideals p′j =
√

(N ′j : M).
Theorem 3.5. Let R be a Noetherian ring and M an R-module. Let N be a submodule
ofM such that N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary
decompositions of N where Ni(resp. N ′j) is pi-quasi-primary (resp. pj-quasi-primary).
Then s = t and (after reordering if necessary) pi = pi and radNi = radN ′i for 1 ≤ i ≤ s.
Theorem 3.7. Let N be a proper submodule of a module M over a Noetherian ring
R. If N = ∩si=1Ni is a module-reduced quasi-primary decomposition and Ni (1 ≤ i ≤ s)
satisfies the primeful property such that radN = ∩si=1radNi, then Ass(M/radN) ⊆
{p1, · · · , ps} ⊆ Supp(M/radN). In particular, Ass(M/radN) = {pi1 , pi2 , · · · , pit} where
pij 1 ≤ j ≤ t are minimal elements of {p1, · · · , ps}.
Theorem 3.11. Let M be a module over a Noetherian ring R. Let N be a proper
submodule of M satisfying the primful property. If N = ∩si=1Ni is a module-reduced
quasi-primary decomposition and Ni satisfies the primeful property, 1 ≤ i ≤ s, such that
radN = ∩si=1radNi. If pj =

√
(Nj : M) is a minimal element of {p1, · · · , ps}, then radNj

is uniquely determined by N .

2. QUASI-PRIMARY SUBMODULES OF MULTIPLICATION
MODULES
Let M be a multiplication R-module. If p is a prime ideal containing ann(M), then

(pM : M) = p [7, Lemma 2.10]. In particular a proper submodule pM is a prime
submodule of M if and only if p is a prime ideal containing ann(M) [7, Corollary 2.11].
Now we have the following result:

2.1. Lemma. Let R be a ring and I an ideal of R. Let M be a multiplication R-module.
If IM satisfies the primeful property, then so does

√
IM . In this case

√
(IM : M) =√

(
√
IM : M).

Proof. Let p be a prime ideal containing (
√
IM : M). Since IM satisfies the primeful

property, there exists a prime submodule P containing IM such that (P : M) = p. By [7,
Corollary 2.11], P = p′M for some prime ideal p′ containing ann(M). Since IM ⊆ p′M ,
by [7, Lemma 2.10] I ⊆ p′. Hence

√
IM ⊆ P , as required. Also the similar argument

follows that rad(IM) = rad(
√
IM) and so we have the second part. �

2.2. Theorem. Let N be a submodule of a multiplication R-module M which satisfies
the primeful property. Then the following statements are equivalent:

(i) N is a quasi-primary submodule of M ;
(ii) (N : M) is a quasi-primary ideal of R;
(iii) radN is a prime submodule of M ;
(iv) N = qM for some quasi-primary ideal q of R with ann(M) ⊆ q.

Proof. (i)⇒ (ii) is clear, since
√

(N : M) = (radN : M).
(ii)⇒ (iii). It is easy to check that radN is a proper submodule of M , since N satisfies
the primeful property. Now the proof is completed by [7, Corollary 2.11 and Theorem
2.12].
(iii)⇒ (i) is obtained by a direct application of the definition of quasi-primary submodules.
(ii)⇒ (iv) is clear.
(iv)⇒ (iii). Let q be a quasi-primary ideal of R containing (0 : M) and N = qM . By
[7, Theorem 2.12] and Lemma 2.1, we have radN =

√
(N : M)M =

√
(qM : M)M =√

(
√
qM : M)M =

√√
qM =

√
qM . Thus by [7, Corollary 2.11], radN is a prime

submodule of M . �
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2.3. Example. Let M be a finitely generated faithful multiplication R-module (for
example M can be considered as a non-zero ideal of a principal ideal domain R). Then
for each ideal I of R, (IM : M) = I [7, Theorem 3.1]. Thus if q is a quasi-primary ideal
of R which is not primary, then qM is a quasi-primary submodule of M which is not
primary (see Theorem 2.2 above.)

2.4. Proposition. Let M be a non-zero multiplication R-module. If ann(x) = 0 for
some x ∈M , then every submodule of M satisfies the primeful property.

Proof. Assume N is a submodule of M and p a prime ideal of R containing (N : M). It
suffices to show that pM is a prime submodule of M . By [7, Corollary 2.11], we must
prove that pM 6= M . Assume on the contrary that pM = M . Suppose x ∈ M and
ann(x) = 0. Since M is multiplication, there exists an ideal J of R such that Rx = JM .
Thus Rx = JM = JpM = pJM = px and so 1 − r ∈ ann(x) for some r ∈ p, a
contradiction. �

It is well-known that if M is a finitely generated multiplication R-module, then M
is weak cancellation, i.e. IM ⊆ JM , for ideals I, J of R, implies I ⊆ J + ann(M) ([1,
Theorem 3] and [22, Corollary to Theorem 9]). By combining this fact and Theorem 2.2,
we have the following immediate result.

2.5. Corollary. Let N be a submodule of a finitely generated multiplication R-module
M . Then

(i) N is a minimal quasi-primary submodule of M if and only if there exists a
minimal quasi-primary ideal q of R containing ann(M) such that N = qM 6= M .

(ii) Every quasi-primary submodule ofM contains a minimal quasi-primary submod-
ule.

Proof. (i) is clear.
(ii). It suffices to show that every quasi-primary ideal of R contains a minimal quasi-
primary ideal. Let q be a quasi-primary ideal of R and Λ = {q : q is a quasi-primary ideal
of R with q ⊆ q}. Since q ∈ Λ, we have Λ 6= ∅. We define a partially order by reverse
inclusion, that is, for qi, qj ∈ Λ, qi � qj if and only if qi ⊇ qj, so that a maximal member
of this partially ordered set is just a minimal member of Λ with respect to inclusion. Let
Ω be a non-empty subset of Λ which is totally ordered with respect to the above partial
order. It is easy to verify that Q = ∩q∈Ωq is an upper bound for Ω in Λ. Now Zorn’s
lemma completes the proof. �

In [7, Corollary 1.7], it has shown that ifM is a multiplication module, then ∩λ∈Λ(IλM) =
(∩λ∈Λ[Iλ + annM ])M for every non-empty collection of ideals Iλ (λ ∈ Λ) of R. Using
this fact, we have the following result:

2.6. Corollary. Let M be a multiplication R-module and N a submodule of M . Let Ni
(1 ≤ i ≤ s) be a collection of submodules of M satisfying the primeful property. Then the
following statements are equivalent:

(i) (N : M) = (N1 : M) ∩ · · · ∩ (Ns : M) is a reduced quasi-primary decomposition
of I;

(ii) N = N1 ∩ · · · ∩Ns is a reduced quasi-primary decomposition of N ;
(iii) N = N1 ∩ · · · ∩Ns is a module-reduced quasi-primary decomposition of N .

2.7. Corollary. Let I be an ideal of R containing ann(M). Let M be a multiplication
R-module. If I = q1 ∩ · · · ∩ qs is a reduced quasi-primary decomposition of I, then
IM = q1M ∩ · · · ∩ qsM is a reduced and module-reduced quasi-primary decomposition of
IM .
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The following is an immediate consequence of Theorem 2.2 and [9, Theorem 1].

2.8. Corollary. Let M be a multiplication R-module and N a submodule M . Let Ni =
qiM , (1 ≤ i ≤ s) be a collection of quasi-primary submodules of M satisfying the primeful
property. Then N1 ∩ · · · ∩ Ns is a quasi-primary submodule of M if and only if among
the prime ideals

√
(Ni : M) there is a

√
(Nk : M) such that

√
(Nk : M) ⊆

√
(Ni : M).

Recall that a representation N = N1 ∩ N2 ∩ · · · ∩ Ns of a submodule N of an R-
module M is shortest, if none of the Ni can be omitted and none of the intersection
(Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nit : M) (t > 1) is a quasi-primary ideal.

2.9. Proposition. Let M be a multiplication R-module and N a submodule M . Let
Ni = qiM (1 ≤ i ≤ s) be a collection of submodules of M satisfying the primeful property.
Then every quasi-primary decomposition N = N1 ∩ N2 ∩ · · · ∩ Ns has a shortest quasi-
primary decomposition.

Proof. First we omit every superfluous term Ni. Second, assume there exist submodules
Ni1 , Ni2 , · · · , Nit such that

√
(Ni1 : M) ⊆

√
(Ni2 : M) ⊆ · · · ⊆

√
(Nit : M). Put N ′i =

Ni1 ∩ Ni2 ∩ · · · ∩ Nit . Then by Corollary 2.8, N ′i is a quasi-primary submodule of M .
Thus N = N ′1 ∩N ′2 ∩ · · · ∩N ′r is a shortest quasi-primary decomposition of N . �

2.10. Corollary. Let M be a multiplication module with a submodule N . If N = N1 ∩
N2 ∩ · · · ∩ Ns is a shortest quasi-primary decomposition such that each Ni (1 ≤ i ≤ s)
satisfies the primeful property, then all the prime ideals belonging to the quasi-primary
submodules which occur in a shortest quasi-primary decomposition of N are isolated.

2.11. Proposition. Let M be a multiplication R-module and N a submodule of M . Let
Ni (1 ≤ i ≤ s) be a collection of submodules of M satisfying the primeful property. If
N = N1 ∩ N2 ∩ · · · ∩ Ns is a shortest quasi-primary decomposition, then it is a reduced
and module-reduced quasi-primary decomposition of N .

Proof. It is clear that the ideals
√

(Ni : M) are prime for every i (1 ≤ i ≤ t). Assume,
on the contrary, there exists j 6= i such that

√
(Nj : M) =

√
(Ni : M). Then (Ni :

M) ∩ (Nj : M) is a quasi-primary ideal of R, since
√

(Ni ∩Nj : M) =
√

(Ni : M) is a
prime ideal of R, a contradiction. Therefor N = N1 ∩N2 ∩ · · · ∩Nt is a reduced quasi-
primary decomposition and by Corollary 2.6 is also a module-reduced quasi-primary
decomposition. �

In general, the converse of the above proposition is not true. For instance, let R =
K[x, y] be the ring of polynomials in x, y with coefficients in a field K. Consider the
ideal I = (x2y, xy2) of R. It is clear that radI = (xy) is not a prime ideal and so I is not
quasi-primary. I = (x) ∩ (y) ∩ (x2, y2) is a reduced quasi-primary decomposition that is
not shortest [9, p. 181].

The following is an immediate result of Proposition 2.6 and Proposition 2.11.

2.12. Corollary. Let M be a multiplication R-module and N a submodule of M . Let Ni
(1 ≤ i ≤ s) be a collection of submodules ofM satisfying the primeful property. If N has a
quasi-primary decomposition, then it has both reduced and module-reduced quasi-primary
decompositions.

2.13. Theorem. Let M be a multiplication R-module and N a submodule of M . Let
Ni = qiM , (1 ≤ i ≤ s) be a collection of submodules ofM satisfying the primeful property.
Then N = N1∩N2∩ ...∩Ns is a shortest quasi-primary decomposition of N if and only if
(N : M) = (N1 : M)∩(N2 : M)∩ ...∩(Ns : M) is a shortest quasi-primary decomposition
of the ideal (N : M).
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Proof. ⇒) Assume, on the contrary, that (N : M) = (N1 : M) ∩ (N2 : M) ∩ · · · ∩ (Ns :
M) is not shortest. Then either (Nt : M) may be omitted for some 1 ≤ t ≤ s or
(Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nir : M) is a quasi-primary ideal for some r > 1. Firstly,
assume (Nt : M) ⊇ (N1 : M) ∩ · · · ∩ (Nt−1 : M) ∩ (Nt+1 : M) ∩ · · · ∩ (Ns : M). Therefor√

(Nt : M) ⊇
√

(N1 : M)∩ · · · ∩
√

(Nt−1 : M)∩
√

(Nt+1 : M)∩ · · · ∩
√

(Nm : M). Since√
(Nt : M) is a prime ideal, there exists k 6= t such that

√
(Nk : M) ⊆

√
(Nt : M). Now

Corollary 2.10 shows that
√

(Nk : M) =
√

(Nt : M). Thus N = N1∩N2∩ ...∩Ns is not a
reduced quasi-primary decomposition, which contradicts the Proposition 2.11. Secondly,
if (Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nir : M) is a quasi-primary ideal for some r > 1,
then there is a minimal prime ideal

√
(Nik : M) among the prime ideals

√
(Nij : M)

(1 ≤ j ≤ r), which contradicts the Corollary 2.10.
⇐) Suppose (N : M) = (N1 : M) ∩ (N2 : M) ∩ ... ∩ (Ns : M) is a shortest quasi-primary
decomposition of the ideal (N : M) in R. Multiplying byM , we get N = N1∩N2∩...∩Ns.
It is easy to check that the above representation is a shortest quasi-primary decomposition
of N . �

2.14. Theorem. Let M be a multiplication R-module and N a submodule of M . Let
N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary decompositions
of N as intersection of quasi-primary submodules satisfying the primeful property. Then
s = t and the prime ideals pi =

√
(Ni : M) must be, without regard to their order,

identical to the prime ideals p′j =
√

(N ′j : M).

Proof. Let N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two shortest quasi-primary de-
compositions ofN . By Theorem 2.13, we have two shortest quasi-primary decompositions
(N : M) = (N1 : M)∩ (N2 : M)∩ · · · ∩ (Ns : M) = (N ′1 : M)∩ (N ′2 : M)∩ · · · ∩ (N ′t : M)
of the ideal (N : M). Now the proof is completed by [9, Theorem 6]. �

2.15. Proposition. Let N and K be quasi-primary submodules of a multiplication R-
module M satisfying the primeful property. Then N ∩K is quasi-primary if and only if
radN ⊆ radK or radK ⊆ radN .

Proof. Since N ∩ K is a quasi-primary submodule,
√

(N ∩K : M) =
√

(N : M) ∩√
(K : M) is a prime ideal of R and so

√
(N : M) ⊆

√
(K : M) or

√
(K : M) ⊆√

(N : M). Equivalently (radN : M) ⊆ (radK : M) or (radK : M) ⊆ (radN : M).
Therefore radN ⊆ radK or radK ⊆ radN , since M is a multiplication module. The
reverse argument implies that (N ∩K : M) is a quasi-primary ideal and so by Theorem
2.2, N ∩K is a quasi-primary submodule of M . �

3. QUASI-PRIMARY DECOMPOSITION OF SUBMODULES
OF MODULES OVER NOETHERIAN RINGS
In [6, Theorem 3.10], it has been shown that every proper submodule of a Noetherian

module has a primary decomposition and so a fortiori quasi-primary decomposition. In
particular, every submodule of finitely generated modules or faithful multiplication mod-
ules over Noetherian rings has a quasi-primary decomposition [7, p.764]. This gives rise
to the question: is there a submodule of a module which has a quasi-primary decompo-
sition, but has not any primary decomposition. Let us now present positive answer to
this question below.

3.1. Example. Since the set of ideals of a valuation domain is totally ordered under
inclusion, we conclude that every proper ideal of a valuation domain is quasi-primary
[11, Theorem 5.10]. On the other hand, it is proved that for a local domain R, every
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proper ideal of R is primary if and only if dimR = 1 [4, Theorem2.4]. Now let R be a
valuation domain with dimR > 1. Then there exists a quasi-primary ideal q of R which
is not primary. Now if q = q1∩q2∩· · ·∩qn is a reduced primary decomposition of q, then
there is 1 ≤ j ≤ n such that qj ⊆

√
q ⊆ √qj . Thus √qj is a minimal element of the set

{√q1,
√
q2, · · · ,

√
qn}. We claim that qj is minimal among the ideals q1, q2, · · · , qn and

so q = qj . This contradicts the choice of q. Let qi ⊆ qj for some i 6= j. By minimality of√
qj we must have √qi =

√
qj , which contradicts the fact that q = q1 ∩ q2 ∩ · · · ∩ qn is

a reduced primary decomposition of q. Thus qi * qj for every i 6= j. Now since the set
of ideals of R is totally ordered under inclusion, we must have qj ⊆ qi for every i 6= j, as
required.

It has been shown that a reduced primary decomposition is unique in the sense of
the set of prime ideals belonging to primary submodules of two primary decompositions
are the same and the set of primary submodules with isolated associated primes are
also identical [6, Theorem 3.10]. In this section we study quasi-primary submodules of
modules over Noetherian rings. In particular, we give some uniqueness theorems for
reduced and module-reduced quasi-primary decomposition (Theorem 3.6, Theorem 3.8
and Theorem 3.12).

3.2. Lemma. Let R be a Noetherian ring and N a p-quasi-primary submodule of an
R-module M . Then there exists a positive integer n such that pn ⊆ (N : M).

Proof. Taking p = (r1, · · · , rt). For each generator ri, there is a positive integer ni such
that rni

i ∈ (N : M). Let n has the value n =
∑t
i=1(ni − 1) + 1. Now pn is generated

by monomials rm1
1 · · · rmt

t with
∑t
j=1 mj = n, because at least for one of the subscripts

j we have sj ≥ n. Hence pn ⊆ (N : M). �

Since a faithful multiplication module M over a Noetherian ring R is Noetherian ([7,
p.764]), then every submodule of M satisfies the primeful property. Thus we can replace
"satisfying the primeful property" for these submodules of M with "faithfulness" for M
in Theorem 3.3 and and Theorem 3.5.

3.3. Theorem. Let R be a Noetherian ring and M a multiplication R-module. Let N
be a submodule of M which satisfies the primeful property. Then N is quasi-primary if
and only if there exists a unique prime ideal p of R such that pt ⊆ (N : M) ⊆ p for some
positive integer t.

Proof. (⇒) By Theorem 2.2, (N : M) is a quasi primary ideal. If p =
√

(N : M), then
by Lemma 3.2 pt ⊆ (N : M) ⊆ p for some positive integer t. If p′ is a prime ideal of R
and p′s ⊆ (N : M) ⊆ p′, then p′ =

√
(N : M) = p.

(⇐) It is clear that (N : M) is quasi-primary ideal. Now the proof is completed by
Theorem 2.2. �

3.4. Lemma. Let M be a multiplication R-module and N1 a submodule of M . Let
N2 be a quasi-primary submodule of M satisfying the primeful property such that p =√

(N1 : M) =
√

(N2 : M) and N1 ⊆ N ⊆ N2. Then N is a p-quasi-primary submodule
of M .

Proof. It is clear that
√

(N1 : M) =
√

(N : M) =
√

(N2 : M) = p and so (N : M)
is a p-quasi-primary ideal of R. Now if p is a prime ideal containing (N : M), then
(N2 : M) ⊆ p. Since N2 satisfies the primeful property, there exists a prime submodule
P containing N2 and so N such that (P : M) = p. Thus N satisfies the primeful property.
Now by Theorem 2.2, N is a p-quasi-primary submodule of M . �
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3.5. Theorem. Let R be a Noetherian ring and M a multiplication R-module. Let Ni
(1 ≤ i ≤ t) be a collection of quasi-primary submodules of M with

√
(Ni : M) = pi. If N1

satisfies the primeful property and p1 ⊆ pi for each 1 ≤ i ≤ t, then N = (Πt
i=1(Ni : M))M

is also p1-quasi-primary.

Proof. Since R is a Noetherian ring there are positive integers si (1 ≤ i ≤ t) such that
ps1+s2···+st

1 M ⊆ ps11 p
s2
2 · · · p

st
t M ⊆ (N1 : M)(N2 : M) · · · (Nt : M)M ⊆ p1p2 · · · ptM ⊆

p1M . Thus

p1 ⊆
√

(ps1+s2···+st
1 M : M) ⊆

√
(p1p2 · · · ptM : M) ⊆ p1

and so
√

(p1p2 · · · ptM : M) = p1. Now by a similar consideration of Lemma 3.4, it
can be shown that p1p2 · · · ptM satisfies the primeful property. Hence by Theorem 2.2,
N = (Πt

i=1(Ni : M))M is p1-quasi-primary. �

.

3.6. Theorem. Let R be a Noetherian ring and M an R-module. Let N be a submodule
of M such that N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary
decompositions of N where Ni(resp. N ′j) is pi-quasi-primary (resp. pj-quasi-primary).
Then s = t and (after reordering if necessary) pi = pi and radNi = radN ′i for 1 ≤ i ≤ s.

Proof. Without loss of generality we may assume that p1 is one of the minimal elements of
the set {p1, · · ·ps, p1, · · · pt}. Since N1 is p1-quasi-primary, there exists a positive integer
t such that pt1M ⊆ N1 and hence

pt1(N2 ∩N3 ∩ · · · ∩Ns) ⊆ N = N ′1 ∩N ′2 ∩ · · · ∩N ′t .

If N2 ∩ N3 ∩ · · · ∩ Ns ⊆ radN ′1, then we have ∩si=2pi ⊆ p1 and so pi ⊆ p1 for some
2 ≤ i ≤ s. Thus by assumption pi = p1 for some 2 ≤ i ≤ s. In the other case, suppose
N2 ∩ N3 ∩ · · · ∩ Ns * radN ′1. Since N ′1 is quasi-primary, we have pt1 ⊆ p1 and hence
p1 ⊆ p1. Now by minimality of p1, we conclude that p1 = p1. Since {p1, p2 · · · , ps} and
{p1, p2 · · · , pt} are sets of distinct prime ideals, with a similar argument we have s = t
and pi = pi for 1 ≤ i ≤ s.

For the second part, since pi are all distinct, there exists ri ∈ pi\p1 for each 2 ≤ i ≤ s.
Then r = r2r3 · · · rs ∈ pi for i > 1, but r /∈ p1. Since Ni(resp. N ′i) is pi-quasi-primary,
there exists an integer ni(resp. mi) such that rni ∈ (Ni : M)(resp. rmi ∈ (N ′i : M))
for each 2 ≤ i ≤ s. Let n = max{n2, · · · , ns,m2 · · · ,ms}. Then rn ∈ (Ni : M) and
rn ∈ (N ′i : M) for each 2 ≤ i ≤ s. Now if x ∈ N1, then rnx ∈ N whence rnx ∈ N ′1. It
follows from the definition that x ∈ radN ′1. Therefore N1 ⊆ radN ′1. A similar argument
shows that N ′1 ⊆ radN1 and hence radN1 = radN ′1. �

3.7. Lemma. Let M be an R-module. If {Ni : 1 ≤ i ≤ t} is a finite collection of
submodules of M which satisfy the primeful property, then so does ∩ti=1Ni.

Proof. Clear. �

3.8. Theorem. Let N be a proper submodule of a module M over a Noetherian ring
R. If N = ∩ti=1Ni is a module-reduced quasi-primary decomposition and Ni (1 ≤ i ≤ t)
satisfies the primeful property such that radN = ∩ti=1radNi, then Ass(M/radN) ⊆
{p1, · · · , pt} ⊆ Supp(M/radN). In particular, Ass(M/radN) = {pi1 , pi2 , · · · , pis} where
pij (1 ≤ j ≤ s) are minimal elements of {p1, · · · , pt}.
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Proof. Let p be an associated prime of M/radN , so that p = ann(x + radN), 0 6=
x+ radN ∈M/radN . Renumber the Ni so that x /∈ radNi for 1 ≤ i ≤ j and x ∈ radNi
for j+1 ≤ i ≤ t. Since Ni is a quasi-primary submodule satisfying the primeful property,
pi =

√
(Ni : M) is a prime ideal of R (1 ≤ i ≤ t). Since pi is finitely generated, pni

i M ⊆
Ni for some ni ≥ 1. Therefore (∩ji=1p

ni
i )x ⊆ ∩ti=1radNi = radN , so ∩ji=1p

ni
i ⊆ ann(x+

radN) = p. Since p is prime, pi ⊆ p for some i ≤ j. We claim that pi = p, so that every
associated prime must be one of the pi’s. To verify this, let r ∈ p. Then r(x+ radN) =

radN and x /∈ radNi and since radNi is prime we have r ∈
√

(Ni : M) = pi, as claimed.
By [8, Lemma 3.4], M/radNi is a primeful R-module. Now since pi ⊇ (radN : M) for
each 1 ≤ i ≤ t, we have Ass(M/radN) ⊆ {p1, p2, · · · , pt} ⊆ Supp(M/radN), by [12,
Proposition 3.4]. For the second part, we show that minimal elements of {p1, · · · , pt}
are equal to minimal elements of Supp(M/radN). Let pj be a minimal element of
{p1, · · · , pt} and p ⊆ pj for some p ∈ Supp(M/radN). By [8, Lemma 3.4] and Lemma 3.7
radN satisfies the primeful property and hence by [12, Proposition 3.4] p ⊇ (radN : M).
Thus ∩ti=1pi ⊆ p ⊆ pj . Since p is prime, there exists pi (1 ≤ i ≤ t) such that pi ⊆ p ⊆ pj
and so pi = p = pj , by minimality of pj . Now the proof is completed by [20, Theorem
9.39]. �

Noth that, by the proof of Theorem 3.8, the minimal prime ideals of the set {p1, · · · , pt}
are uniquely determined by N , as follows.

3.9. Corollary. Let N be a proper submodule of a module M over a Noetherian ring
R. Let N = ∩ti=1Ni be a module-reduced quasi-primary decomposition and Ni satisfies
the primeful property, 1 ≤ i ≤ t, such that radN = ∩ti=1radNi. Let pi =

√
(Ni : M)

for 1 ≤ i ≤ t. Then the minimal primes which occur in the set {p1, · · · , pt} are uniquely
determined by N .

3.10. Corollary. Let N be a proper submodule of a module M over a Noetherian
ring R which satisfies the primeful property. Then N is p-quasi-primary if and only
if Ass(M/radN) = p.

3.11. Lemma. Let M be a module over a Noetherian ring R, and N a quasi-primary
submodule of M satisfying the primeful property with p =

√
(N : M). Let p′ be any prime

ideal of R.
(i) If p * p′, then Mp′ = (radN)p′ .
(ii) If p ⊆ p′, then radN = f−1((radN)p′) where f is the mapping x 7→ x/1 from

M into Mp′ .

Proof. (i). It is easy to verify that there is a bijection between AssRp′ (M/radN)p′ (which
coincide with AssRp′ (Mp′/(radN)p′)) and the intersection AssR(M/radN)∩S, where S
is the set of prime ideals contained in p′. By Corollary 3.10, there is only one associated
prime of M/radN over R, namely p, which is not contained in p′ by hypothesis. Thus
AssR(M/radN) ∩ S is empty, so by [20, Corollary 9.35], Mp′/(radN)p′ = 0, and the
result follows.
(ii). As in Corollary 3.10, AssR(M/radN) = {p}. Since p ⊆ p′, we have R\p′ ⊆
R\p. By [20, Corollary 9.36], R\p′ contains no zero-divisors of M/radN , because all
such zero-divisors belong to p. Thus the natural map g : x → x/1 from M/radN to
(M/radN)p′ ∼= (Mp′/(radN)p′) is injective. Assume x ∈ f−1((radN)p′). Then f(x) ∈
(radN)p′ , so f(x) + (radN)p′ is 0 in Mp′/(radN)p′ . By injectivity of the natural map
M/radN → (M/radN)p′ , x + radN is 0 in M/radN , in other words, x ∈ radN . Thus
f−1((radN)p′) ⊆ radN and the reverse inclusion is clear. �
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3.12. Theorem. Let N be a proper submodule of a module M over a Noetherian ring
R satisfying the primeful property. If N = ∩ti=1Ni is a module-reduced quasi-primary
decomposition and Ni satisfies the primeful property, 1 ≤ i ≤ t, such that radN =
∩ti=1radNi. If pj =

√
(Nj : M) is a minimal element of {p1, · · · , pt}, then radNj is

uniquely determined by N .

Proof. Suppose that pj is minimal, so that pj + pi, i 6= j. By Lemma 3.11(i) with
p = pi, p′ = pj , we have (radNi)pj = Mpj for i 6= j. By Lemma 3.11(ii), we have
radNj = f−1((radNj)pj ), where f is the natural map from M to Mpj . Hence we have

(radN)pj = (radNj)pj ∩ (∩i 6=j(radNi)pj )

= (radNj)pj ∩Mpj = (radNj)pj .

Thus radNj = f−1((radNj)pj ) = f−1((radN)pj ) depends only on N and pj , and since
pj is the minimal prime associated with N , it follows that radNj depends only on N . �

Acknowledgements. The author would like to thank the referee/referees for a number of
constructive comments and valuable suggestions.

References
[1] D. D. Anderson, Multiplication Ideals, Multiplication Rings and the Ring R[X]. Canad. J.

Math., 28 (1976), 760-768.
[2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley

publishing company, 1969.
[3] M. Behboodi, On the Prime Radical and Bear’s Lower Nilradical of Modules, Acta Math.

Hungar. (3) (2009), 293-306.
[4] R. Chaudhuri, A Note on Generalized Primary Rings, Mat. Vesnik 13(28)(1976), 375-377.
[5] J. Dauns, Prime Modules, J. Reine Angew. Math., 298 (1978), 156-181.
[6] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-

Verlag, 1994.
[7] Z. A. EL-Bast, P. F. Smith, Multiplication Modules, Comm. Algebra, 16(4) (1988), 755-779.
[8] H. Fazaeli Moghimi, M. Samiei, Quasi-primary Submodules Satisfying the Primeful Property

I, Hacet. J. Math. Stat., Submitted.
[9] L. Fuchs, On Quasi-primary Ideals, Acta Sci. Math. (Szeged), 11 (1947) 174-183.

[10] J. Jenkins, P. F. Smith, On the Prime Radical of a Module over a Commutative Ring,
Comm. Algebra, 20 (l992), 3593-3602.

[11] M. D. Larsen, P. J. McCarthy, Multiplicative Ideal Theory, Academic press, 1971.
[12] C. P. Lu, A Module Whose Prime Spectrum Has the Surjective Natural Map, Houston J.

Math., 33(1) (2007),127-143.
[13] C. P. Lu, M-radicals of Submodules in Modules II, Math. Japonica., 35 (1990), 991-1001.
[14] R. McCasland, M. Moore, Prime Submodules. Comm. Algebra, 20 (1992), 1803-1817.
[15] R. L. McCasland, M. E. Moore, P. F. Smith, On the Spectrum of a Module over a Commu-

tative Ring, Comm. Algebra, 25(1) (1997), 79-103.
[16] R. L. McCasland, P. F. Smith, Generalised Associated Primes and Radicals of Submodules,

Int. Electron. J. Algebra, 4 (2008), 159-176.
[17] M. E. Moor, S. J. Smith, Prime and Radical Submodules of Modules over Commutative

Rings, Comm. Alegbra, 30 (2002), 5073-5064.
[18] R. Naghipour, M. Sedghi, Weakly Associated Primes and Primary Decomposition of Mod-

ules over Commutative Rings, Acta Math. Hungar. 110 (1-2) (2006), 1-12.
[19] H. Sharif, Y. Sharifi, S. Namazi, Rings Satisfying the Radical Formula, Acta Math. Hungar.,

71(1-2) (1996), 103-108.
[20] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 1990.
[21] P. F. Smith, Uniqueness of Primary Decompositions, Turk. J. Math. 27 (2003), 425-434.
[22] P. F. Smith, Primary Modules over Commutative Rings, Comm. Algebra, 43 (2001), 103-

111.



811

[23] P. F. Smith, Some Remarks on Multiplication Modules, Arch. der Math., 50 (1988), 223-235.
[24] A. Soleyman Jahan, Prime Filtrations and Primary Decompositions of Modules, Comm.

Algebra, 39 (2011), 116-124.
[25] D. Pusat-Yilmaz, P.F. Smith, Radicals of Submodules of Free Modules, Comm. Algebra,

27(5) (1999), 2253-2266.
[26] D. Pusat-Yilmaz, P. F. Smith, Modules Which Satisfy the Radical Formula, Acta Math.

Hungar. 95 (1-2) (2002), 155-167.



812


