Applications of k-Fibonacci numbers for the starlike analytic functions

Janusz Sokół ${ }^{*}$, Ravinder Krishna Raina ${ }^{\dagger}$ and Nihal Yilmaz Özgür ${ }^{\ddagger}$

Abstract

The k-Fibonacci numbers $F_{k, n}(k>0)$, defined recursively by $F_{k, 0}=$ $0, F_{k, 1}=1$ and $F_{k, n}=k F_{k, n}+F_{k, n-1}$ for $n \geq 1$ are used to define a new class $\mathcal{S} \mathcal{L}^{k}$. The purpose of this paper is to apply properties of k-Fibonacci numbers to consider the classical problem of estimation of the Fekete-Szegö problem for the class $\mathcal{S} \mathcal{L}^{k}$. An application for inverse functions is also given.

2000 AMS Classification: Primary 30C45, secondary 30C80
Keywords: univalent functions; convex functions; starlike functions; subordination; k-Fibonacci numbers.

Received 27/12/2012 : Accepted 04/12/2013 Doi : 10.15672/HJMS. 2015449091

1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ denote the unit disc on the complex plane. The class of all holomorphic functions f in the open unit disc \mathbb{D} with normalization $f(0)=0, f^{\prime}(0)=1$ is denoted by \mathcal{A} and the class $\mathcal{S} \subset \mathcal{A}$ is the class which consists of univalent functions in \mathbb{D}. We say that f is subordinate to F in \mathbb{D}, written as $f \prec F$, if and only if $f(z)=F(\omega(z))$ for some $\omega \in \mathcal{A},|\omega(z)|<1, z \in \mathbb{D}$.

Recently, N. Yilmaz Özgür and J. Sokół [5] defined and introduced the class $\mathcal{S} \mathcal{L}^{k}$ of shell-like functions as the set of functions $f \in \mathcal{A}$ which is described in the following definition.

[^0]1.1. Definition. Let k be any positive real number. The function $f \in \mathcal{A}$ belongs to the class $\mathcal{S} \mathcal{L}^{k}$ if it satisfies the condition that
\[

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \widetilde{p}_{k}(z), z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\widetilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2}, z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

For $k=1$, the class $\mathcal{S} \mathcal{L}^{k}$ becomes the class $\mathcal{S} \mathcal{L}$ of shell-like functions defined in [3], see also [4].

It was proved in [5] that functions in the class $\mathcal{S} \mathcal{L}^{k}$ are univalent in \mathbb{D}. Moreover, the class $\mathcal{S} \mathcal{L}^{k}$ is a subclass of the class of starlike functions \mathcal{S}^{*}, even more, starlike of order $k\left(k^{2}+4\right)^{-1 / 2} / 2$. The name attributed to the class $\mathcal{S} \mathcal{L}^{k}$ is motivated by the shape of the curve

$$
\mathcal{C}=\left\{\widetilde{p}_{k}\left(e^{i t}\right): t \in[0,2 \pi) \backslash\{\pi\}\right\} .
$$

The curve \mathcal{C} has a shell-like shape and it is symmetric with respect to the real axis. Its graphic shape, for $k=1$, is given below in Fig.1.

For $k \leq 2$, note that we have

$$
\widetilde{p}_{k}\left(e^{ \pm i \arccos \left(k^{2} / 4\right)}\right)=k\left(k^{2}+4\right)^{-1 / 2}
$$

and so the curve \mathcal{C} intersects itself on the real axis at the point $w_{1}=k\left(k^{2}+4\right)^{-1 / 2}$. Thus \mathcal{C} has a loop intersecting the real axis also at the point $w_{2}=\left(k^{2}+4\right) /(2 k)$. For $k>2$, the curve \mathcal{C} has no loops and it is like a conchoid, see for details [5]. Moreover, the coefficients of \widetilde{p}_{k} are connected with k-Fibonacci numbers.

For any positive real number k, the k-Fibonacci number sequence $\left\{F_{k, n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
\begin{equation*}
F_{k, 0}=0, F_{k, 1}=1 \text { and } F_{k, n}=k F_{k, n}+F_{k, n-1} \text { for } n \geq 1 \tag{1.3}
\end{equation*}
$$

When $k=1$, we obtain the well-known Fibonacci numbers F_{n}. It is known that the $\mathrm{n}^{\text {th }}$ k-Fibonacci number is given by

$$
\begin{equation*}
F_{k, n}=\frac{\left(k-\tau_{k}\right)^{n}-\tau_{k}^{n}}{\sqrt{k^{2}+4}} \tag{1.4}
\end{equation*}
$$

where $\tau_{k}=\left(k-\sqrt{k^{2}+4}\right) / 2$. If $\widetilde{p}_{k}(z)=1+\sum_{n=1}^{\infty} \widetilde{p}_{k, n} z^{n}$, then we have

$$
\begin{equation*}
\widetilde{p}_{k, n}=\left(F_{k, n-1}+F_{k, n+1}\right) \tau^{n}, n=1,2,3, \ldots, \tag{1.5}
\end{equation*}
$$

see also [5].
1.2. Lemma. [5] If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ belongs to the class $\mathcal{S} \mathcal{L}^{k}$, then we have

$$
\begin{equation*}
\left|a_{n}\right| \leq\left|\tau_{k}\right|^{n-1} F_{k, n} \tag{1.6}
\end{equation*}
$$

where $\tau_{k}=\left(k-\sqrt{k^{2}+4}\right) / 2$. Equality holds in (1.6) for the function

$$
\begin{align*}
f_{k}(z) & =\frac{z}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}} \\
& =\sum_{n=1}^{\infty} \tau_{k}^{n-1} F_{k, n} z^{n} \\
& =z+\frac{\left(k-\sqrt{k^{2}+4}\right) k}{2} z^{2}+\left(k^{2}+1\right)\left(\frac{\left(k-\sqrt{k^{2}+4}\right) k}{2}+1\right) z^{3}+\cdots . \tag{1.7}
\end{align*}
$$

2. The classical Fekete-Szegö functional

A typical problem in geometric function theory is to study a functional made up of combinations of the coefficients of the original function. Let \mathcal{S} be the class of univalent functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ mapping $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ into \mathbb{C} (the complex plane). The classical Fekete-Szegö functional is $\mathcal{L}_{\lambda}=\left|a_{3}-\lambda a_{2}^{2}\right|, 0<\lambda \leq 1$. Over the years, many results have been found for the classical functional \mathcal{L}_{λ}. Fekete and Szegö [1] bounded \mathcal{L}_{λ} by $1+2 \exp (-2 \lambda /(1-\lambda))$, for $0 \leq \lambda<1$ and $f \in \mathcal{S}$, where \mathcal{S} denotes the subclass of \mathcal{A} consisting of functions univalent in \mathbb{D}. This inequality is sharp for each λ. In particular, for $\lambda=1$, one has $\left|a_{3}-a_{2}^{2}\right| \leq 1$ if $f \in \mathcal{S}$. Note that the quantity $a_{3}-a_{2}^{2}$ represents $S_{f}(0) / 6$, where S_{f} denotes the Schwarzian derivative $\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-\left(f^{\prime \prime} / f^{\prime}\right)^{2} / 2$ of locally univalent functions f in \mathbb{D}. It is interesting to consider the behavior of \mathcal{L}_{λ} for subclasses of the class \mathcal{S}. The Fekete-Szegö problem is to determine sharp upper bound for Fekete-Szegö functional \mathcal{L}_{λ} over a family $\mathcal{F} \subset \mathcal{S}$. In the literature, there exists a large number of results about inequalities for $a_{3}-a_{2}^{2}$ corresponding to various subclasses of \mathcal{S}. In the present paper we obtain the Fekete-Szegö inequalities for the class $\mathcal{S} \mathcal{L}^{k}$. Before we consider how the Taylor series coefficients of functions in the class $\mathcal{S} \mathcal{L}^{k}$ might be bounded, let us first recall this problem for the Caratheodory functions. Let \mathcal{P} denote the class of analytic functions p in \mathbb{D} with $p(0)=1$ and $\mathfrak{R e}\{p(z)\}>0$.
2.1. Lemma. [2] Let $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z+\cdots$, then
(2.1) $\quad\left|c_{n}\right| \leq 2$, for $n \geq 1$.

If $\left|c_{1}\right|=2$, then $p(z) \equiv p_{1}(z)=(1+x z) /(1-x z)$ with $x=c_{1} / 2$. Conversely, if $p(z) \equiv p_{1}(z)$ for some $|x|=1$, then $c_{1}=2 x$. Furthermore, we have
(2.2) $\quad\left|c_{2}-c_{1} / 2\right| \leq 2-\left|c_{1}\right|^{2} / 2$.

If $\left|c_{1}<2\right|$ and $\left|c_{2}-c_{1} / 2\right|=2-\left|c_{1}\right|^{2} / 2$, then $p(z) \equiv p_{2}(z)$, where

$$
p_{2}(z)=\frac{1+\bar{x} w z+z(w z+x)}{1+\bar{x} w z-z(w z+x)}
$$

and $x=c_{1} / 2, w=\left(2 c_{2}-c_{1}^{2}\right) /\left(4-\left|c_{1}\right|^{2}\right)$. Conversely, if if $p(z) \equiv p_{2}(z)$ for some $|x|<1$ and $w=1$, then $c_{1}=2 x, w=\left(2 c_{2}-c_{1}^{2}\right) /\left(4-\left|c_{1}\right|^{2}\right)$ and $\left|c_{2}-c_{1} / 2\right|=2-\left|c_{1}\right|^{2} / 2$.
2.2. Theorem. If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and

$$
p(z) \prec \widetilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}, \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2}, z \in \mathbb{D},
$$

then we have

$$
\begin{equation*}
\left|p_{1}\right| \leq \frac{\left(\sqrt{k^{2}+4}-k\right) k}{2} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{2}\right| \leq\left(k^{2}+2\right)\left\{\frac{\left(k-\sqrt{k^{2}+4}\right) k}{2}+1\right\} . \tag{2.4}
\end{equation*}
$$

The above estimations are sharp.
Proof. If $p \prec \widetilde{p}_{k}$, then there exists an analytic function w such that $|w(z)| \leq|z|$ in \mathbb{D} and $p(z)=\widetilde{p}_{k}(w(z))$. Therefore, the function

$$
h(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z+\cdots \quad(z \in \mathbb{D})
$$

is in the class $\mathcal{P}(0)$. It follows that

$$
\begin{equation*}
w(z)=\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\cdots \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
\widetilde{p}_{k}(w(z)) & =1+\widetilde{p}_{k, 1}\left\{\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\cdots\right\}+\widetilde{p}_{k, 2}\left\{\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\cdots\right\}^{2}+\cdots \\
& =1+\frac{\widetilde{p}_{k, 1} c_{1}}{2} z+\left\{\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \widetilde{p}_{k, 1}+\frac{1}{4} c_{1}^{2} \widetilde{p}_{k, 2}\right\} z^{2}+\cdots \\
& =p(z) . \tag{2.6}
\end{align*}
$$

From (1.5), we find the coefficients $\widetilde{p}_{k, n}$ of the function \widetilde{p}_{k} given by

$$
\widetilde{p}_{k, n}=\left(F_{k, n-1}+F_{k, n+1}\right) \tau^{n} .
$$

This shows the relevant connection \widetilde{p}_{k} with the sequence of k-Fibonacci numbers

$$
\begin{align*}
\widetilde{p}_{k}(z) & =1+\sum_{n=1}^{\infty} \widetilde{p}_{k, n} z^{n} \\
& =1+\left(F_{k, 0}+F_{k, 2}\right) \tau_{k} z+\left(F_{k, 1}+F_{k, 3}\right) \tau_{k}^{2} z^{2}+\cdots \\
& =1+k \tau_{k} z+\left(k^{2}+2\right) \tau_{k}^{2} z^{2}+\left(k^{3}+3 k\right) \tau_{k}^{3} z^{3}+\cdots \tag{2.7}
\end{align*}
$$

If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, then by (2.6) and (2.7), we have

$$
\begin{equation*}
p_{1}=\frac{k \tau_{k} c_{1}}{2} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=\frac{k \tau_{k}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\left(k^{2}+2\right)}{4} c_{1}^{2} \tau_{k}^{2} . \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.1) we directly obtain (2.3). From (2.9) and (2.2), we obtain

$$
\begin{align*}
\left|p_{2}\right| & =\left|\frac{k \tau_{k}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\left(k^{2}+2\right)}{4} c_{1}^{2} \tau_{k}^{2}\right| \\
& \leq\left|\frac{k \tau_{k}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\right|+\left|\frac{\left(k^{2}+2\right)}{4} c_{1}^{2} \tau_{k}^{2}\right| \\
& \leq \frac{k\left|\tau_{k}\right|}{2}\left(2-\frac{1}{2}\left|c_{1}\right|^{2}\right)+\frac{\left(k^{2}+2\right)}{4}\left|c_{1}\right|^{2} \tau_{k}^{2} \\
& =k\left|\tau_{k}\right|+\frac{\left|c_{1}\right|^{2}}{4}\left(\left(k^{2}+2\right) \tau_{k}^{2}-k\left|\tau_{k}\right|\right) . \tag{2.10}
\end{align*}
$$

Since $\tau_{k}=\left(k-\sqrt{k^{2}+4}\right) / 2$, so it is easily verified that

$$
\begin{equation*}
\left(k^{2}+2\right) \tau_{k}^{2}-k\left|\tau_{k}\right|=\frac{\left(k\left(k-\sqrt{k^{2}+4}\right)\right)\left(k^{2}+3\right)}{2}+k^{2}+2 \tag{2.11}
\end{equation*}
$$

We want to show that (2.11) is positive for $k>0$. Notice that

$$
\begin{equation*}
\frac{\left(k-\sqrt{k^{2}+4}\right)\left(k^{3}+3 k\right)}{2}+k^{2}+2=\frac{\left(k^{2}+2\right) \sqrt{k^{2}+4}-k^{3}-4 k}{k+\sqrt{k^{2}+4}} \tag{2.12}
\end{equation*}
$$

Thus, (2.11) is positive when

$$
\begin{equation*}
\left(k^{2}+2\right) \sqrt{k^{2}+4}>k^{3}+4 k, \quad k>0 \tag{2.13}
\end{equation*}
$$

or equivalently, when

$$
\begin{equation*}
\left\{\left(k^{2}+2\right) \sqrt{k^{2}+4}\right\}^{2}>\left\{k^{3}+4 k\right\}^{2}, \quad k>0 \tag{2.14}
\end{equation*}
$$

The inequality (2.14) yields the inequality
(2.15) $4 k^{2}+16>0, \quad k>0$,
which is evidently true, and hence (2.11) is positive. Therefore, $\left(k^{2}+2\right) \tau_{k}^{2}-\left|\tau_{k}\right|>0$ and from (2.10), we obtain

$$
\begin{aligned}
\left|p_{2}\right| & \leq k\left|\tau_{k}\right|+\frac{\left|c_{1}\right|^{2}}{4}\left(\left(k^{2}+2\right) \tau_{k}^{2}-k\left|\tau_{k}\right|\right) \\
& \leq k\left|\tau_{k}\right|+\left(k^{2}+2\right) \tau_{k}^{2}-k\left|\tau_{k}\right| \\
& =\left(k^{2}+2\right) \tau_{k}^{2} \\
& =\left(k^{2}+2\right)\left\{\frac{\left(k-\sqrt{k^{2}+4}\right) k}{2}+1\right\} .
\end{aligned}
$$

Thus, the equality in estimations (2.3), (2.4) are attained by the coefficients of the function given by (2.7).
2.3. Theorem. Let λ be real. If $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ belongs to $\mathcal{S} \mathcal{L}^{k}$, then

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)\left(k^{2}+1+k^{2}|\lambda|\right) . \tag{2.16}
\end{equation*}
$$

The above estimation is sharp. If $\lambda \leq 0$, then the equality in (2.16) is attained by the function f_{k} given in (1.6), and by the function $-f_{k}(-z)$ when $\lambda \geq 0$.

Proof. For given $f \in \mathcal{S} \mathcal{L}^{k}$, define $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z) \quad(z \in \mathbb{D})
$$

where $p \prec \widetilde{p}_{k}$ in \mathbb{D}. Hence

$$
z+2 a_{2} z^{2}+3 a_{3} z^{3}+\cdots=\left\{z+a_{2} z^{2}+a_{3} z^{3}+\cdots\right\}\left\{1+p_{1} z+p_{2} z^{2}+\cdots\right\}
$$

and

$$
a_{2}=p_{1}, \quad 2 a_{3}=p_{1} a_{2}+p_{2}
$$

Therefore, $\left|a_{3}-\lambda a_{2}\right|=\left|\left(p_{1} a_{2}+p_{2}\right) / 2+\lambda p_{1}^{2}\right|$. Using this and the bounds (2.3), (2.4) and (1.6), we obtain

$$
\begin{aligned}
\left|a_{3}-\lambda a_{2}^{2}\right| & =\left|\left(p_{1} a_{2}+p_{2}\right) / 2-\lambda p_{1}^{2}\right| \\
& \leq \frac{\left|p_{1}\right|\left|a_{2}\right|+\left|p_{2}\right|}{2}+|\lambda|\left|p_{1}^{2}\right| \\
& \leq \frac{k\left(k-\sqrt{k^{2}+4}\right) / 2 \cdot k\left(k-\sqrt{k^{2}+4}\right) / 2+\left(k^{2}+2\right)\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)}{2} \\
& +|\lambda|\left\{\frac{\left(\sqrt{k^{2}+4}-k\right) k}{2}\right\}^{2} \\
& =\frac{k^{2}\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)+\left(k^{2}+2\right)\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)}{2} \\
& +|\lambda|\left\{\frac{\left(\sqrt{k^{2}+4}-k\right) k}{2}\right\}^{2} \\
& =\left(k^{2}+1\right)\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)+|\lambda|\left\{\frac{\left(\sqrt{k^{2}+4}-k\right) k}{2}\right\}^{2} \\
& =\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)\left(k^{2}+1+k^{2}|\lambda|\right) .
\end{aligned}
$$

2.4. Corollary. If $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n},|z|<r_{0}(g), r_{0}(g) \geq 1 / 4$, is an inverse to $f \in \mathcal{S} \mathcal{L}^{k}$, then we have

$$
\begin{align*}
& \left|b_{2}\right| \leq \frac{\left(k-\sqrt{k^{2}+4}\right) k}{2} \tag{2.17}\\
& \left|b_{3}\right| \leq\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)\left(3 k^{2}+1\right) \tag{2.18}
\end{align*}
$$

The above estimation is sharp. The equalities are attained by the function $-i f_{k}^{-1}(i z)$, where f_{k} is given in (1.6).

Proof. For each $f \in \mathcal{S}$, the Koebe one-quarter theorem ensures that the image of \mathbb{D} under f contains the disc of radius $1 / 4$. If $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ is univalent in \mathbb{D} then, f has the inverse f^{-1} with the expansion

$$
\begin{equation*}
f^{-1}(z)=z-a_{2} z^{2}+\left(2 a_{2}^{2}-a_{3}\right) z^{3}+\cdots,|z|<r_{0}(f), r_{0}(f) \geq 1 / 4 . \tag{2.19}
\end{equation*}
$$

It was proved in [5] that functions in the class $\mathcal{S} \mathcal{L}^{k}$ are univalent in \mathbb{D}. From Lemma 1.2 and (2.19), we obtain the inequality (2.17). Also, from Theorem 2.3 (with $\lambda=2$) and (2.19), we obtain the inequality (2.18). If $f \in \mathcal{S} \mathcal{L}^{k}$, then the function $-i f_{k}(i z)$ satisfies
(1.1), so it belongs to the class $\mathcal{S} \mathcal{L}^{k}$ too. Moreover, from (1.6), we have

$$
\begin{aligned}
& -i f_{k}^{-1}(i z) \\
& =z+i \frac{\left(k-\sqrt{k^{2}+4}\right) k}{2} z^{2} \\
& -\left\{2\left(\frac{\left(k-\sqrt{k^{2}+4}\right) k}{2}\right)^{2}+\left(k^{2}+1\right)\left(\frac{\left(k-\sqrt{k^{2}+4}\right) k}{2}+1\right)\right\} z^{3}+\cdots \\
& =z+i \frac{\left(k-\sqrt{k^{2}+4}\right) k}{2} z^{2}-\left(k\left(k-\sqrt{k^{2}+4}\right) / 2+1\right)\left(3 k^{2}+1\right) z^{3}+\cdots
\end{aligned}
$$

This shows that the equalities in (2.17) and (2.18) are attained by the second and third coefficients of the function $-i f_{k}^{-1}(i z)$.

References

[1] M. Fekete, G. Szegö, Eine Bemerung über ungerade schlichte Functionen, J. Lond. Math. Soc. 8(1933) 85-89.
[2] C. Pommerenke, Univalent Functions, in: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.
[3] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis $175(23)(1999)$, 111-116.
[4] J. Sokól, Remarks on shell-like functions, Folia Scient. Univ. Tech. Resoviensis 181(24)(2000), 111-115.
[5] N. Yilmaz Özgür, J. Sokół, On starlike functions connected with k-Fibonacci numbers, Bull. Malaysian Math. Sci. Soc. 38(1)(2015), 249-258.

[^0]: *Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland Email: jsokol@prz.edu.pl
 ${ }^{\dagger}$ M.P. University of Agri. and Technology, Udaipur, Rajasthan, India Present address: 10/11 Ganpati Vihar, Opposite Sector 5, Udaipur 313002, India Email:rkraina_7@hotmail.com
 ${ }^{\ddagger}$ Department of Mathematics, Balıkesir University, Çağış Kampüsü, 10145 Balıkesir, Turkey Email:nihal@balikesir.edu.tr

