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Applications of k-Fibonacci numbers for the
starlike analytic functions

Janusz Sokół∗ , Ravinder Krishna Raina † and Nihal Yilmaz Özgür ‡

Abstract

The k-Fibonacci numbers Fk,n (k > 0), defined recursively by Fk,0 =
0, Fk,1 = 1 and Fk,n = kFk,n + Fk,n−1 for n ≥ 1 are used to define
a new class SLk. The purpose of this paper is to apply properties of
k-Fibonacci numbers to consider the classical problem of estimation of
the Fekete–Szegö problem for the class SLk. An application for inverse
functions is also given.
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1. Introduction
Let D = {z : |z| < 1} denote the unit disc on the complex plane. The class of all

holomorphic functions f in the open unit disc D with normalization f(0) = 0, f ′(0) = 1
is denoted by A and the class S ⊂ A is the class which consists of univalent functions in D.
We say that f is subordinate to F in D, written as f ≺ F , if and only if f(z) = F (ω(z))
for some ω ∈ A, |ω(z)| < 1, z ∈ D.

Recently, N. Yilmaz Özgür and J. Sokół [5] defined and introduced the class SLk

of shell-like functions as the set of functions f ∈ A which is described in the following
definition.
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1.1. Definition. Let k be any positive real number. The function f ∈ A belongs to the
class SLk if it satisfies the condition that

(1.1)
zf ′(z)

f(z)
≺ p̃k(z), z ∈ D,

where

(1.2) p̃k(z) =
1 + τ2kz

2

1− kτkz − τ2kz2
, τk =

k −
√
k2 + 4

2
, z ∈ D.

For k = 1, the class SLk becomes the class SL of shell-like functions defined in [3], see
also [4].

It was proved in [5] that functions in the class SLk are univalent in D. Moreover, the
class SLk is a subclass of the class of starlike functions S∗, even more, starlike of order
k(k2 + 4)−1/2/2. The name attributed to the class SLk is motivated by the shape of the
curve

C =
{
p̃k(e

it) : t ∈ [0, 2π) \ {π}
}
.

The curve C has a shell-like shape and it is symmetric with respect to the real axis. Its
graphic shape, for k = 1, is given below in Fig.1.
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Fig. 1. p̃1(e
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10x−
√
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.

For k ≤ 2, note that we have

p̃k
(
e±i arccos(k

2/4)
)
= k(k2 + 4)−1/2,

and so the curve C intersects itself on the real axis at the point w1 = k(k2 + 4)−1/2.
Thus C has a loop intersecting the real axis also at the point w2 = (k2 + 4)/(2k). For
k > 2, the curve C has no loops and it is like a conchoid, see for details [5]. Moreover,
the coefficients of p̃k are connected with k-Fibonacci numbers.

For any positive real number k, the k-Fibonacci number sequence {Fk,n}∞n=0 is defined
recursively by

(1.3) Fk,0 = 0, Fk,1 = 1 and Fk,n = kFk,n + Fk,n−1 for n ≥ 1.



When k = 1, we obtain the well-known Fibonacci numbers Fn. It is known that the nth

k-Fibonacci number is given by

(1.4) Fk,n =
(k − τk)n − τnk√

k2 + 4
,

where τk = (k −
√
k2 + 4)/2. If p̃k(z) = 1 +

∑∞
n=1 p̃k,nz

n, then we have

(1.5) p̃k,n = (Fk,n−1 + Fk,n+1)τ
n, n = 1, 2, 3, . . . ,

see also [5].

1.2. Lemma. [5] If f(z) = z +
∞∑
n=2

anz
n belongs to the class SLk, then we have

(1.6) |an| ≤ |τk|n−1 Fk,n,

where τk = (k −
√
k2 + 4)/2. Equality holds in (1.6) for the function

fk(z) =
z

1− kτkz − τ2kz2

=

∞∑
n=1

τn−1
k Fk,nz

n

= z +
(k −

√
k2 + 4)k

2
z2 + (k2 + 1)

(
(k −

√
k2 + 4)k

2
+ 1

)
z3 + · · · .(1.7)

2. The classical Fekete–Szegö functional
A typical problem in geometric function theory is to study a functional made up of

combinations of the coefficients of the original function. Let S be the class of univalent
functions f(z) = z+a2z

2+a3z
3+ · · · mapping D = {z ∈ C : |z| < 1} into C (the complex

plane). The classical Fekete–Szegö functional is Lλ = |a3 − λa22|, 0 < λ ≤ 1. Over the
years, many results have been found for the classical functional Lλ. Fekete and Szegö [1]
bounded Lλ by 1 + 2 exp(−2λ/(1 − λ)), for 0 ≤ λ < 1 and f ∈ S, where S denotes the
subclass of A consisting of functions univalent in D. This inequality is sharp for each λ.
In particular, for λ = 1, one has |a3 − a22| ≤ 1 if f ∈ S. Note that the quantity a3 − a22
represents Sf (0)/6, where Sf denotes the Schwarzian derivative (f ′′/f ′)′ − (f ′′/f ′)2/2
of locally univalent functions f in D. It is interesting to consider the behavior of Lλ for
subclasses of the class S. The Fekete–Szegö problem is to determine sharp upper bound
for Fekete–Szegö functional Lλ over a family F ⊂ S. In the literature, there exists a
large number of results about inequalities for a3−a22 corresponding to various subclasses
of S. In the present paper we obtain the Fekete–Szegö inequalities for the class SLk.
Before we consider how the Taylor series coefficients of functions in the class SLk might
be bounded, let us first recall this problem for the Caratheodory functions. Let P denote
the class of analytic functions p in D with p(0) = 1 and Re {p(z)} > 0.

2.1. Lemma. [2] Let p ∈ P with p(z) = 1 + c1z + c2z + · · · , then

(2.1) |cn| ≤ 2, for n ≥ 1.

If |c1| = 2, then p(z) ≡ p1(z) = (1 + xz)/(1 − xz) with x = c1/2. Conversely, if
p(z) ≡ p1(z) for some |x| = 1, then c1 = 2x. Furthermore, we have

(2.2) |c2 − c1/2| ≤ 2− |c1|2/2.

If |c1 < 2| and |c2 − c1/2| = 2− |c1|2/2, then p(z) ≡ p2(z), where

p2(z) =
1 + xwz + z(wz + x)

1 + xwz − z(wz + x)



and x = c1/2, w = (2c2 − c21)/(4− |c1|2). Conversely, if if p(z) ≡ p2(z) for some |x| < 1
and w = 1, then c1 = 2x, w = (2c2 − c21)/(4− |c1|2) and |c2 − c1/2| = 2− |c1|2/2.

2.2. Theorem. If p(z) = 1 + p1z + p2z
2 + · · · and

p(z) ≺ p̃k(z) =
1 + τ2kz

2

1− kτkz − τ2kz2
, τk =

k −
√
k2 + 4

2
, z ∈ D,

then we have

(2.3) |p1| ≤
(√
k2 + 4− k

)
k

2

and

(2.4) |p2| ≤ (k2 + 2)

{
(k −

√
k2 + 4)k

2
+ 1

}
.

The above estimations are sharp.

Proof. If p ≺ p̃k, then there exists an analytic function w such that |w(z)| ≤ |z| in D and
p(z) = p̃k(w(z)). Therefore, the function

h(z) =
1 + w(z)

1− w(z) = 1 + c1z + c2z + · · · (z ∈ D)

is in the class P(0). It follows that

(2.5) w(z) =
c1z

2
+

(
c2 −

c21
2

)
z2

2
+ · · ·

and

p̃k(w(z)) = 1 + p̃k,1

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+ · · ·

}
+ p̃k,2

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+ · · ·

}2

+ · · ·

= 1 +
p̃k,1c1

2
z +

{
1

2

(
c2 −

c21
2

)
p̃k,1 +

1

4
c21p̃k,2

}
z2 + · · ·

= p(z).(2.6)

From (1.5), we find the coefficients p̃k,n of the function p̃k given by

p̃k,n = (Fk,n−1 + Fk,n+1)τ
n.

This shows the relevant connection p̃k with the sequence of k-Fibonacci numbers

p̃k(z) = 1 +

∞∑
n=1

p̃k,nz
n

= 1 + (Fk,0 + Fk,2)τkz + (Fk,1 + Fk,3)τ
2
kz

2 + · · ·

= 1 + kτkz + (k2 + 2)τ2kz
2 + (k3 + 3k)τ3kz

3 + · · · .(2.7)

If p(z) = 1 + p1z + p2z
2 + · · · , then by (2.6) and (2.7), we have

(2.8) p1 =
kτkc1
2

and

(2.9) p2 =
kτk
2

(
c2 −

c21
2

)
+

(k2 + 2)

4
c21τ

2
k .



From (2.8) and (2.1) we directly obtain (2.3). From (2.9) and (2.2), we obtain

|p2| =
∣∣∣∣kτk2

(
c2 −

c21
2

)
+

(k2 + 2)

4
c21τ

2
k

∣∣∣∣
≤
∣∣∣∣kτk2

(
c2 −

c21
2

)∣∣∣∣+ ∣∣∣∣ (k2 + 2)

4
c21τ

2
k

∣∣∣∣
≤ k|τk|

2

(
2− 1

2
|c1|2

)
+

(k2 + 2)

4
|c1|2τ2k

= k|τk|+
|c1|2

4

(
(k2 + 2)τ2k − k|τk|

)
.(2.10)

Since τk = (k −
√
k2 + 4)/2, so it is easily verified that

(2.11) (k2 + 2)τ2k − k|τk| =
(k(k −

√
k2 + 4))(k2 + 3)

2
+ k2 + 2.

We want to show that (2.11) is positive for k > 0. Notice that

(2.12)
(k −

√
k2 + 4)(k3 + 3k)

2
+ k2 + 2 =

(k2 + 2)
√
k2 + 4− k3 − 4k

k +
√
k2 + 4

.

Thus, (2.11) is positive when

(2.13) (k2 + 2)
√
k2 + 4 > k3 + 4k, k > 0,

or equivalently, when

(2.14)
{
(k2 + 2)

√
k2 + 4

}2

>
{
k3 + 4k

}2
, k > 0.

The inequality (2.14) yields the inequality

(2.15) 4k2 + 16 > 0, k > 0,

which is evidently true, and hence (2.11) is positive. Therefore, (k2 +2)τ2k −|τk| > 0 and
from (2.10), we obtain

|p2| ≤ k|τk|+
|c1|2

4

(
(k2 + 2)τ2k − k|τk|

)
≤ k|τk|+ (k2 + 2)τ2k − k|τk|

= (k2 + 2)τ2k

= (k2 + 2)

{
(k −

√
k2 + 4)k

2
+ 1

}
.

Thus, the equality in estimations (2.3), (2.4) are attained by the coefficients of the func-
tion given by(2.7). �

2.3. Theorem. Let λ be real. If f(z) = z + a2z
2 + a3z

3 + · · · belongs to SLk, then

(2.16) |a3 − λa22| ≤ (k(k −
√
k2 + 4)/2 + 1)(k2 + 1 + k2|λ|).

The above estimation is sharp. If λ ≤ 0, then the equality in (2.16) is attained by the
function fk given in (1.6), and by the function −fk(−z) when λ ≥ 0.

Proof. For given f ∈ SLk, define p(z) = 1 + p1z + p2z
2 + · · · by

zf ′(z)

f(z)
= p(z) (z ∈ D),

where p ≺ p̃k in D. Hence

z + 2a2z
2 + 3a3z

3 + · · · =
{
z + a2z

2 + a3z
3 + · · ·

}{
1 + p1z + p2z

2 + · · ·
}



and

a2 = p1, 2a3 = p1a2 + p2.

Therefore, |a3−λa2| = |(p1a2 + p2)/2+λp21|. Using this and the bounds (2.3), (2.4) and
(1.6), we obtain

|a3 − λa22| = |(p1a2 + p2)/2− λp21|

≤ |p1||a2|+ |p2|
2

+ |λ||p21|

≤ k(k −
√
k2 + 4)/2 · k(k −

√
k2 + 4)/2 + (k2 + 2)(k(k −

√
k2 + 4)/2 + 1)

2

+ |λ|

{(√
k2 + 4− k

)
k

2

}2

=
k2(k(k −

√
k2 + 4)/2 + 1) + (k2 + 2)(k(k −

√
k2 + 4)/2 + 1)

2

+ |λ|

{(√
k2 + 4− k

)
k

2

}2

= (k2 + 1)(k(k −
√
k2 + 4)/2 + 1) + |λ|

{(√
k2 + 4− k

)
k

2

}2

= (k(k −
√
k2 + 4)/2 + 1)(k2 + 1 + k2|λ|).

�

2.4. Corollary. If g(z) = z+
∞∑
n=2

bnz
n, |z| < r0(g), r0(g) ≥ 1/4, is an inverse to f ∈ SLk,

then we have

|b2| ≤
(k −

√
k2 + 4)k

2
,(2.17)

|b3| ≤ (k(k −
√
k2 + 4)/2 + 1)(3k2 + 1).(2.18)

The above estimation is sharp. The equalities are attained by the function −if−1
k (iz),

where fk is given in (1.6).

Proof. For each f ∈ S, the Koebe one-quarter theorem ensures that the image of D under
f contains the disc of radius 1/4. If f(z) = z + a2z

2 + a3z
3 + · · · is univalent in D then,

f has the inverse f−1 with the expansion

(2.19) f−1(z) = z − a2z2 + (2a22 − a3)z3 + · · · , |z| < r0(f), r0(f) ≥ 1/4.

It was proved in [5] that functions in the class SLk are univalent in D. From Lemma 1.2
and (2.19), we obtain the inequality (2.17). Also, from Theorem 2.3 (with λ = 2) and
(2.19), we obtain the inequality (2.18). If f ∈ SLk, then the function −ifk(iz) satisfies



(1.1), so it belongs to the class SLk too. Moreover, from (1.6), we have

− if−1
k (iz)

= z + i
(k −

√
k2 + 4)k

2
z2

−

{
2

(
(k −

√
k2 + 4)k

2

)2

+ (k2 + 1)

(
(k −

√
k2 + 4)k

2
+ 1

)}
z3 + · · ·

= z + i
(k −

√
k2 + 4)k

2
z2 − (k(k −

√
k2 + 4)/2 + 1)(3k2 + 1)z3 + · · · .

This shows that the equalities in (2.17) and (2.18) are attained by the second and third
coefficients of the function −if−1

k (iz). �

References
[1] M. Fekete, G. Szegö, Eine Bemerung über ungerade schlichte Functionen, J. Lond. Math.

Soc. 8(1933) 85–89.
[2] C. Pommerenke, Univalent Functions, in: Studia Mathematica Mathematische Lehrbucher,

Vandenhoeck and Ruprecht, 1975.
[3] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech.

Resoviensis 175(23)(1999), 111–116.
[4] J. Sokół, Remarks on shell-like functions, Folia Scient. Univ. Tech. Resoviensis

181(24)(2000), 111–115.
[5] N. Yilmaz Özgür, J. Sokół, On starlike functions connected with k-Fibonacci numbers, Bull.

Malaysian Math. Sci. Soc. 38(1)(2015), 249-258.




