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Hosein Parvizi Mosaed ∗ , Ali Iranmanesh † , Mahnaz Foroudi Ghasemabadi ‡

and Abolfazl Tehranian §

Abstract
Let G be a group and π(G) be the set of primes p such that G contains
an element of order p. Let nse(G) be the set of numbers of elements
of G of the same order. In this paper, we prove that the simple group
L2(2

m) is uniquely determined by nse(L2(2
m)), where |π(L2(2

m))| = 4.
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1. Introduction

Let G be a group. By π(G), we denote the set of primes p such that G contains an
element of order p and by πe(G) we mean the set of element orders of G. If k ∈ πe(G),
then mk denotes the number of elements of order k in G and we define the set nse(G) =
{mk | k ∈ πe(G)}.

During the classification of the finite simple groups, it has been observed that some of
the known simple groups are characterizable by some of their properties and up to now,
different characterizations are investigated for the finite simple groups. For instance, in
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[16], motivated by one of the Thompson’s problem, the authors introduced a new char-
acterization for the finite simple group G, by nse(G) and |G|. In fact, they proved that if
G is a finite simple K4-group, then G is characterizable by nse(G) and |G| (The simple
group G is called simple Kn-group if |π(G)| = n). Following this result, in [7] and [17],
it is proved that the group L2(q), where q ∈ {3, 4, 5, 7, 8, 9, 11, 13} is determined only by
nse(G). Up to the present time, it has been investigated that some other simple groups
can be characterized by nse(G) and |G| or only by nse(G) (see for instance [9]-[12]). In
this paper, our aim is to show that the simple K4-group L2(2

m) is characterizable by
nse(L2(2

m)). In fact, we improve the results of [16] in the following main theorem:

Main Theorem. Let G be a group. If nse(G) = nse(L2(2
m)), where m, 2m − 1

and (2m + 1)/3 are primes greater than 3, then G ∼= L2(2
m).

2. Notation and Preliminaries

For a natural number n, by π(n), we mean the set of all prime divisors of n, so it
is obvious that if G is a finite group, then π(G) = π(|G|). A Sylow p-subgroup of G is
denoted by Gp and by np(G), we mean the number of Sylow p-subgroups of G. Also, the
largest element order of Gp is denoted by exp(Gp). Moreover, we denote by ϕ, the Euler
totient function and by (a, b) the greatest common divisor of integers a and b.

In the following, we bring some useful lemmas which will be used in the proof of the
main theorem.

2.1. Lemma. [2, 6, 15, 20] Let G be a finite simple Kn-group.
(1) If n = 3, then G is isomorphic to one of the following groups:

A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), U4(2).
(2) If n = 4, then G is isomorphic to one of the following groups:

(a) A7, A8, A9, A10, M11, M12, J2, L2(16), L2(25), L2(49),
L2(81), L2(97), L2(243), L2(577), L3(4), L3(5), L3(7),
L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2),
O+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3),
U5(2), Sz(8), Sz(32),

3D4(2),
2F4(2)

′;
(b) L2(r), where r is a prime, r2 − 1 = 2a.3b.v, v > 3 is a prime, a, b ∈ N;
(c) L2(2

m), where m, 2m − 1 and (2m + 1)/3 are primes greater than 3;
(d) L2(3

m), where m, (3m − 1)/2 and (3m + 1)/4 are odd primes.

2.2. Lemma. [4] Let G be a finite group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G | gm = 1}, then m | |Lm(G)|.

2.3. Lemma. [17] Let G be a group containing more than two elements. Let k ∈ πe(G)
and mk be the number of elements of order k in G. If s = sup{mk | k ∈ πe(G)} is finite,
then G is finite and |G| ≤ s(s2 − 1).

2.4. Lemma. [13] Let G be a finite group and p ∈ π(G)\{2}. Suppose that P is a Sylow
p-subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic and s > 1, then the
number of elements of order n is always a multiple of ps.

2.5. Lemma. [18, Theorem 3] Let G be a finite group. Then the number of elements
whose orders are multiples of n is either zero, or a multiple of the greatest divisor of order
G that is prime to n.

2.6. Lemma. [14] Let the finite group G acts on the finite set X. If the action is
semiregular, then |G| | |X|.
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2.7. Lemma. [5] Let G be a solvable group and π be any set of primes. Then
(1) G has a Hall π-subgroup.
(2) If H is a Hall π-subgroup of G and V is any π-subgroup of G, then V ≤ Hg for

some g ∈ G. In particular, the Hall π-subgroups of G form a single conjugacy
class of subgroups of G.

2.8. Lemma. Let G be an unsolvable finite group. Then there is a normal series 1 �

N �M �G, such that N is a solvable normal subgroup of G and M/N is an unsolvable
simple group or the direct product of isomorphic unsolvable simple groups.

Proof. Since G is a finite group, it has a chief series 1 =M0�M1� . . .�Mn−1�Mn = G.
Also, since G is unsolvable, there is a maximal i < n, such that Mi−1 is solvable. Ac-
cording to the maximality of i, we can easily conclude that the chief factor Mi

Mi−1
is

unsolvable. Since each chief factor is a simple group or the direct product of isomorphic
simple groups, it is enough to set N :=Mi−1 and M :=Mi. 2

The following number theoretic lemmas play a role in the proof of the main theorem:

2.9. Lemma. [19] Let q, k, l be natural numbers. Then
(1) (qk − 1, ql − 1) = q(k,l) − 1;

(2) (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l)
and l

(k,l)
are odd,

(2, q + 1) otherwise;

(3) (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l)
is even and l

(k,l)
is odd,

(2, q + 1) otherwise;

In particular, for every q ≥ 2, k ≥ 1 the inequality (qk − 1, qk + 1) ≤ 2 holds.

2.10. Lemma. Let m be a natural number. Then
(1) 3 divides 2m − 1 if and only if m is even.
(2) 3 divides 2m + 1 if and only if m is odd.

Proof. On account of Lemma 2.9, the proof is straightforward. 2

2.11. Lemma. [3, Remark 1] The only solution of the equation pm − qn = 1, where p, q
are primes and m,n > 1, is 32 − 23 = 1.

2.12. Lemma. [1] Let p be a prime number.
(1) If p 6= 3, then x2 ≡ −3 (mod p) is solvable if and only if p ≡ 1 (mod 3).
(2) The equation x2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).

2.13. Lemma. [8] Let p 6= 3 be a prime number.
(1) If the diophantine equation 3x2 + 1 = tpk has a solution, then p ≡ 1 (mod 3).
(2) If the diophantine equation x2n +xn +1 = tpk or x2n−xn +1 = tpk is solvable,

then p ≡ 1 (mod 3).

2.14. Lemma. Let m be a natural number such that{
2m − 1 = u

2m + 1 = 3t

with m ≥ 2, u and t are primes, t > 3. Then the following hold:
(a) (u− 1, t) = 1, (u− 1, t− 1) = t− 1, (u− 1, 2m) = 2, (u+ 1, t) = 1;
(b) (t− 1, u) = 1, (t− 1, 2m) = 2, (t+ 1, u) = 1;
(c) (u, t) = 1, (u, 3) = 1, (u, 2) = 1, (t, 3) = 1, (t, 2) = 1;
(d) π(t− 1) \ {2, 3, t, u} 6= ∅;
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(e) 3 | (1 + 2mu) but 9 - (1 + 2mu).

Proof. (a) Since t is a prime, (u− 1, t) = 1 or t. If (u− 1, t) = t, then t | (u− 1). Hence
(2m+1) | 3(2m−2) = 3(2m+1)−9. Therefore (2m+1) | 9 which implies that m ∈ {1, 3}
but this contradicts t > 3. So (u− 1, t) = 1. We have (u− 1, t− 1) = (2m − 2, 2m−2

3
) =

2m−2
3

= (t − 1). Since (2m−1 − 1, 2m−1) = 1, we conclude that (2m − 2, 2m) = 2 and
hence, (u− 1, 2m) = 2. Since t is odd, (2m, t) = 1 which implies that (u+ 1, t) = 1.
(b) Since u is a prime, (t−1, u) = 1 or u. If (t−1, u) = u, then u | (t−1) | (u−1), which
is a contradiction. So (t−1, u) = 1. Since (2m−1−1, 2m−1) = 1, we have (2m−2, 2m) = 2
and hence (t− 1, 2m) = 2. According to the hypothesis, u is a prime number and hence,
(t+ 1, u) = 1 or u. If (t+ 1, u) = u, then (2m − 1) | (2m−2 + 1) because u is odd. Thus
(2m − 1) ≤ (2m−2 + 1), which is a contradiction. So (u, t+ 1) = 1.
(c) It is obvious.
(d) By (b), (t − 1, u) = 1. Thus u /∈ π(t − 1). Also, it is obvious that t /∈ π(t − 1). If
π(t − 1) = {2, 3}, then 2m − 2 = 2.3k. Thus 2m−1 − 1 = 3k. Therefore 2m−1 − 3k = 1,
that by Lemma 2.11, is a contradiction. If π(t − 1) = {2}, then 2m−2

3
= 2. Hence

2m−1 − 1 = 3. Therefore m = 3, which is a contradiction. If π(t − 1) = {3}, then t − 1
is odd but we have 2 | (t− 1), which is a contradiction. So there is a prime p ∈ π(t− 1)
such that p 6= 2, 3, t, u.
(e) Since 2m+1 = 3t, 3 | (2m+1) and hence 3 | (22m−1). Thus 3 | (22m−1−2m−1+3) =
(22m − 2m + 1) = (1 + 2mu). Now, we are going to prove that 9 - (1 + 2mu). First we
claim that (m, 3) = 1. If not, then (m, 3) = 3 and since 3 | (2m + 1), according to
Lemma 2.10(2), we have m is odd and hence, m = 3k, where k is an odd number. Thus
u = (2m−1) = (23k−1) = (8k−1) = (8−1)(8k−1+8k−2+. . .+8+1) and since u = 2m−1
is a prime number, we conclude that k = 1 andm = 3, which contradicts t > 3. Therefore
(m, 3) = 1. If 9 | (1+2mu) = (22m−2m+1), then 27 | (2m+1)(22m−2m+1) = (23m+1).
Thus 27 | (23m + 1, 218 − 1). Since (m, 3) = 1, we have (18, 3m) = 3 and hence Lemma
2.9 (3) implies that (23m + 1, 218 − 1) = 9, which is a contradiction. 2

2.15. Lemma. Assume that the hypotheses of Lemma 2.14 are fulfilled. Further let
x = 2m and let p be a prime number such that p /∈ {2, 3, t, u} and (p, u− 1) = 1.

(1) Let p | x3 − 3x2 + 2x+ 3.
(a) If p | x+ 4, then p = 13;
(b) If p | x2 + x− 4, then p = 101;
(c) If p | x2 + x+ 3, then p = 23;
(d) If p | x2 + 4x+ 6, then p = 43;
(e) If p | x2 − 2, then p = 23;
(f) p - 2x+ 1.

(2) Let p | x2 − 4x+ 6.
(a) If p | 2x+ 1, then p = 11;
(b) If p | x+ 4, then p = 19;
(c) If p | x2 + x− 4, then p = 5;
(d) If p | x2 + x+ 3, then p = 11;
(e) p - x2 + 4x+ 6 and p - x2 − 2.

(3) Let p | x2 − 2.
(a) If p | 2x+ 1, then p = 7;
(b) If p | x+ 4, then p = 7 and p | 2x+ 1;
(c) p - x2 + x− 4.

Proof.
• Let p | x3 − 3x2 + 2x+ 3.
If p | x+4, then p | (x3−3x2+2x+3)−(x2−7x)(x+4) = 3(10x+1) and since (p, 3) = 1,



879

we conclude that p | 10x+1. Therefore, p | (10x+1)− 10(x+4) = −3(13) which implies
that p = 13. If p | x2+x−4, then p | (x3−3x2+2x+3)− (x−4)(x2+x−4) = 10x−13.
Thus p | −13(x2 +x− 4)+4(10x− 13) = −x(13x− 27) and since (p, x) = 1, we conclude
that p | 13x− 27. Therefore, p | 10(13x− 27)− 13(10x− 13) = −101 which implies that
p = 101. If p | x2 + x+ 3, then p | (x3 − 3x2 + 2x+ 3)− (x− 4)(x2 + x+ 3) = 3(x+ 5).
Thus p | (x2 + x + 3) − (x − 4)(x + 5) = 23 and hence, p = 23. If p | x2 + 4x + 6,
then p | −2(x3 − 3x2 + 2x + 3) + (x2 + 4x + 6) = x2(−2x + 7). Thus p | −2x + 7. On
the other hand, p | (x3 − 3x2 + 2x + 3) − (x − 7)(x2 + 4x + 6) = 24x + 45. Therefore,
p | (24x + 45) + 12(−2x + 7) = 3(43) which implies that p = 43. If p | x2 − 2, then
p | (x3 − 3x2 + 2x + 3) − (x − 3)(x2 − 2) = 4x − 3. On the other hand, p | (x2 −
2) + (4x − 3) = (x − 1)(x + 5) and since (p, x − 1) = 1, we conclude that p | x + 5.
Thus p | −4(x + 5) + (4x − 3) = −23 which implies that p = 23. If p | 2x + 1, then
p | (x3 − 3x2 + 2x + 3) − 3(2x + 1) = x(x + 1)(x − 4) and since (p, x) = (p, x + 1) = 1,
we conclude that p | x− 4. Thus p | (2x+ 1)− 2(x− 4) = 9, which is a contradiction to
the fact that (p, 3) = 1.
• Let p | x2 − 4x+ 6.
If p | 2x + 1, then p | −2(x2 − 4x + 6) + x(2x + 1) = 3(3x − 4) and since (p, 3) = 1, we
conclude that p | 3x−4. Therefore, p | 3(2x+1)−2(3x−4) = 11 which implies that p = 11.
If p | x+4, then p | (x2−4x+6)−x(x+4) = −2(4x−3) and since (p, 2) = 1, we conclude
that p | 4x− 3. Thus p | (4x− 3)− 4(x+ 4) = −19 and hence, p = 19. If p | x2 + x− 4,
then p | 4(x2 − 4x+ 6) + 6(x2 + x− 4) = 10x(x− 1) and since (p, x− 1) = (p, 2) = 1, we
conclude that p = 5. If p | x2 + x+ 3, then p | −(x2 − 4x+ 6) + (x2 + x+ 3) = (5x− 3).
Thus p | (x2+x+3)+(5x−3) = x(x+6) and since (p, 2) = 1, we conclude that p | x+6.
Therefore, p | 5(x+ 6)− (5x− 3) = 3(11) which implies that p = 11. If p | x2 + 4x+ 6,
then p | −(x2 − 4x+ 6) + (x2 + 4x+ 6) = 8x. Thus p | 2 which is a contradiction to the
fact that (2, p) = 1. If p | x2 − 2, then p | (x2 − 4x + 6) − (x2 − 2) = −4(x − 2). Since
(p, 2) = (p, x− 2) = 1, we get a contradiction.
• Let p | x2 − 2.
If p | 2x+1, then p | −2(x2−2)+x(2x+1) = (x+4). Therefore, p | (2x+1)−2(x+4) = −7
which implies that p = 7. If p | x+4, then p | −(x2− 2)+x(x+4) = 2(2x+1) and since
(p, 2) = 1, we conclude that p | 2x + 1. Thus p | (2x + 1) − 2(x + 4) = −7 and hence,
p = 7. If p | x2 + x− 4, then p | −(x2 − 2) + (x2 + x− 4) = (x− 2). Since (p, x− 2) = 1,
we get a contradiction. 2

3. Proof of the Main Theorem

We know that nse(G) = nse(L2(2
m)), where m satisfies{

2m − 1 = u

2m + 1 = 3t

m ≥ 2, u and t are primes, t > 3. Denote x = 2m. According to [16], we know that
π(L2(2

m)) = {2, 3, t, u} and
nse(L2(2

m)) = {1, 3tu, 2mu, (t− 1)2mu, 1/2(t− 1)2mu, 1/2(u− 1)2m3t} .
We have divided the proof into a sequence of lemmas.

3.1. Lemma. The group G is finite. If i ∈ πe(G), then{
ϕ(i) | mi

i |
∑

d|imd

(3.1)

and if i > 2, then mi is even.
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Proof. Since nse(G) = nse(L2(2
m)), according to Lemma 2.3, G is a finite group. Now,

if i ∈ πe(G), then Lemma 2.2 implies that i |
∑

d|imd. We know that the number of
elements of order i in a cyclic group of order i is equal to ϕ(i). Thus mi = ϕ(i)k, where k
is the number of cyclic subgroups of order i in G and hence, ϕ(i) | mi. Also, it is known
that if i > 2, then ϕ(i) is even and since ϕ(i) | mi, we conclude that mi is even as well.
2

3.2. Lemma. |π(G)| ≥ 2.

Proof. Since 3tu ∈ nse(G), Lemma 3.1 yields 2 ∈ π(G) and m2 = 3tu. Let π(G) = {2}.
Then |G| = 2k. If exp(G2) > 2m+2, then 2m+3 ∈ πe(G) and hence 2m+2 = ϕ(2m+3) |
m2m+3 , which is a contradiction. Thus exp(G2) ≤ 2m+2 and we have

|G| = 1 + 3tu+ k12
mu+ k2(t− 1)2mu+(3.2)

k31/2(t− 1)2mu+ k41/2(u− 1)2m3t

where k1, k2, k3 and k4 are natural numbers and k1+k2+k3+k4 ≤ m+1. Since u = x−1
and t = (x+ 1)/3, we can conclude that |G| divides

(2k2 + k3 + 3k4)x
3 + (6 + 6k1 − 6k2 − 3k3 − 3k4)x

2 + (−6k1 + 4k2 + 2k3 − 6k4)x.

Moreover, since 1 +m2 = 22m, we conclude that 22m < 2k and hence x2 | |G|. Thus x2

divides

(2k2 + k3 + 3k4)x
3 + (6 + 6k1 − 6k2 − 3k3 − 3k4)x

2 + (−6k1 + 4k2 + 2k3 − 6k4)x

which implies that x | 6k1 − 4k2 − 2k3 + 6k4. Since

6k1 − 4k2 − 2k3 + 6k4 < 6(k1 + k2 + k3 + k4) ≤ 6(m+ 1),

we conclude that 2m ≤ (6m + 6). Thus m = 5 which implies that u = 31 and t = 11.
From (3.2) we have

2k = 1 + 1023 + 992k1 + 9920k2 + 4960k3 + 15840k4,

where k1 + k2 + k3 + k4 ≤ 6 and it is easy to check that this equation has no solution. 2

3.3. Lemma. π(G) 6= {2, 3}.

Proof. Let π(G) = {2, 3}. If G3 is a cyclic group of order 3k, then n3(G) =
m

3k

ϕ(3k)
=

m
3k

2(3k−1)
and hence, according to nse(G) and Lemma 2.14(c), we can conclude that t or u

divides n3(G). On the other hand, since n3(G) divides |G|, we can get a contradiction.
Thus G3 is not cyclic and according to Lemmas 2.2 and 2.4, we have 9 | 1 + m3. If
m3 = 2mu, then since by Lemma 2.14, 9 - 1 + 2mu, we can get a contradiction. Also,
since (3,m3) = 1, we conclude thatm3 6= 1/2(u−1)2m3t. Thusm3 ∈ {(t−1)2mu, 1/2(t−
1)2mu} which implies that

(3, t− 1) = 1.(3.3)

If 6 /∈ πe(G), then by Lemma 2.6, |G3| | m2. According to Lemma 3.2, m2 = 3tu and
hence Lemma 2.14 implies that G3 is cyclic, which is a contradiction. Thus 6 ∈ πe(G).
Since 6 | 1+m2+m3+m6 and 3 | 1+m2+m3, we conclude that 3 | m6. Now according
to nse(G) and (3.3), we have m6 = 1/2(u− 1)2m3t and hence, 9 | m6.
Now we have the following two cases:
Case 1. Let exp(G3) = 3. Then by Lemma 2.5, 9 |

∑
i≥2m2i +

∑
i≥2m2i3 and

9 |
∑

i≥1m2i +
∑

i≥1m2i3. Thus 9 | m2 + m6 and since 9 | m6, we conclude that
9 | m2, which is a contradiction.
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Case 2. Let exp(G3) > 3. If 18 /∈ πe(G), then similar to Case 1, we can get a contradic-
tion. If 18 ∈ πe(G), then according to Lemma 2.4, 9 | m2i3j , where i ≥ 0, j ≥ 2. Since
18 ∈ πe(G), we have 18 | 1 +m2 +m3 +m6 +m9 +m18. On the other hand, 9 | m6 and
according to Lemma 3.1, 9 | 1 +m3 +m9 and hence, 9 | m2, which is a contradiction. 2

3.4. Lemma. π(G) ⊆ {2, 3, t, u}.

Proof. Suppose, contrary to our claim, that p ∈ π(G) \ {2, 3, t, u}. To obtain a contra-
diction, in the following six steps we will prove that there is no choice for mp in nse(G).
Step 1. mp 6= 2mu and (p, t− 1) = 1.
If mp = 2mu, then according to (3.1), p | (1 + mp) = (22m − 2m + 1). Thus Lemma
2.13 implies that 3 | (p − 1). On the other hand, by (3.1), we have p − 1 | mp

and hence, 3 | mp, which is impossible according to Lemma 2.14. Therefore, mp ∈
{(t − 1)2mu, 1/2(t − 1)2mu, 1/2(u − 1)2m3t}. Since (p,mp) = 1, we conclude that
(p, t− 1) = 1.
Step 2. exp(Gp) = p.
If exp(Gp) > p, then p2 ∈ πe(G). Since p(p − 1) = ϕ(p2) | mp2 , we conclude that p
divides one of the numbers 2, 3, t, u, (t− 1), which is a contradiction. So exp(Gp) = p.
Step 3. If q ∈ πe(G) \ {1} and (q, p) = 1, then qp ∈ πe(G) and p | mq +mqp.
If qp /∈ πe(G), then Lemma 2.6 implies that |Gp| | mq. Now according to nse(G),
we conclude that p divides one of the numbers 2, 3, t, u, (t − 1), which is a contradic-
tion. Thus qp ∈ πe(G). Let q = qs11 . . . q

sk
k , where q1, . . . , qk are distinct prime num-

bers and k, s1, . . . , sk are natural numbers. We prove p | mq + mqp by induction on
s = s1 + . . . + sk. Let s = 1. Then q is a prime number and according to (3.1),
we have p | 1 + mp + mq + mqp and since p | 1 + mp, we can easily conclude that
p | mq +mqp. Let s = 2. Then there exist 1 ≤ i < j ≤ k such that q = qiqj or q = q2i . If
q = qiqj , then we have p | 1+mp +mqi +mqj +mqip +mqjp +mqiqj +mqiqjp and since
p | 1+mp, mqi +mqip, mqj +mqjp, we conclude that p | mqiqj +mqiqjp, as desired. The
case q = q2i is similar and we omit the details for the sake of convenience. Now, assume
the statement is true for the values less than s. We have

p |
∑
d|qp

md =
∑
d|qp

d6=q,qp

md +mq +mqp.

Moreover, according to induction hypothesis, p |
∑

d|qp
d6=q,qp

md. Therefore, p | mq +mqp.

Step 4. There is q ∈ πe(G) such that (q, p) = 1, mq = 2mu or mqp = 2mu. Moreover,
we have p | mq +mpq.
According to nse(G), there exists i ∈ πe(G) such that mi = 2mu. If (i, p) = 1, then
according to Step 3, we have p | mi +mip. So it is enough to assume q := i. If (i, p) 6= 1,
then since according to Step 2, exp(Gp) = p, we have i = qp, where (q, p) = 1 and
q ∈ πe(G) \ {1}. According to Step 3, we have p | mi +mip.
Step 5. mp 6= (t− 1)2mu.
If mp = (t− 1)2mu, then since p | 1 +mp, we have p | x3 − 3x2 + 2x+ 3. By using Step
4, we have the following five cases:
Case 1. If {mq,mqp} = {2mu, 3tu}, then p | mq +mqp and hence p | 2x + 1, which is
impossible according to Lemma 2.15(1).
Case 2. If {mq,mqp} = {2mu, 2mu}, then p | mq +mqp and hence p = 2 or u, which is
contradiction.
Case 3. If {mq,mqp} = {2mu, (t − 1)2mu}, then p | mq +mqp and hence p = 2 or t or
u, which is contradiction.
Case 4. If {mq,mqp} = {2mu, 1/2(t − 1)2mu}, then p | mq +mqp and hence p | x + 4.
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Thus Lemma 2.15(1) implies that p = 13. On the other hand, in this case q 6= 2 and
hence Step 3 implies that p | m2 + m2p. Thus p divides one of the numbers (2x + 1),
(x2+x+3), (x2+4x+6) or (x2−2). Lemma 2.15 now yields p ∈ {23, 43}, a contradiction.
Case 5. If {mq,mqp} = {2mu, 1/2(u−1)2m3t}, then p | mq+mqp and hence p | x2+x−4.
Thus Lemma 2.15(1) implies that p = 101. On the other hand, similar to Case 4,
p | m2 +m2p and hence p = 23 or 43, which is a contradiction.
Step 6. mp /∈ {1/2(t− 1)2mu, 1/2(u− 1)2m3t}.
Ifmp = 1/2(t−1)2mu ormp = 1/2(u−1)2m3t, then since p | 1+mp, we have p | x2−4x+6
or p | x2−2, respectively. In the former case, similar argument as stated in Step 5 leads us
to a contradiction. So, it is enough to consider the case p | x2−2 formp = 1/2(u−1)2m3t.
According to Step 4, we have the following five cases:
Case 1. If {mq,mqp} = {2mu, 3tu}, then p | mq + mqp and hence p | 2x + 1. Thus
Lemma 2.15(3) implies that p = 7. On the other hand, p | 2x + 1, hence Lemma 2.12
implies that 4 | (p− 1) = 6, which is contradiction.
Case 2. If {mq,mqp} = {2mu, 2mu}, then p | mq +mqp and hence p = 2 or u, which is
contradiction.
Case 3. If {mq,mqp} = {2mu, (t − 1)2mu}, then p | mq +mqp and hence p = 2 or t or
u, which is contradiction.
Case 4. If {mq,mqp} = {2mu, 1/2(t − 1)2mu}, then p | mq +mqp and hence p | x + 4.
Thus Lemma 2.15(3) implies that p = 7. On the other hand, p | 2x + 1, hence Lemma
2.12 implies that 4 | (p− 1) = 6, which is contradiction.
Case 5. If {mq,mqp} = {2mu, 1/2(u−1)2m3t}, then p | mq+mqp and hence p | x2+x−4.
Thus Lemma 2.15(3) implies a contradiction. 2

3.5. Lemma. If t ∈ π(G), then u ∈ π(G).

Proof. The proof will be divided into the following four steps.
Step 1. mt = 1/2(t− 1)2mu.
According to Lemma 3.1, we have mt 6= 1 and (mt, t) = 1 and hence mt 6= 3tu, 1/2(u−
1)2m3t. If mt = 2mu, then Lemma 3.1 implies that t | 1 + mt and hence x + 1 |
3x2− 3x+3 = (x+1)(3x− 6)+9. Thus x+1 | 9. So m = 3, which is a contradiction. If
mt = (t−1)2mu, then t | 1+mt and hence x+1 | x3−3x2+2x+3 = (x+1)(x2−4x+6)−3.
Thus x+ 1 | 3. So m = 1, which is a contradiction. Therefore, mt = 1/2(t− 1)2mu.
Step 2. t2 /∈ πe(G).
If t2 ∈ πe(G), then by (3.1), we have t(t − 1) = ϕ(t2) | mt2 . Hence Lemma 2.14 im-
plies that mt2 = 1/2(u − 1)2m3t. Since t2 | 1 +mt +mt2 , we conclude that (x + 1)2 |
(x+ 1)2(6x− 21) + 30(x+ 1). So (x+ 1) | 30, which is a contradiction.
Step 3. |Gt| = t and nt(G) = mt

ϕ(t)
= 1/2(2mu).

Since t2 /∈ πe(G), Lemma 2.2 implies that |Gt| | 1 + mt. If t2 | |Gt|, then 2(x + 1)2 |
(x + 1)2(3x − 15) + 33(x + 1). Thus (x + 1) | 33 which implies that m = 5, t = 11 and
nse(G) = {1, 992, 1023, 4960, 9920, 15840}. Since 2 ∈ π(G), there is the largest element
2 ≤ i of πe(G) such that (i, 11) = 1. By Step 2, 112 /∈ πe(G). Thus

∑
i|dmd = mi +m11i

or mi and hence Lemma 2.5 implies that 112 | |G11| | mi + m11i or mi. But accord-
ing to nse(G), we can get a contradiction. Therefore, |Gt| = t which implies that
nt(G) = mt

ϕ(t)
= 1/2(2mu).

Step 4. u ∈ π(G).
According to Step 3, since nt(G) = 1/2(2mu) and nt(G) | |G|, we conclude that u ∈ π(G).
2

3.6. Lemma. π(G) = {2, 3, t, u}.
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Proof. According to Lemmas 3.2-3.5, we can conclude that {2, u} ⊆ π(G) ⊆ {2, 3, t, u}.
In the following three steps, we show nu(G) = 2m−13t which completes the proof.
Step 1. mu = 1/2(u− 1)2m3t.
According to Lemma 3.1, we have mu 6= 1 and (mu, u) = 1 and hence, according to
nse(G), it is obvious that mu = 1/2(u− 1)2m3t.
Step 2. u2 /∈ πe(G).
If u2 ∈ πe(G), then by (3.1), u(u− 1) = ϕ(u2) | mu2 . But according to Lemma 2.14 and
nse(G) we can easily see that there is no choice for mu2 . Therefore, u2 /∈ πe(G).
Step 3. |Gu| = u.
Since u2 /∈ πe(G), Lemma 2.2 implies that |Gu| | 1 + mu. If u2 | 1 + mu, then
(x − 1)2 | (x − 1)2(x + 1) − (x − 1) which implies that (x − 1) | 1, a contradiction.
So |Gu| = u and nu(G) = mu

ϕ(u)
= 2m−13t. 2

3.7. Lemma. m3 = 2mu.

Proof. According to Lemma 3.1, we have m3 6= 1 and (m3, 3) = 1 and hence, m3 6=
3tu, 1/2(u − 1)2m3t. If m3 = 1/2(t − 1)2mu, then by (3.1), we have 3 | 1 +m3. Thus
18 | (x+ 1)(x2 − 4x+ 6). Lemma 2.14 now yields 3 | (x2 − 4x+ 6) and hence, 3 | (x− 4)
which implies that 3 | (2m−2 − 1). Thus according to Lemma 2.10, 3 | (2m − 1) = u,
which contradicts Lemma 2.14(c). Also, if m3 = (t − 1)2mu, then by (3.1), we have
3 | 1 +m3 and hence, 9 | 3 + (x− 2)x(x− 1). This implies that 3 | (x− 2)x(x− 1) and
9 - (x − 2)x(x − 1). Since according to Lemma 2.14(c), we have (2, 3) = (u, 3) = 1, so
3 | (x − 2) and 9 - (x − 2). Now we claim that 3t 6∈ πe(G). Indeed, if 3t ∈ πe(G), then
m3t = ϕ(3t)nt(G)k, where k is the number of cyclic subgroups of order 3 in CG(Gt).
Actually, this follows from the fact that all centralizers of Sylow t-subgroups of G in
G are conjugate in G. So we have (t − 1)2mu = ϕ(3t)nt(G) | m3t which implies that
m3t = (t− 1)2mu. Since by (3.1), 3t | 1 +m3 +mt +m3t and t | 1 +mt and m3 = m3t,
we conclude that t | (2m3) = (t− 1)2m+1u, which is a contradiction according to Lemma
2.14(c). Therefore, 3t 6∈ πe(G) which implies that G3 acts fixed point freely on the set of
elements of order t by conjugation. Lemma 2.6 now leads to |G3| | mt. Now, according
to Lemma 2.14(c), we conclude that |G3| | 1/3(x − 2). Since 3 | (x − 2) but 9 - (x − 2),
we conclude that |G3| = 1, which is a contradiction. 2

3.8. Lemma. 9 /∈ πe(G).

Proof. If 9 ∈ πe(G), then according to (3.1), we have 6 = ϕ(9) | m9 and by Lemma 2.14
and nse(G), we conclude that m9 ∈ {(t− 1)2mu, 1/2(t− 1)2mu, 1/2(u− 1)2m3t}. So we
have the following two cases:
Case 1. If m9 = 1/2(u−1)2m3t = 1/2(t−1)2m9t, then 9 | m9. On the other hand, (3.1)
implies that 9 | 1 +m3 +m9 and hence, 9 | 1 +m3, which contradicts Lemma 2.14(e).
Case 2. If m9 = (t − 1)2mu or 1/2(t − 1)2mu, then by (3.1), 9 | 1 +m3 +m9. Since
by Lemma 2.14(e), 3 | 1 +m3 and 9 - 1 +m3, we conclude that 3 | m9 and 9 - m9 and
hence 3 | (t − 1) and 9 - (t − 1). Lemma 2.4 yields G3 is a cyclic group of order 3k,
where k ≥ 2. Thus by (3.1), n3(G) =

m
3k

ϕ(3k)
=

m
3k

2(3k−1)
and also, from (3.1) and Lemma

2.14, we conclude that m3k ∈ {(t − 1)2m−19t, (t − 1)2m−1u, (t − 1)2mu}. Therefore,
n3(G) ∈ { (t−1)2m−29t

3k−1 , (t−1)2m−2u

3k−1 , (t−1)2m−1u

3k−1 }. Moreover, according to Lemma 2.14(d),
there is a prime p ∈ π(t − 1) \ {2, 3, t, u} which implies that p | n3(G). But since
n3(G) | |G|, we conclude that p ∈ π(G), a contradiction. 2

3.9. Lemma. |Gu| = u, |Gt| = t, |G2| | 2m, |G3| = 3 and hence, |G| = 2k3tu, where
k ≤ m.
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Proof. According to Lemmas 3.5 and 3.6, we have |Gu| = u and |Gt| = t. Since 9 /∈ πe(G),
Lemma 2.2 implies |G3| | 1 +m3 and hence, Lemma 2.14(e) leads to |G3| = 3. We know
that 2u 6∈ πe(G). Actually, this follows by the same method as in Lemma 3.7. Therefore,
G2 acts fixed point freely on the set of elements of order u by conjugation and Lemma
2.6 implies that |G2| | mu and hence, according to Lemma 2.14, we have |G2| | 2m. 2

3.10. Lemma. G is unsolvable.

Proof. If G is solvable, then by Lemma 2.7, G has a Hall π-subgroup H, where π =
{3, t, u} and all the Hall π-subgroups of G are conjugate and hence, |G : NG(H)| | 2m.
Since |H| = 3tu, we conclude that nu(H) ∈ {1, 3, t, 3t} and according to Sylow theorem,
we have nu(H) ≡ 1 (mod u) and hence Lemma 2.14 implies that nu(H) = 1. On the
other hand, we can easily see that

nu(G) | nu(H).|G : NG(H)|.|NG(H) : H| | 2m+k.

Also, since the Sylow u-subgroups of G are cyclic, we havemu = (u−1).nu(G) and hence,
mu | 2m+k(u− 1), but according to Lemma 3.6, Step 1, we have mu = 1/2(u− 1)2m3t,
which is a contradiction. 2

3.11. Lemma. G ∼= L2(2
m).

Proof. Since G is a finite unsolvable group, according to Lemma 2.8, there is a normal
series 1�N �M �G, such that N is a normal solvable subgroup of G and M/N is an
unsolvable simple group or the direct product of isomorphic unsolvable simple groups.
Let M/N ∼= S1 × . . . × Sr, where S1 is an unsolvable simple group and S1

∼= . . . ∼= Sr.
According to |G| = 2k.3.t.u, where k ≤ m and the structure of M/N , we can easily
conclude that r = 1 and M/N is a simple K3-group or a simple K4-group.
Case 1. IfM/N is a simple K3-group, then according to Lemma 2.1, we have π(M/N)∩
{5, 7, 13, 17} 6= ∅. But since π(M/N) ⊆ π(G) and |G| = 2k.3.t.u, where k ≤ m, we can
get a contradiction.
Case 2. If M/N is a simple K4-group, then by Lemma 2.1, M/N is isomorphic to one
of the following groups:
• If M/N ∼= A7, A8, A9, A10, M11, M12, J2, L2(81), L2(243), L2(577),
L3(4), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2),
O+

8 (2), G2(3), U3(5), U3(8), U3(9), U4(3), U5(2),
3D4(2),

2F4(2)
′ or L2(3

m), where m,
(3m − 1)/2 and (3m + 1)/4 are odd primes, then 32 | |M/N |, a contradiction.
• If M/N ∼= L2(25), L2(49), L3(5), U3(4), Sz(32), then 52 | |M/N |, a contradiction.
• If M/N ∼= L2(97), U3(7), then 72 | |M/N |, a contradiction.
• If M/N ∼= Sz(8), then 3 - |M/N |, a contradiction.
• If M/N ∼= L2(16), then t = 5, a contradiction.
• If M/N ∼= L2(r), where r is a prime, r2 − 1 = 2a.3b.v, v > 3 is a prime, a, b ∈ N, then
|M/N | = |L2(r)| = 1

(r−1,2)
r(r2 − 1) = 1

(r−1,2)
r.2a.3b.v and hence, π(M/N) = {2, 3, r, v}.

Since π(M/N) ⊆ π(G), we have v = t, r = u or v = u, r = t. But since v is a prime
number which divides r2 − 1, according to Lemma 2.14(a-b) we can get a contradiction.
• If M/N ∼= L2(2

m′), where m′ satisfies{
2m
′
− 1 = u′

2m
′
+ 1 = 3t′

with m′ ≥ 2, u′, t′ are primes, t′ > 3, then |M/N | = 2m
′
.3.t′.u′. Since |M/N | | |G| and

|G| = 2k.3.t.u, where k ≤ m, we conclude that m′ ≤ m and t′ = t or u. If t′ = u, then
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2m
′
+1

3
= 2m − 1. Thus 2m

′
(3.2m−m′ − 1) = 4, which is a contradiction . So we conclude

t′ = t and this implies that m = m′ and u′ = u. Therefore, M/N ∼= L2(2
m), where m

satisfies {
2m − 1 = u

2m + 1 = 3t

with m ≥ 2, u, t are primes, t > 3.

Since 2m.3tu = |M/N | | |G| = 2k.3.t.u, where k ≤ m, we conclude that N = 1 and
M = G = L2(2

m). 2

According to the main theorem, we pose the following problem:

Problem: Is a groupG isomorphic to L2(2
m)(m ≥ 2) if and only if nse(G) = nse(L2(2

m))?
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