A new characterization of $\mathrm{L}_{2}\left(2^{\mathrm{m}}\right)$

Hosein Parvizi Mosaed ${ }^{*}$, Ali Iranmanesh ${ }^{\dagger}$, Mahnaz Foroudi Ghasemabadi ${ }^{\ddagger}$ and Abolfazl Tehranian ${ }^{\text {§ }}$

Abstract

Let G be a group and $\pi(G)$ be the set of primes p such that G contains an element of order p. Let $n s e(G)$ be the set of numbers of elements of G of the same order. In this paper, we prove that the simple group $L_{2}\left(2^{m}\right)$ is uniquely determined by $n s e\left(L_{2}\left(2^{m}\right)\right)$, where $\left|\pi\left(L_{2}\left(2^{m}\right)\right)\right|=4$.

2000 AMS Classification: Primary: 20D60; Secondary: 20D06.
Keywords: Element order, set of the numbers of elements of the same order, simple K_{n}-group, projective special linear group.

Received 05/02/2014 : Accepted 28/04/2014 Doi : 10.15672/HJMS.2015449651

1. Introduction

Let G be a group. By $\pi(G)$, we denote the set of primes p such that G contains an element of order p and by $\pi_{e}(G)$ we mean the set of element orders of G. If $k \in \pi_{e}(G)$, then m_{k} denotes the number of elements of order k in G and we define the set nse $(G)=$ $\left\{m_{k} \mid k \in \pi_{e}(G)\right\}$.

During the classification of the finite simple groups, it has been observed that some of the known simple groups are characterizable by some of their properties and up to now, different characterizations are investigated for the finite simple groups. For instance, in

[^0][16], motivated by one of the Thompson's problem, the authors introduced a new characterization for the finite simple group G, by $n s e(G)$ and $|G|$. In fact, they proved that if G is a finite simple K_{4}-group, then G is characterizable by $n s e(G)$ and $|G|$ (The simple group G is called simple K_{n}-group if $|\pi(G)|=n$). Following this result, in [7] and [17], it is proved that the group $L_{2}(q)$, where $q \in\{3,4,5,7,8,9,11,13\}$ is determined only by $n s e(G)$. Up to the present time, it has been investigated that some other simple groups can be characterized by $n s e(G)$ and $|G|$ or only by $n s e(G)$ (see for instance [9]-[12]). In this paper, our aim is to show that the simple K_{4}-group $L_{2}\left(2^{m}\right)$ is characterizable by $n s e\left(L_{2}\left(2^{m}\right)\right)$. In fact, we improve the results of [16] in the following main theorem:

Main Theorem. Let G be a group. If $n s e(G)=n s e\left(L_{2}\left(2^{m}\right)\right)$, where $m, 2^{m}-1$ and $\left(2^{m}+1\right) / 3$ are primes greater than 3 , then $G \cong L_{2}\left(2^{m}\right)$.

2. Notation and Preliminaries

For a natural number n, by $\pi(n)$, we mean the set of all prime divisors of n, so it is obvious that if G is a finite group, then $\pi(G)=\pi(|G|)$. A Sylow p-subgroup of G is denoted by G_{p} and by $n_{p}(G)$, we mean the number of Sylow p-subgroups of G. Also, the largest element order of G_{p} is denoted by $\exp \left(G_{p}\right)$. Moreover, we denote by φ, the Euler totient function and by (a, b) the greatest common divisor of integers a and b.

In the following, we bring some useful lemmas which will be used in the proof of the main theorem.
2.1. Lemma. $[2,6,15,20]$ Let G be a finite simple K_{n}-group.
(1) If $n=3$, then G is isomorphic to one of the following groups:
$A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3), U_{4}(2)$.
(2) If $n=4$, then G is isomorphic to one of the following groups:
(a) $A_{7}, A_{8}, A_{9}, A_{10}, M_{11}, M_{12}, J_{2}, L_{2}(16), L_{2}(25), L_{2}(49)$, $L_{2}(81), L_{2}(97), L_{2}(243), L_{2}(577), L_{3}(4), L_{3}(5), L_{3}(7)$, $L_{3}(8), L_{3}(17), L_{4}(3), S_{4}(4), S_{4}(5), S_{4}(7), S_{4}(9), S_{6}(2)$, $O_{8}^{+}(2), G_{2}(3), U_{3}(4), U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9), U_{4}(3)$, $U_{5}(2), S z(8), S z(32),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$;
(b) $L_{2}(r)$, where r is a prime, $r^{2}-1=2^{a} .3^{b} . v, v>3$ is a prime, $a, b \in \mathbb{N}$;
(c) $L_{2}\left(2^{m}\right)$, where $m, 2^{m}-1$ and $\left(2^{m}+1\right) / 3$ are primes greater than 3 ;
(d) $L_{2}\left(3^{m}\right)$, where $m,\left(3^{m}-1\right) / 2$ and $\left(3^{m}+1\right) / 4$ are odd primes.
2.2. Lemma. [4] Let G be a finite group and m be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m\left|\left|L_{m}(G)\right|\right.$.
2.3. Lemma. [17] Let G be a group containing more than two elements. Let $k \in \pi_{e}(G)$ and m_{k} be the number of elements of order k in G. If $s=\sup \left\{m_{k} \mid k \in \pi_{e}(G)\right\}$ is finite, then G is finite and $|G| \leq s\left(s^{2}-1\right)$.
2.4. Lemma. [13] Let G be a finite group and $p \in \pi(G) \backslash\{2\}$. Suppose that P is a Sylow p-subgroup of G and $n=p^{s} m$, where $(p, m)=1$. If P is not cyclic and $s>1$, then the number of elements of order n is always a multiple of p^{s}.
2.5. Lemma. [18, Theorem 3] Let G be a finite group. Then the number of elements whose orders are multiples of n is either zero, or a multiple of the greatest divisor of order G that is prime to n.
2.6. Lemma. [14] Let the finite group G acts on the finite set X. If the action is semiregular, then $|G|||X|$.
2.7. Lemma. [5] Let G be a solvable group and π be any set of primes. Then
(1) G has a Hall π-subgroup.
(2) If H is a Hall π-subgroup of G and V is any π-subgroup of G, then $V \leq H^{g}$ for some $g \in G$. In particular, the Hall π-subgroups of G form a single conjugacy class of subgroups of G.
2.8. Lemma. Let G be an unsolvable finite group. Then there is a normal series $1 \unlhd$ $N \unlhd M \unlhd G$, such that N is a solvable normal subgroup of G and M / N is an unsolvable simple group or the direct product of isomorphic unsolvable simple groups.

Proof. Since G is a finite group, it has a chief series $1=M_{0} \unlhd M_{1} \unlhd \ldots \unlhd M_{n-1} \unlhd M_{n}=G$. Also, since G is unsolvable, there is a maximal $i<n$, such that M_{i-1} is solvable. According to the maximality of i, we can easily conclude that the chief factor $\frac{M_{i}}{M_{i-1}}$ is unsolvable. Since each chief factor is a simple group or the direct product of isomorphic simple groups, it is enough to set $N:=M_{i-1}$ and $M:=M_{i}$.

The following number theoretic lemmas play a role in the proof of the main theorem:
2.9. Lemma. [19] Let q, k, l be natural numbers. Then
(1) $\left(q^{k}-1, q^{l}-1\right)=q^{(k, l)}-1$;
(2) $\left(q^{k}+1, q^{l}+1\right)= \begin{cases}q^{(k, l)}+1 & \text { if both } \frac{k}{(k, l)} \text { and } \frac{l}{(k, l)} \text { are odd, } \\ (2, q+1) & \text { otherwise; }\end{cases}$
(3) $\left(q^{k}-1, q^{l}+1\right)= \begin{cases}q^{(k, l)}+1 & \text { if } \frac{k}{(k, l)} \text { is even and } \frac{l}{(k, l)} \text { is odd, } \\ (2, q+1) & \text { otherwise; }\end{cases}$

In particular, for every $q \geq 2, k \geq 1$ the inequality $\left(q^{k}-1, q^{k}+1\right) \leq 2$ holds.
2.10. Lemma. Let m be a natural number. Then
(1) 3 divides $2^{m}-1$ if and only if m is even.
(2) 3 divides $2^{m}+1$ if and only if m is odd.

Proof. On account of Lemma 2.9, the proof is straightforward.
2.11. Lemma. [3, Remark 1] The only solution of the equation $p^{m}-q^{n}=1$, where p, q are primes and $m, n>1$, is $3^{2}-2^{3}=1$.
2.12. Lemma. [1] Let p be a prime number.
(1) If $p \neq 3$, then $x^{2} \equiv-3(\bmod p)$ is solvable if and only if $p \equiv 1(\bmod 3)$.
(2) The equation $x^{2} \equiv-1(\bmod p)$ is solvable if and only if $p \equiv 1(\bmod 4)$.
2.13. Lemma. [8] Let $p \neq 3$ be a prime number.
(1) If the diophantine equation $3 x^{2}+1=t p^{k}$ has a solution, then $p \equiv 1(\bmod 3)$.
(2) If the diophantine equation $x^{2 n}+x^{n}+1=t p^{k}$ or $x^{2 n}-x^{n}+1=t p^{k}$ is solvable, then $p \equiv 1(\bmod 3)$.
2.14. Lemma. Let m be a natural number such that

$$
\left\{\begin{array}{l}
2^{m}-1=u \\
2^{m}+1=3 t
\end{array}\right.
$$

with $m \geq 2, u$ and t are primes, $t>3$. Then the following hold:
(a) $(u-1, t)=1,(u-1, t-1)=t-1,\left(u-1,2^{m}\right)=2,(u+1, t)=1$;
(b) $(t-1, u)=1,\left(t-1,2^{m}\right)=2,(t+1, u)=1$;
(c) $(u, t)=1,(u, 3)=1,(u, 2)=1,(t, 3)=1,(t, 2)=1$;
(d) $\pi(t-1) \backslash\{2,3, t, u\} \neq \emptyset$;
(e) $3 \mid\left(1+2^{m} u\right)$ but $9 \nmid\left(1+2^{m} u\right)$.

Proof. (a) Since t is a prime, $(u-1, t)=1$ or t. If $(u-1, t)=t$, then $t \mid(u-1)$. Hence $\left(2^{m}+1\right) \mid 3\left(2^{m}-2\right)=3\left(2^{m}+1\right)-9$. Therefore $\left(2^{m}+1\right) \mid 9$ which implies that $m \in\{1,3\}$ but this contradicts $t>3$. So $(u-1, t)=1$. We have $(u-1, t-1)=\left(2^{m}-2, \frac{2^{m}-2}{3}\right)=$ $\frac{2^{m}-2}{3}=(t-1)$. Since $\left(2^{m-1}-1,2^{m-1}\right)=1$, we conclude that $\left(2^{m}-2,2^{m}\right)=2$ and hence, $\left(u-1,2^{m}\right)=2$. Since t is odd, $\left(2^{m}, t\right)=1$ which implies that $(u+1, t)=1$.
(b) Since u is a prime, $(t-1, u)=1$ or u. If $(t-1, u)=u$, then $u|(t-1)|(u-1)$, which is a contradiction. So $(t-1, u)=1$. Since $\left(2^{m-1}-1,2^{m-1}\right)=1$, we have $\left(2^{m}-2,2^{m}\right)=2$ and hence $\left(t-1,2^{m}\right)=2$. According to the hypothesis, u is a prime number and hence, $(t+1, u)=1$ or u. If $(t+1, u)=u$, then $\left(2^{m}-1\right) \mid\left(2^{m-2}+1\right)$ because u is odd. Thus $\left(2^{m}-1\right) \leq\left(2^{m-2}+1\right)$, which is a contradiction. So $(u, t+1)=1$.
(c) It is obvious.
(d) By (b), $(t-1, u)=1$. Thus $u \notin \pi(t-1)$. Also, it is obvious that $t \notin \pi(t-1)$. If $\pi(t-1)=\{2,3\}$, then $2^{m}-2=2.3^{k}$. Thus $2^{m-1}-1=3^{k}$. Therefore $2^{m-1}-3^{k}=1$, that by Lemma 2.11, is a contradiction. If $\pi(t-1)=\{2\}$, then $\frac{2^{m}-2}{3}=2$. Hence $2^{m-1}-1=3$. Therefore $m=3$, which is a contradiction. If $\pi(t-1) \stackrel{3}{=}\{3\}$, then $t-1$ is odd but we have $2 \mid(t-1)$, which is a contradiction. So there is a prime $p \in \pi(t-1)$ such that $p \neq 2,3, t, u$.
(e) Since $2^{m}+1=3 t, 3 \mid\left(2^{m}+1\right)$ and hence $3 \mid\left(2^{2 m}-1\right)$. Thus $3 \mid\left(2^{2 m}-1-2^{m}-1+3\right)=$ $\left(2^{2 m}-2^{m}+1\right)=\left(1+2^{m} u\right)$. Now, we are going to prove that $9 \nmid\left(1+2^{m} u\right)$. First we claim that $(m, 3)=1$. If not, then $(m, 3)=3$ and since $3 \mid\left(2^{m}+1\right)$, according to Lemma 2.10(2), we have m is odd and hence, $m=3 k$, where k is an odd number. Thus $u=\left(2^{m}-1\right)=\left(2^{3 k}-1\right)=\left(8^{k}-1\right)=(8-1)\left(8^{k-1}+8^{k-2}+\ldots+8+1\right)$ and since $u=2^{m}-1$ is a prime number, we conclude that $k=1$ and $m=3$, which contradicts $t>3$. Therefore $(m, 3)=1$. If $9 \mid\left(1+2^{m} u\right)=\left(2^{2 m}-2^{m}+1\right)$, then $27 \mid\left(2^{m}+1\right)\left(2^{2 m}-2^{m}+1\right)=\left(2^{3 m}+1\right)$. Thus $27 \mid\left(2^{3 m}+1,2^{18}-1\right)$. Since $(m, 3)=1$, we have $(18,3 m)=3$ and hence Lemma 2.9 (3) implies that $\left(2^{3 m}+1,2^{18}-1\right)=9$, which is a contradiction.
2.15. Lemma. Assume that the hypotheses of Lemma 2.14 are fulfilled. Further let $x=2^{m}$ and let p be a prime number such that $p \notin\{2,3, t, u\}$ and $(p, u-1)=1$.
(1) Let $p \mid x^{3}-3 x^{2}+2 x+3$.
(a) If $p \mid x+4$, then $p=13$;
(b) If $p \mid x^{2}+x-4$, then $p=101$;
(c) If $p \mid x^{2}+x+3$, then $p=23$;
(d) If $p \mid x^{2}+4 x+6$, then $p=43$;
(e) If $p \mid x^{2}-2$, then $p=23$;
(f) $p \nmid 2 x+1$.
(2) Let $p \mid x^{2}-4 x+6$.
(a) If $p \mid 2 x+1$, then $p=11$;
(b) If $p \mid x+4$, then $p=19$;
(c) If $p \mid x^{2}+x-4$, then $p=5$;
(d) If $p \mid x^{2}+x+3$, then $p=11$;
(e) $p \nmid x^{2}+4 x+6$ and $p \nmid x^{2}-2$.
(3) Let $p \mid x^{2}-2$.
(a) If $p \mid 2 x+1$, then $p=7$;
(b) If $p \mid x+4$, then $p=7$ and $p \mid 2 x+1$;
(c) $p \nmid x^{2}+x-4$.

Proof.

- Let $p \mid x^{3}-3 x^{2}+2 x+3$.

If $p \mid x+4$, then $p \mid\left(x^{3}-3 x^{2}+2 x+3\right)-\left(x^{2}-7 x\right)(x+4)=3(10 x+1)$ and since $(p, 3)=1$,
we conclude that $p \mid 10 x+1$. Therefore, $p \mid(10 x+1)-10(x+4)=-3(13)$ which implies that $p=13$. If $p \mid x^{2}+x-4$, then $p \mid\left(x^{3}-3 x^{2}+2 x+3\right)-(x-4)\left(x^{2}+x-4\right)=10 x-13$. Thus $p \mid-13\left(x^{2}+x-4\right)+4(10 x-13)=-x(13 x-27)$ and since $(p, x)=1$, we conclude that $p \mid 13 x-27$. Therefore, $p \mid 10(13 x-27)-13(10 x-13)=-101$ which implies that $p=101$. If $p \mid x^{2}+x+3$, then $p \mid\left(x^{3}-3 x^{2}+2 x+3\right)-(x-4)\left(x^{2}+x+3\right)=3(x+5)$. Thus $p \mid\left(x^{2}+x+3\right)-(x-4)(x+5)=23$ and hence, $p=23$. If $p \mid x^{2}+4 x+6$, then $p \mid-2\left(x^{3}-3 x^{2}+2 x+3\right)+\left(x^{2}+4 x+6\right)=x^{2}(-2 x+7)$. Thus $p \mid-2 x+7$. On the other hand, $p \mid\left(x^{3}-3 x^{2}+2 x+3\right)-(x-7)\left(x^{2}+4 x+6\right)=24 x+45$. Therefore, $p \mid(24 x+45)+12(-2 x+7)=3(43)$ which implies that $p=43$. If $p \mid x^{2}-2$, then $p \mid\left(x^{3}-3 x^{2}+2 x+3\right)-(x-3)\left(x^{2}-2\right)=4 x-3$. On the other hand, $p \mid\left(x^{2}-\right.$ $2)+(4 x-3)=(x-1)(x+5)$ and since $(p, x-1)=1$, we conclude that $p \mid x+5$. Thus $p \mid-4(x+5)+(4 x-3)=-23$ which implies that $p=23$. If $p \mid 2 x+1$, then $p \mid\left(x^{3}-3 x^{2}+2 x+3\right)-3(2 x+1)=x(x+1)(x-4)$ and since $(p, x)=(p, x+1)=1$, we conclude that $p \mid x-4$. Thus $p \mid(2 x+1)-2(x-4)=9$, which is a contradiction to the fact that $(p, 3)=1$.

- Let $p \mid x^{2}-4 x+6$.

If $p \mid 2 x+1$, then $p \mid-2\left(x^{2}-4 x+6\right)+x(2 x+1)=3(3 x-4)$ and since $(p, 3)=1$, we conclude that $p \mid 3 x-4$. Therefore, $p \mid 3(2 x+1)-2(3 x-4)=11$ which implies that $p=11$. If $p \mid x+4$, then $p \mid\left(x^{2}-4 x+6\right)-x(x+4)=-2(4 x-3)$ and since $(p, 2)=1$, we conclude that $p \mid 4 x-3$. Thus $p \mid(4 x-3)-4(x+4)=-19$ and hence, $p=19$. If $p \mid x^{2}+x-4$, then $p \mid 4\left(x^{2}-4 x+6\right)+6\left(x^{2}+x-4\right)=10 x(x-1)$ and since $(p, x-1)=(p, 2)=1$, we conclude that $p=5$. If $p \mid x^{2}+x+3$, then $p \mid-\left(x^{2}-4 x+6\right)+\left(x^{2}+x+3\right)=(5 x-3)$. Thus $p \mid\left(x^{2}+x+3\right)+(5 x-3)=x(x+6)$ and since $(p, 2)=1$, we conclude that $p \mid x+6$. Therefore, $p \mid 5(x+6)-(5 x-3)=3(11)$ which implies that $p=11$. If $p \mid x^{2}+4 x+6$, then $p \mid-\left(x^{2}-4 x+6\right)+\left(x^{2}+4 x+6\right)=8 x$. Thus $p \mid 2$ which is a contradiction to the fact that $(2, p)=1$. If $p \mid x^{2}-2$, then $p \mid\left(x^{2}-4 x+6\right)-\left(x^{2}-2\right)=-4(x-2)$. Since $(p, 2)=(p, x-2)=1$, we get a contradiction.

- Let $p \mid x^{2}-2$.

If $p \mid 2 x+1$, then $p \mid-2\left(x^{2}-2\right)+x(2 x+1)=(x+4)$. Therefore, $p \mid(2 x+1)-2(x+4)=-7$ which implies that $p=7$. If $p \mid x+4$, then $p \mid-\left(x^{2}-2\right)+x(x+4)=2(2 x+1)$ and since $(p, 2)=1$, we conclude that $p \mid 2 x+1$. Thus $p \mid(2 x+1)-2(x+4)=-7$ and hence, $p=7$. If $p \mid x^{2}+x-4$, then $p \mid-\left(x^{2}-2\right)+\left(x^{2}+x-4\right)=(x-2)$. Since $(p, x-2)=1$, we get a contradiction.

3. Proof of the Main Theorem

We know that $n s e(G)=n s e\left(L_{2}\left(2^{m}\right)\right)$, where m satisfies

$$
\left\{\begin{array}{l}
2^{m}-1=u \\
2^{m}+1=3 t
\end{array}\right.
$$

$m \geq 2, u$ and t are primes, $t>3$. Denote $x=2^{m}$. According to [16], we know that $\pi\left(L_{2}\left(2^{m}\right)\right)=\{2,3, t, u\}$ and

$$
n s e\left(L_{2}\left(2^{m}\right)\right)=\left\{1,3 t u, 2^{m} u,(t-1) 2^{m} u, 1 / 2(t-1) 2^{m} u, 1 / 2(u-1) 2^{m} 3 t\right\} .
$$

We have divided the proof into a sequence of lemmas.
3.1. Lemma. The group G is finite. If $i \in \pi_{e}(G)$, then

$$
\left\{\begin{array}{l}
\varphi(i) \mid m_{i} \tag{3.1}\\
i \mid \sum_{d \mid i} m_{d}
\end{array}\right.
$$

and if $i>2$, then m_{i} is even.

Proof. Since $n s e(G)=n s e\left(L_{2}\left(2^{m}\right)\right)$, according to Lemma 2.3, G is a finite group. Now, if $i \in \pi_{e}(G)$, then Lemma 2.2 implies that $i \mid \sum_{d \mid i} m_{d}$. We know that the number of elements of order i in a cyclic group of order i is equal to $\varphi(i)$. Thus $m_{i}=\varphi(i) k$, where k is the number of cyclic subgroups of order i in G and hence, $\varphi(i) \mid m_{i}$. Also, it is known that if $i>2$, then $\varphi(i)$ is even and since $\varphi(i) \mid m_{i}$, we conclude that m_{i} is even as well.
3.2. Lemma. $|\pi(G)| \geq 2$.

Proof. Since $3 t u \in n s e(G)$, Lemma 3.1 yields $2 \in \pi(G)$ and $m_{2}=3 t u$. Let $\pi(G)=\{2\}$. Then $|G|=2^{k}$. If $\exp \left(G_{2}\right)>2^{m+2}$, then $2^{m+3} \in \pi_{e}(G)$ and hence $2^{m+2}=\varphi\left(2^{m+3}\right) \mid$ $m_{2^{m+3}}$, which is a contradiction. Thus $\exp \left(G_{2}\right) \leq 2^{m+2}$ and we have

$$
\begin{gather*}
|G|=1+3 t u+k_{1} 2^{m} u+k_{2}(t-1) 2^{m} u+ \tag{3.2}\\
k_{3} 1 / 2(t-1) 2^{m} u+k_{4} 1 / 2(u-1) 2^{m} 3 t
\end{gather*}
$$

where k_{1}, k_{2}, k_{3} and k_{4} are natural numbers and $k_{1}+k_{2}+k_{3}+k_{4} \leq m+1$. Since $u=x-1$ and $t=(x+1) / 3$, we can conclude that $|G|$ divides

$$
\left(2 k_{2}+k_{3}+3 k_{4}\right) x^{3}+\left(6+6 k_{1}-6 k_{2}-3 k_{3}-3 k_{4}\right) x^{2}+\left(-6 k_{1}+4 k_{2}+2 k_{3}-6 k_{4}\right) x .
$$

Moreover, since $1+m_{2}=2^{2 m}$, we conclude that $2^{2 m}<2^{k}$ and hence $x^{2}| | G \mid$. Thus x^{2} divides

$$
\left(2 k_{2}+k_{3}+3 k_{4}\right) x^{3}+\left(6+6 k_{1}-6 k_{2}-3 k_{3}-3 k_{4}\right) x^{2}+\left(-6 k_{1}+4 k_{2}+2 k_{3}-6 k_{4}\right) x
$$

which implies that $x \mid 6 k_{1}-4 k_{2}-2 k_{3}+6 k_{4}$. Since

$$
6 k_{1}-4 k_{2}-2 k_{3}+6 k_{4}<6\left(k_{1}+k_{2}+k_{3}+k_{4}\right) \leq 6(m+1),
$$

we conclude that $2^{m} \leq(6 m+6)$. Thus $m=5$ which implies that $u=31$ and $t=11$. From (3.2) we have

$$
2^{k}=1+1023+992 k_{1}+9920 k_{2}+4960 k_{3}+15840 k_{4}
$$

where $k_{1}+k_{2}+k_{3}+k_{4} \leq 6$ and it is easy to check that this equation has no solution.

3.3. Lemma. $\pi(G) \neq\{2,3\}$.

Proof. Let $\pi(G)=\{2,3\}$. If G_{3} is a cyclic group of order 3^{k}, then $n_{3}(G)=\frac{m_{3} k}{\varphi\left(3^{k}\right)}=$ $\frac{m_{3} k}{2\left(3^{k-1}\right)}$ and hence, according to $n s e(G)$ and Lemma 2.14(c), we can conclude that t or u divides $n_{3}(G)$. On the other hand, since $n_{3}(G)$ divides $|G|$, we can get a contradiction. Thus G_{3} is not cyclic and according to Lemmas 2.2 and 2.4, we have $9 \mid 1+m_{3}$. If $m_{3}=2^{m} u$, then since by Lemma $2.14,9 \nmid 1+2^{m} u$, we can get a contradiction. Also, since $\left(3, m_{3}\right)=1$, we conclude that $m_{3} \neq 1 / 2(u-1) 2^{m} 3 t$. Thus $m_{3} \in\left\{(t-1) 2^{m} u, 1 / 2(t-\right.$ 1) $\left.2^{m} u\right\}$ which implies that

$$
\begin{equation*}
(3, t-1)=1 \tag{3.3}
\end{equation*}
$$

If $6 \notin \pi_{e}(G)$, then by Lemma 2.6, $\left|G_{3}\right| \mid m_{2}$. According to Lemma 3.2, $m_{2}=3 t u$ and hence Lemma 2.14 implies that G_{3} is cyclic, which is a contradiction. Thus $6 \in \pi_{e}(G)$. Since $6 \mid 1+m_{2}+m_{3}+m_{6}$ and $3 \mid 1+m_{2}+m_{3}$, we conclude that $3 \mid m_{6}$. Now according to $n s e(G)$ and (3.3), we have $m_{6}=1 / 2(u-1) 2^{m} 3 t$ and hence, $9 \mid m_{6}$.
Now we have the following two cases:
Case 1. Let $\exp \left(G_{3}\right)=3$. Then by Lemma 2.5, $9 \mid \sum_{i \geq 2} m_{2^{i}}+\sum_{i \geq 2} m_{2^{i} 3}$ and $9 \mid \sum_{i \geq 1} m_{2^{i}}+\sum_{i \geq 1} m_{2^{i} 3}$. Thus $9 \mid m_{2}+m_{6}$ and since $9 \mid m_{6}$, we conclude that $9 \mid m_{2}$, which is a contradiction.

Case 2. Let $\exp \left(G_{3}\right)>3$. If $18 \notin \pi_{e}(G)$, then similar to Case 1 , we can get a contradiction. If $18 \in \pi_{e}(G)$, then according to Lemma 2.4, $9 \mid m_{2^{i}{ }_{3} j}$, where $i \geq 0, j \geq 2$. Since $18 \in \pi_{e}(G)$, we have $18 \mid 1+m_{2}+m_{3}+m_{6}+m_{9}+m_{18}$. On the other hand, $9 \mid m_{6}$ and according to Lemma 3.1, $9 \mid 1+m_{3}+m_{9}$ and hence, $9 \mid m_{2}$, which is a contradiction.
3.4. Lemma. $\pi(G) \subseteq\{2,3, t, u\}$.

Proof. Suppose, contrary to our claim, that $p \in \pi(G) \backslash\{2,3, t, u\}$. To obtain a contradiction, in the following six steps we will prove that there is no choice for m_{p} in $n s e(G)$. Step 1. $m_{p} \neq 2^{m} u$ and $(p, t-1)=1$.
If $m_{p}=2^{m} u$, then according to (3.1), $p \mid\left(1+m_{p}\right)=\left(2^{2 m}-2^{m}+1\right)$. Thus Lemma 2.13 implies that $3 \mid(p-1)$. On the other hand, by (3.1), we have $p-1 \mid m_{p}$ and hence, $3 \mid m_{p}$, which is impossible according to Lemma 2.14. Therefore, $m_{p} \in$ $\left\{(t-1) 2^{m} u, 1 / 2(t-1) 2^{m} u, 1 / 2(u-1) 2^{m} 3 t\right\}$. Since $\left(p, m_{p}\right)=1$, we conclude that $(p, t-1)=1$.
Step 2. $\exp \left(G_{p}\right)=p$.
If $\exp \left(G_{p}\right)>p$, then $p^{2} \in \pi_{e}(G)$. Since $p(p-1)=\varphi\left(p^{2}\right) \mid m_{p^{2}}$, we conclude that p divides one of the numbers $2,3, t, u,(t-1)$, which is a contradiction. So $\exp \left(G_{p}\right)=p$.
Step 3. If $q \in \pi_{e}(G) \backslash\{1\}$ and $(q, p)=1$, then $q p \in \pi_{e}(G)$ and $p \mid m_{q}+m_{q p}$.
If $q p \notin \pi_{e}(G)$, then Lemma 2.6 implies that $\left|G_{p}\right| \mid m_{q}$. Now according to nse (G), we conclude that p divides one of the numbers $2,3, t, u,(t-1)$, which is a contradiction. Thus $q p \in \pi_{e}(G)$. Let $q=q_{1}^{s_{1}} \ldots q_{k}^{s_{k}}$, where q_{1}, \ldots, q_{k} are distinct prime numbers and k, s_{1}, \ldots, s_{k} are natural numbers. We prove $p \mid m_{q}+m_{q p}$ by induction on $s=s_{1}+\ldots+s_{k}$. Let $s=1$. Then q is a prime number and according to (3.1), we have $p \mid 1+m_{p}+m_{q}+m_{q p}$ and since $p \mid 1+m_{p}$, we can easily conclude that $p \mid m_{q}+m_{q p}$. Let $s=2$. Then there exist $1 \leq i<j \leq k$ such that $q=q_{i} q_{j}$ or $q=q_{i}^{2}$. If $q=q_{i} q_{j}$, then we have $p \mid 1+m_{p}+m_{q_{i}}+m_{q_{j}}+m_{q_{i} p}+m_{q_{j} p}+m_{q_{i} q_{j}}+m_{q_{i} q_{j} p}$ and since $p \mid 1+m_{p}, m_{q_{i}}+m_{q_{i} p}, m_{q_{j}}+m_{q_{j} p}$, we conclude that $p \mid m_{q_{i} q_{j}}+m_{q_{i} q_{j} p}$, as desired. The case $q=q_{i}^{2}$ is similar and we omit the details for the sake of convenience. Now, assume the statement is true for the values less than s. We have

$$
p \mid \sum_{d \mid q p} m_{d}=\sum_{\substack{d \mid q p \\ d \neq q, q p}} m_{d}+m_{q}+m_{q p} .
$$

Moreover, according to induction hypothesis, $p \mid \sum_{\substack{d \mid q p \\ d \neq q, q p}} m_{d}$. Therefore, $p \mid m_{q}+m_{q p}$.
Step 4. There is $q \in \pi_{e}(G)$ such that $(q, p)=1, m_{q}=2^{m} u$ or $m_{q p}=2^{m} u$. Moreover, we have $p \mid m_{q}+m_{p q}$.
According to $n \operatorname{se}(G)$, there exists $i \in \pi_{e}(G)$ such that $m_{i}=2^{m} u$. If $(i, p)=1$, then according to Step 3, we have $p \mid m_{i}+m_{i p}$. So it is enough to assume $q:=i$. If $(i, p) \neq 1$, then since according to Step $2, \exp \left(G_{p}\right)=p$, we have $i=q p$, where $(q, p)=1$ and $q \in \pi_{e}(G) \backslash\{1\}$. According to Step 3, we have $p \mid m_{i}+m_{i p}$.
Step 5. $m_{p} \neq(t-1) 2^{m} u$.
If $m_{p}=(t-1) 2^{m} u$, then since $p \mid 1+m_{p}$, we have $p \mid x^{3}-3 x^{2}+2 x+3$. By using Step 4 , we have the following five cases:
Case 1. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 3 t u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p \mid 2 x+1$, which is impossible according to Lemma 2.15(1).
Case 2. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 2^{m} u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p=2$ or u, which is contradiction.
Case 3. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u,(t-1) 2^{m} u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p=2$ or t or u, which is contradiction.
Case 4. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 1 / 2(t-1) 2^{m} u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p \mid x+4$.

Thus Lemma 2.15(1) implies that $p=13$. On the other hand, in this case $q \neq 2$ and hence Step 3 implies that $p \mid m_{2}+m_{2 p}$. Thus p divides one of the numbers $(2 x+1)$, $\left(x^{2}+x+3\right),\left(x^{2}+4 x+6\right)$ or $\left(x^{2}-2\right)$. Lemma 2.15 now yields $p \in\{23,43\}$, a contradiction. Case 5. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 1 / 2(u-1) 2^{m} 3 t\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p \mid x^{2}+x-4$. Thus Lemma 2.15(1) implies that $p=101$. On the other hand, similar to Case 4, $p \mid m_{2}+m_{2 p}$ and hence $p=23$ or 43 , which is a contradiction.
Step 6. $m_{p} \notin\left\{1 / 2(t-1) 2^{m} u, 1 / 2(u-1) 2^{m} 3 t\right\}$.
If $m_{p}=1 / 2(t-1) 2^{m} u$ or $m_{p}=1 / 2(u-1) 2^{m} 3 t$, then since $p \mid 1+m_{p}$, we have $p \mid x^{2}-4 x+6$ or $p \mid x^{2}-2$, respectively. In the former case, similar argument as stated in Step 5 leads us to a contradiction. So, it is enough to consider the case $p \mid x^{2}-2$ for $m_{p}=1 / 2(u-1) 2^{m} 3 t$. According to Step 4, we have the following five cases:
Case 1. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 3 t u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p \mid 2 x+1$. Thus Lemma 2.15(3) implies that $p=7$. On the other hand, $p \mid 2 x+1$, hence Lemma 2.12 implies that $4 \mid(p-1)=6$, which is contradiction.
Case 2. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 2^{m} u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p=2$ or u, which is contradiction.
Case 3. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u,(t-1) 2^{m} u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p=2$ or t or u, which is contradiction.
Case 4. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 1 / 2(t-1) 2^{m} u\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p \mid x+4$. Thus Lemma 2.15(3) implies that $p=7$. On the other hand, $p \mid 2 x+1$, hence Lemma 2.12 implies that $4 \mid(p-1)=6$, which is contradiction.

Case 5. If $\left\{m_{q}, m_{q p}\right\}=\left\{2^{m} u, 1 / 2(u-1) 2^{m} 3 t\right\}$, then $p \mid m_{q}+m_{q p}$ and hence $p \mid x^{2}+x-4$. Thus Lemma 2.15(3) implies a contradiction.
3.5. Lemma. If $t \in \pi(G)$, then $u \in \pi(G)$.

Proof. The proof will be divided into the following four steps.
Step 1. $m_{t}=1 / 2(t-1) 2^{m} u$.
According to Lemma 3.1, we have $m_{t} \neq 1$ and $\left(m_{t}, t\right)=1$ and hence $m_{t} \neq 3 t u, 1 / 2(u-$ 1) $2^{m} 3 t$. If $m_{t}=2^{m} u$, then Lemma 3.1 implies that $t \mid 1+m_{t}$ and hence $x+1 \mid$ $3 x^{2}-3 x+3=(x+1)(3 x-6)+9$. Thus $x+1 \mid 9$. So $m=3$, which is a contradiction. If $m_{t}=(t-1) 2^{m} u$, then $t \mid 1+m_{t}$ and hence $x+1 \mid x^{3}-3 x^{2}+2 x+3=(x+1)\left(x^{2}-4 x+6\right)-3$. Thus $x+1 \mid 3$. So $m=1$, which is a contradiction. Therefore, $m_{t}=1 / 2(t-1) 2^{m} u$.
Step 2. $t^{2} \notin \pi_{e}(G)$.
If $t^{2} \in \pi_{e}(G)$, then by (3.1), we have $t(t-1)=\varphi\left(t^{2}\right) \mid m_{t^{2}}$. Hence Lemma $2.14 \mathrm{im}-$ plies that $m_{t^{2}}=1 / 2(u-1) 2^{m} 3 t$. Since $t^{2} \mid 1+m_{t}+m_{t^{2}}$, we conclude that $(x+1)^{2} \mid$ $(x+1)^{2}(6 x-21)+30(x+1)$. So $(x+1) \mid 30$, which is a contradiction.
Step 3. $\left|G_{t}\right|=t$ and $n_{t}(G)=\frac{m_{t}}{\varphi(t)}=1 / 2\left(2^{m} u\right)$.
Since $t^{2} \notin \pi_{e}(G)$, Lemma 2.2 implies that $\left|G_{t}\right| \mid 1+m_{t}$. If $t^{2}| | G_{t} \mid$, then $2(x+1)^{2} \mid$ $(x+1)^{2}(3 x-15)+33(x+1)$. Thus $(x+1) \mid 33$ which implies that $m=5, t=11$ and $n s e(G)=\{1,992,1023,4960,9920,15840\}$. Since $2 \in \pi(G)$, there is the largest element $2 \leq i$ of $\pi_{e}(G)$ such that $(i, 11)=1$. By Step $2,11^{2} \notin \pi_{e}(G)$. Thus $\sum_{i \mid d} m_{d}=m_{i}+m_{11 i}$ or m_{i} and hence Lemma 2.5 implies that $11^{2}| | G_{11}| | m_{i}+m_{11 i}$ or m_{i}. But according to $n s e(G)$, we can get a contradiction. Therefore, $\left|G_{t}\right|=t$ which implies that $n_{t}(G)=\frac{m_{t}}{\varphi(t)}=1 / 2\left(2^{m} u\right)$.
Step 4. $u \in \pi(G)$.
According to Step 3, since $n_{t}(G)=1 / 2\left(2^{m} u\right)$ and $n_{t}(G)| | G \mid$, we conclude that $u \in \pi(G)$.
3.6. Lemma. $\pi(G)=\{2,3, t, u\}$.

Proof. According to Lemmas 3.2-3.5, we can conclude that $\{2, u\} \subseteq \pi(G) \subseteq\{2,3, t, u\}$. In the following three steps, we show $n_{u}(G)=2^{m-1} 3 t$ which completes the proof.
Step 1. $m_{u}=1 / 2(u-1) 2^{m} 3 t$.
According to Lemma 3.1, we have $m_{u} \neq 1$ and $\left(m_{u}, u\right)=1$ and hence, according to $n s e(G)$, it is obvious that $m_{u}=1 / 2(u-1) 2^{m} 3 t$.
Step 2. $u^{2} \notin \pi_{e}(G)$.
If $u^{2} \in \pi_{e}(G)$, then by (3.1), $u(u-1)=\varphi\left(u^{2}\right) \mid m_{u^{2}}$. But according to Lemma 2.14 and $n s e(G)$ we can easily see that there is no choice for $m_{u^{2}}$. Therefore, $u^{2} \notin \pi_{e}(G)$.
Step 3. $\left|G_{u}\right|=u$.
Since $u^{2} \notin \pi_{e}(G)$, Lemma 2.2 implies that $\left|G_{u}\right| \mid 1+m_{u}$. If $u^{2} \mid 1+m_{u}$, then $(x-1)^{2} \mid(x-1)^{2}(x+1)-(x-1)$ which implies that $(x-1) \mid 1$, a contradiction. So $\left|G_{u}\right|=u$ and $n_{u}(G)=\frac{m_{u}}{\varphi(u)}=2^{m-1} 3 t$.

3.7. Lemma. $m_{3}=2^{m} u$.

Proof. According to Lemma 3.1, we have $m_{3} \neq 1$ and $\left(m_{3}, 3\right)=1$ and hence, $m_{3} \neq$ $3 t u, 1 / 2(u-1) 2^{m} 3 t$. If $m_{3}=1 / 2(t-1) 2^{m} u$, then by (3.1), we have $3 \mid 1+m_{3}$. Thus $18 \mid(x+1)\left(x^{2}-4 x+6\right)$. Lemma 2.14 now yields $3 \mid\left(x^{2}-4 x+6\right)$ and hence, $3 \mid(x-4)$ which implies that $3 \mid\left(2^{m-2}-1\right)$. Thus according to Lemma 2.10, $3 \mid\left(2^{m}-1\right)=u$, which contradicts Lemma 2.14(c). Also, if $m_{3}=(t-1) 2^{m} u$, then by (3.1), we have $3 \mid 1+m_{3}$ and hence, $9 \mid 3+(x-2) x(x-1)$. This implies that $3 \mid(x-2) x(x-1)$ and $9 \nmid(x-2) x(x-1)$. Since according to Lemma 2.14(c), we have $(2,3)=(u, 3)=1$, so $3 \mid(x-2)$ and $9 \nmid(x-2)$. Now we claim that $3 t \notin \pi_{e}(G)$. Indeed, if $3 t \in \pi_{e}(G)$, then $m_{3 t}=\varphi(3 t) n_{t}(G) k$, where k is the number of cyclic subgroups of order 3 in $C_{G}\left(G_{t}\right)$. Actually, this follows from the fact that all centralizers of Sylow t-subgroups of G in G are conjugate in G. So we have $(t-1) 2^{m} u=\varphi(3 t) n_{t}(G) \mid m_{3 t}$ which implies that $m_{3 t}=(t-1) 2^{m} u$. Since by (3.1), $3 t \mid 1+m_{3}+m_{t}+m_{3 t}$ and $t \mid 1+m_{t}$ and $m_{3}=m_{3 t}$, we conclude that $t \mid\left(2 m_{3}\right)=(t-1) 2^{m+1} u$, which is a contradiction according to Lemma 2.14(c). Therefore, $3 t \notin \pi_{e}(G)$ which implies that G_{3} acts fixed point freely on the set of elements of order t by conjugation. Lemma 2.6 now leads to $\left|G_{3}\right| \mid m_{t}$. Now, according to Lemma 2.14(c), we conclude that $\left|G_{3}\right| \mid 1 / 3(x-2)$. Since $3 \mid(x-2)$ but $9 \nmid(x-2)$, we conclude that $\left|G_{3}\right|=1$, which is a contradiction.
3.8. Lemma. $9 \notin \pi_{e}(G)$.

Proof. If $9 \in \pi_{e}(G)$, then according to (3.1), we have $6=\varphi(9) \mid m_{9}$ and by Lemma 2.14 and $n s e(G)$, we conclude that $m_{9} \in\left\{(t-1) 2^{m} u, 1 / 2(t-1) 2^{m} u, 1 / 2(u-1) 2^{m} 3 t\right\}$. So we have the following two cases:
Case 1. If $m_{9}=1 / 2(u-1) 2^{m} 3 t=1 / 2(t-1) 2^{m} 9 t$, then $9 \mid m_{9}$. On the other hand, (3.1) implies that $9 \mid 1+m_{3}+m_{9}$ and hence, $9 \mid 1+m_{3}$, which contradicts Lemma 2.14(e).
Case 2. If $m_{9}=(t-1) 2^{m} u$ or $1 / 2(t-1) 2^{m} u$, then by (3.1), $9 \mid 1+m_{3}+m_{9}$. Since by Lemma $2.14(\mathrm{e}), 3 \mid 1+m_{3}$ and $9 \nmid 1+m_{3}$, we conclude that $3 \mid m_{9}$ and $9 \nmid m_{9}$ and hence $3 \mid(t-1)$ and $9 \nmid(t-1)$. Lemma 2.4 yields G_{3} is a cyclic group of order 3^{k}, where $k \geq 2$. Thus by (3.1), $n_{3}(G)=\frac{m_{3} k}{\varphi\left(3^{k}\right)}=\frac{m_{3} k}{2\left(3^{k-1}\right)}$ and also, from (3.1) and Lemma 2.14, we conclude that $m_{3^{k}} \in\left\{(t-1) 2^{m-1} 9 t,(t-1) 2^{m-1} u,(t-1) 2^{m} u\right\}$. Therefore, $n_{3}(G) \in\left\{\frac{(t-1) 2^{m-2} 9 t}{3^{k-1}}, \frac{(t-1) 2^{m-2} u}{3^{k-1}}, \frac{(t-1) 2^{m-1} u}{3^{k-1}}\right\}$. Moreover, according to Lemma 2.14(d), there is a prime $p \in \pi(t-1) \backslash\{2,3, t, u\}$ which implies that $p \mid n_{3}(G)$. But since $n_{3}(G)| | G \mid$, we conclude that $p \in \pi(G)$, a contradiction.
3.9. Lemma. $\left|G_{u}\right|=u,\left|G_{t}\right|=t,\left|G_{2}\right|\left|2^{m},\left|G_{3}\right|=3\right.$ and hence, $| G \mid=2^{k} 3$ tu, where $k \leq m$.

Proof. According to Lemmas 3.5 and 3.6, we have $\left|G_{u}\right|=u$ and $\left|G_{t}\right|=t$. Since $9 \notin \pi_{e}(G)$, Lemma 2.2 implies $\left|G_{3}\right| \mid 1+m_{3}$ and hence, Lemma 2.14(e) leads to $\left|G_{3}\right|=3$. We know that $2 u \notin \pi_{e}(G)$. Actually, this follows by the same method as in Lemma 3.7. Therefore, G_{2} acts fixed point freely on the set of elements of order u by conjugation and Lemma 2.6 implies that $\left|G_{2}\right| \mid m_{u}$ and hence, according to Lemma 2.14, we have $\left|G_{2}\right| \mid 2^{m}$.
3.10. Lemma. G is unsolvable.

Proof. If G is solvable, then by Lemma 2.7, G has a Hall π-subgroup H, where $\pi=$ $\{3, t, u\}$ and all the Hall π-subgroups of G are conjugate and hence, $\left|G: N_{G}(H)\right| \mid 2^{m}$. Since $|H|=3 t u$, we conclude that $n_{u}(H) \in\{1,3, t, 3 t\}$ and according to Sylow theorem, we have $n_{u}(H) \equiv 1(\bmod u)$ and hence Lemma 2.14 implies that $n_{u}(H)=1$. On the other hand, we can easily see that

$$
n_{u}(G)\left|n_{u}(H) \cdot\right| G: N_{G}(H)|\cdot| N_{G}(H): H| | 2^{m+k}
$$

Also, since the Sylow u-subgroups of G are cyclic, we have $m_{u}=(u-1) \cdot n_{u}(G)$ and hence, $m_{u} \mid 2^{m+k}(u-1)$, but according to Lemma 3.6, Step 1, we have $m_{u}=1 / 2(u-1) 2^{m} 3 t$, which is a contradiction.
3.11. Lemma. $G \cong L_{2}\left(2^{m}\right)$.

Proof. Since G is a finite unsolvable group, according to Lemma 2.8, there is a normal series $1 \unlhd N \unlhd M \unlhd G$, such that N is a normal solvable subgroup of G and M / N is an unsolvable simple group or the direct product of isomorphic unsolvable simple groups. Let $M / N \cong S_{1} \times \ldots \times S_{r}$, where S_{1} is an unsolvable simple group and $S_{1} \cong \ldots \cong S_{r}$. According to $|G|=2^{k}$.3.t.u, where $k \leq m$ and the structure of M / N, we can easily conclude that $r=1$ and M / N is a simple K_{3}-group or a simple K_{4}-group.
Case 1. If M / N is a simple K_{3}-group, then according to Lemma 2.1, we have $\pi(M / N) \cap$ $\{5,7,13,17\} \neq \emptyset$. But since $\pi(M / N) \subseteq \pi(G)$ and $|G|=2^{k}$.3.t.u, where $k \leq m$, we can get a contradiction.
Case 2. If M / N is a simple K_{4}-group, then by Lemma $2.1, M / N$ is isomorphic to one of the following groups:

- If $M / N \cong A_{7}, A_{8}, A_{9}, A_{10}, M_{11}, M_{12}, J_{2}, L_{2}(81), L_{2}(243), L_{2}(577)$,
$L_{3}(4), L_{3}(7), L_{3}(8), L_{3}(17), L_{4}(3), S_{4}(4), S_{4}(5), S_{4}(7), S_{4}(9), S_{6}(2)$,
$O_{8}^{+}(2), G_{2}(3), U_{3}(5), U_{3}(8), U_{3}(9), U_{4}(3), U_{5}(2),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$ or $L_{2}\left(3^{m}\right)$, where m, $\left(3^{m}-1\right) / 2$ and $\left(3^{m}+1\right) / 4$ are odd primes, then $3^{2}| | M / N \mid$, a contradiction.
- If $M / N \cong L_{2}(25), L_{2}(49), L_{3}(5), U_{3}(4), S z(32)$, then $5^{2}| | M / N \mid$, a contradiction.
- If $M / N \cong L_{2}(97), U_{3}(7)$, then $7^{2}| | M / N \mid$, a contradiction.
- If $M / N \cong S z(8)$, then $3 \nmid|M / N|$, a contradiction.
- If $M / N \cong L_{2}(16)$, then $t=5$, a contradiction.
- If $M / N \cong L_{2}(r)$, where r is a prime, $r^{2}-1=2^{a} .3^{b} \cdot v, v>3$ is a prime, $a, b \in \mathbb{N}$, then $|M / N|=\left|L_{2}(r)\right|=\frac{1}{(r-1,2)} r\left(r^{2}-1\right)=\frac{1}{(r-1,2)} r \cdot 2^{a} .3^{b} \cdot v$ and hence, $\pi(M / N)=\{2,3, r, v\}$. Since $\pi(M / N) \subseteq \pi(G)$, we have $v=t, r=u$ or $v=u, r=t$. But since v is a prime number which divides $r^{2}-1$, according to Lemma 2.14(a-b) we can get a contradiction.
- If $M / N \cong L_{2}\left(2^{m^{\prime}}\right)$, where m^{\prime} satisfies

$$
\left\{\begin{array}{l}
2^{m^{\prime}}-1=u^{\prime} \\
2^{m^{\prime}}+1=3 t^{\prime}
\end{array}\right.
$$

with $m^{\prime} \geq 2, u^{\prime}, t^{\prime}$ are primes, $t^{\prime}>3$, then $|M / N|=2^{m^{\prime}} .3 \cdot t^{\prime} . u^{\prime}$. Since $|M / N|||G|$ and $|G|=2^{k}$.3.t.u, where $k \leq m$, we conclude that $m^{\prime} \leq m$ and $t^{\prime}=t$ or u. If $t^{\prime}=u$, then
$\frac{2^{m^{\prime}}+1}{3}=2^{m}-1$. Thus $2^{m^{\prime}}\left(3.2^{m-m^{\prime}}-1\right)=4$, which is a contradiction. So we conclude $t^{\prime}=t$ and this implies that $m=m^{\prime}$ and $u^{\prime}=u$. Therefore, $M / N \cong L_{2}\left(2^{m}\right)$, where m satisfies

$$
\left\{\begin{array}{l}
2^{m}-1=u \\
2^{m}+1=3 t
\end{array}\right.
$$

with $m \geq 2, u, t$ are primes, $t>3$.
Since 2^{m}.3tu $=|M / N|| | G \mid=2^{k}$.3.t.u, where $k \leq m$, we conclude that $N=1$ and $M=G=L_{2}\left(2^{m}\right)$.

According to the main theorem, we pose the following problem:
Problem: Is a group G isomorphic to $L_{2}\left(2^{m}\right)(m \geq 2)$ if and only if $n s e(G)=n s e\left(L_{2}\left(2^{m}\right)\right)$?

Acknowledgments

The authors would like to express their deep gratitude to the referee for invaluable comments and suggestions. Partial support by the Center of Excellence of Algebraic Hyperstructures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledged by the second author (AI).

References

[1] Adams, W.W., Goldstein, L.J.: Introduction to number theory, Prentice-Hall. Inc (1976)
[2] Bugeaud, Y., Cao, Z., Mignotte, M.: On simple K_{4}-groups, J. Algebra 241(2), 658-668 (2001)
[3] Crescenzo, P.: A diophantine equation which arises in the theory of finite groups, Advances in Math. 17, 25-29 (1975)
[4] Frobenius, G.: Verallgemeinerung des sylowschen satze, Berliner sitz, pp. 981-993 (1895)
[5] Hall, P.: A note on soluble groups, J. London Math. Soc. 3, 98-105 (1928)
[6] Herzog, M.: On finite simple groups of order divisble by three primes only, J. Algebra 10, 383-388 (1968)
[7] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups, Monatsh. Math. 163, 39-50 (2011)
[8] Khosravi, B., Moghanjoghi, A.Z.: Quasirecognition by prime graph of some alternating groups, Int. J. Contemp. Math. Sci. 2, no. 25-28, 1351-1358 (2007)
[9] Khalili Asboei, A., Salehi Amiri, S.S., Iranmanesh, A., Tehranian, A.: A new characterization of symmetric groups for some n.(submitted)
[10] Khalili Asboei, A., Salehi Amiri, S.S., Iranmanesh A., Tehranian, A.: A characterization of Matheiu groups by NSE. (submitted)
[11] Khalili Asboei, A., Salehi Amiri, S.S., Iranmanesh, A., Tehranian, A.: A new characterization of A_{7}, A_{8}, Anale Stintifice ale Universitatii Ovidius constanta 21, 43-50 (2013)
[12] Khalili Asboei, A., Salehi Amiri, S.S., Iranmanesh, A., Tehranian, A.: A new characterization of $P S L(2, p)$ where p is a prime number with its NSE (submitted)
[13] Miller, G.: Addition to a theorem due to Frobenius, Bull. Am. Math. Soc. 11, 6-7 (1904)
[14] Passman, D.: Permutation Groups, W. A. Benjamin New York (1968)
[15] Shi, W. J.: On simple K_{4}-groups, Chinese Science Bull. 36(17), 1281-1283 (in Chinese) (1991)
[16] Shao, C.G., Shi, W.J., Jiang, Q.H.: Characterization of simple K_{4}-groups, Front. Math. China 3, 355-370 (2008)
[17] Shen, R., Shao, C., Jiang, Q., Shi, W., Mazurov, V.: A new characterization of A_{5}, Monatsh. Math. 160, 337-341 (2010)
[18] Weisner, L.: On the number of elements of a group which have a power in a given conjugate set, Bull. Amer. Math. Soc. 31, 492-496 (1925)
[19] Zavarnitsine, A.V.: Recognition of the simple groups $L_{3}(q)$ by element orders, J. Group Theory 7, 81-97 (2004)
[20] Zhang, S., Shi, W.: Revisiting the number of simple K_{4}-groups, arXiv: 1307. 8079 v 1 [math.NT] (2013)

[^0]: *Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
 Email: h.parvizi.mosaed@gmail.com
 ${ }^{\dagger}$ Department of pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box: 14115-137, Tehran, Iran.
 Email:iranmana@modares.ac.ir
 ${ }^{\ddagger}$ Department of pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
 Email:foroudi@modares.ac.ir
 ${ }^{\S}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
 Email:tehranian@srbiau.ac.ir

