1 Hacettepe Journal of Mathematics and Statistics
(7 Volume 44 (4) (2015), 887-892

Skew-commuting mappings on semiprime and prime rings

Abbas Najati * and M. Mohammadi Saem ${ }^{\dagger}$

Abstract

In this paper we study some maps which are skew-commuting on rings. Also we present some results concerning derivations in generalized case.

2000 AMS Classification: 16N60, 16W25.

Keywords: skew-commuting map, additive map, generalized derivation, semiprime ring, prime ring.

Received 09/02/2014 : Accepted 30/04/2014 Doi : 10.15672/HJMS. 2015449652

1. Introductions and Preliminaries

Throughout this paper, R be a ring with center $Z(R)$. For an integer $n>1$, a ring R is called n-torsion free if $n x=0,(x \in R)$ implies $x=0$. As usual we write $[x, y]$ for $x y-y x$ and use the identities $[x y, z]=x[y, z]+[x, z] y$ and $[x, y z]=y[x, z]+[x, y] z$ for $x, y, z \in R$. Recall that a ring R is prime if $x R y=\{0\}$ implies $x=0$ or $y=0$ and is semiprime if $x R x=\{0\}$ implies $x=0$. An additive mapping d from R into itself is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. An additive mapping $f: R \rightarrow R$ is said to be a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $f(x y)=f(x) y+x d(y)$ for all $x, y \in R$. A mapping $f: R \rightarrow R$ is called skew-commuting on R if $f(x) x+x f(x)=0$ and is called commuting on R if $[f(x), x]=0$ for all $x \in R$.

[^0]
2. Main Results

We shall make use of the following results.
2.1. Theorem. [2] Let R be a 2-torsion free semiprime ring. If an additive mapping $f: R \rightarrow R$ is skew-commuting on R, then $f=0$.
2.2. Theorem. [3] Let R be a semiprime ring, I a nonzero ideal of R and F a nonzero generalized derivation of R associated with a derivation D. If $F(x y)=F(x) F(y)$ for all $x, y \in R$, then $D(I)=0$.
2.3. Lemma. [5] Let R be a semiprime ring. Suppose that the relation axb $+b x c=0$ holds for all $x \in R$ and some $a, b, c \in R$. In this case, $(a+c) x b=0$ is satisfied for all $x \in R$.
2.4. Lemma. [6] Let R be a semiprime ring and D be a derivation on R. If $D(x) D(y)=$ 0 for all $x, y \in R$, then $D=0$.
2.5. Theorem. Let R be a 2-torsion free semiprime ring, D be a derivation and α be a homomorphism on R. Suppose that the mapping $x \mapsto(D(x)+(\alpha(x)-x))$ is skewcommuting on R. In this case $\alpha=I$ and $D=0$.

Proof. Put $G(x)=\alpha(x)-x$. By Theorem 2.1, we have $D=-G$. Therefore $D(x) D(y)=$ 0 for all $x, y \in R$. Hence $D=0$ by Lemma 2.4. So we get $\alpha=I$.
2.6. Theorem. Let R be a nonzero 2 -torsion free semiprime ring, D be a derivation and α be a homomorphism on R. Suppose that the mapping $x \mapsto D(x)+\alpha(x)$ is skewcommuting on R. In this case $\alpha=D=0$.

Proof. The result follows by Theorems 2.1 and 2.2 .
In [4] Vukman proved that on a 2-torsion free semiprime ring R, if the mapping $x \mapsto D(x) x+x \alpha(x)$ is commuting on R, then D and $\alpha-I$ map R into $Z(R)$. The next theorem is a version of this result in case of skew-commuting map. We will use the following lemmas in the proofs of next theorems.
2.7. Lemma. [4] Let R be a semiprime ring and let $f: R \rightarrow R$ be an additive mapping. If either $f(x) x=0$ or $x f(x)=0$ holds for all $x \in R$, then $f=0$.
2.8. Lemma. [4] Let R be a 2-torsion free semiprime ring and $\alpha: R \rightarrow R$ be an automorphism such that $x[\alpha(x), x]=0$ or $[\alpha(x), x] x=0$ for all $x \in R$. Then $\alpha-I$ maps R into $Z(R)$.
2.9. Lemma. [1] Let R be a prime ring and let $F: R \rightarrow R$ be an additive map. If there exists a positive integer n such that $F(x) x^{n}=0$ for all $x \in R$, then $F=0$.
2.10. Theorem. Let R ba a 2 and 3-torsion free semiprime ring. Suppose that D is a derivation and $\alpha: R \rightarrow R$ is an onto homomorphism such that the mapping $x \mapsto$ $D(x) x+x \alpha(x)$ is skew-commuting on R. In this case $\alpha-I$ maps R into $Z(R)$.

Proof. The assumption of the theorem can be written in the form

$$
\begin{equation*}
(D(x) x+x \alpha(x)) x+x(D(x) x+x \alpha(x))=0, \quad x \in R \tag{2.1}
\end{equation*}
$$

Using the linearization of (2.1), a routine calculation gives

$$
\begin{aligned}
A(x) y & +D(x) y x+D(y) x^{2}+x \alpha(y) x+y \alpha(x) x+x \alpha(x) y+x D(y) x \\
& +x^{2} \alpha(y)+x y \alpha(x)+y D(x) x+y x \alpha(x)=0, \quad x, y \in R
\end{aligned}
$$

where $A(x)=D(x) x+x D(x)$. Replacing y by $y x$ in the above relation, we get

$$
\begin{aligned}
& A(x) y x+D(x) y x^{2}+D(y) x^{3}+y D(x) x^{2}+x \alpha(y) \alpha(x) x+y x \alpha(x) x+x \alpha(x) y x \\
& +x D(y) x^{2}+x y D(x) x+x^{2} \alpha(y) \alpha(x)+x y x \alpha(x)+y x D(x) x+y x^{2} \alpha(x)=0 .
\end{aligned}
$$

It follows from the above relations that

$$
\begin{align*}
(x y+y x) D(x) x & +x^{2} \alpha(y) G(x)+x \alpha(y) G(x) x+x y[x, \alpha(x)] \tag{2.2}\\
& +y x[x, \alpha(x)]+y[x, \alpha(x)] x=0, \quad x, y \in R,
\end{align*}
$$

where $G(x)=\alpha(x)-x$. Replacing y by $x y$ in (2.2), we get

$$
\begin{align*}
& x(x y+y x) D(x) x+x^{2} \alpha(x) \alpha(y) G(x)+x \alpha(x) \alpha(y) G(x) x \\
& +x^{2} y[x, \alpha(x)]+x y x[x, \alpha(x)]+x y[x, \alpha(x)] x=0 . \tag{2.3}
\end{align*}
$$

Multiplying the left side of (2.2) by x and then subtracting the obtained relation from (2.3), we obtain

$$
x^{2} G(x) \alpha(y) G(x)+x G(x) \alpha(y) G(x) x=0, \quad x, y \in R .
$$

Since α is onto, therefore

$$
x^{2} G(x) y G(x)+x G(x) y G(x) x=0, \quad x, y \in R .
$$

Hence

$$
x^{2} G(x) y x G(x)+x G(x) y x G(x) x=0, \quad x, y \in R .
$$

By Lemma 2.3, we have

$$
\begin{equation*}
\left(x^{2} G(x)+x G(x) x\right) y x G(x)=0, \quad x, y \in R \tag{2.4}
\end{equation*}
$$

Replacing y by $y x$ in (2.4), we get

$$
\begin{equation*}
\left(x^{2} G(x)+x G(x) x\right) y x^{2} G(x)=0, \quad x, y \in R \tag{2.5}
\end{equation*}
$$

It follows from (2.4) and (2.5) that

$$
\left(x^{2} G(x)+x G(x) x\right) y\left(x^{2} G(x)+x G(x) x\right)=0, \quad x, y \in R .
$$

Since R is semiprime, this implies

$$
\begin{equation*}
x(x G(x)+G(x) x)=0, \quad x \in R . \tag{2.6}
\end{equation*}
$$

Using the linearization of (2.6), a routine calculation gives

$$
\begin{equation*}
x(x G(y)+y G(x)+G(x) y+G(y) x)+y(x G(x)+G(x) x)=0 . \tag{2.7}
\end{equation*}
$$

Replacing y by $x y$ in (2.7), we obtain

$$
\begin{align*}
& x(x G(x y)+x y G(x)+G(x) x y+G(x y) x) \\
& +x y(x G(x)+G(x) x)=0, \quad x, y \in R . \tag{2.8}
\end{align*}
$$

Multiplying the left side of (2.7) by x and then subtracting the obtained relation from (2.8), we get

$$
x[\alpha(x), x] y+x^{2} G(x) \alpha(y)+x G(x) \alpha(y) x=0, \quad x, y \in R .
$$

Using (2.6), we get

$$
\begin{equation*}
x[\alpha(x), x] y+x G(x)[\alpha(y), x]=0, \quad x, y \in R . \tag{2.9}
\end{equation*}
$$

Replacing y by $y z$ in (2.9), we obtain

$$
\begin{aligned}
0 & =x[\alpha(x), x] y z+x G(x) \alpha(y)[\alpha(z), x]+x G(x)[\alpha(y), x] \alpha(z) \\
& =-x G(x)[\alpha(y), x] z+x G(x) \alpha(y)[\alpha(z), x]+x G(x)[\alpha(y), x] \alpha(z) \\
& =x G(x)[\alpha(y), x] G(z)+x G(x) \alpha(y)[\alpha(z), x], \quad x, y, z \in R .
\end{aligned}
$$

Since α is onto, we have

$$
x G(x)[y, x] G(z)+x G(x) y[\alpha(z), x]=0, \quad x, y, z \in R .
$$

Putting $y=x$ in the above relation, we infer $x G(x) x[z, x]=0$ for all $x, z \in R$. If we replace z by $z y$, then $x G(x) x z[y, x]=0$ for all $x, y, z \in R$. Putting $y=G(x)$, we have

$$
\begin{equation*}
x G(x) x z[G(x), x]=0, \quad x, z \in R . \tag{2.10}
\end{equation*}
$$

Replacing z by $x z$ in (2.10), we get $x G(x) x^{2} z[G(x), x]=0$ for all $x, z \in R$. On the other hand (2.10) gives $x^{2} G(x) x z[G(x), x]=0$. Subtracting these two recent relations, we obtain

$$
x[G(x), x] x z[G(x), x]=0, \quad x, z \in R .
$$

Hence $x[G(x), x] x=0$ by semiprimeness of R. According to (2.6), we get $x^{2} G(x) x=0$ for all $x \in R$. Therefore $x^{2}[G(x), x]=0$ for all $x \in R$. The linearization with a simple calculation leads to

$$
x^{2}[G(y), y]+(x y+y x)([G(x), y]+[G(y), x])+y^{2}[G(x), x]=0, \quad x, y \in R .
$$

Replacing y by $x+y$ in the above relation, we get

$$
\begin{equation*}
x^{2}([G(x), y]+[G(y), x])+(x y+y x)[G(x), x]=0, \quad x, y \in R . \tag{2.11}
\end{equation*}
$$

Left multiplication (2.11) by $x[G(x), x]$ and using $x[G(x), x] x=0$, we get

$$
x[G(x), x] y x[G(x), x]=0, \quad x, y \in R .
$$

Since R is semiprime, $x[G(x), x]=0$ for all $x \in R$. So $x[\alpha(x), x]=0$ for all $x \in R$. Therefore $\alpha-I$ maps R into $Z(R)$ by Lemma 2.8.
2.11. Theorem. Let R ba a 2 and 3 -torsion free prime ring. Suppose that D is a derivation and $\alpha: R \rightarrow R$ is an onto homomorphism such that the mapping $x \mapsto D(x) x+$ $x \alpha(x)$ is skew-commuting on R. The only case for R is $R=\{0\}$.

Proof. By Theorem 2.10 we obtain that $\alpha-I$ maps R into $Z(R)$. So relation (2.6) gives us $G(x) x^{2}=0$. Hence $\alpha=I$ by Lemma 2.9. Therefore (2.1) and (2.2) give

$$
\begin{equation*}
D(x) x^{2}+x D(x) x=-2 x^{3}, \quad x^{2} D(x) x=0, \quad x \in R . \tag{2.12}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
D\left(x^{3}\right)-x^{2} D(x)=-2 x^{3}, \quad x \in R . \tag{2.13}
\end{equation*}
$$

It follows from (2.12) that

$$
\begin{equation*}
x D(x) x^{2}=-2 x^{4}, \quad x \in R \tag{2.14}
\end{equation*}
$$

Right multiplication of (2.12) by x and then using (2.14), we get $D(x) x^{3}=0$. Hence $D=0$ by Lemma 2.9. So (2.14) implies $x^{4}=0$ for all $x \in R$. So we get $R=\{0\}$ by Lemma 2.9.

Vukman [4] proved the result below.
2.12. Theorem. [4] Let R be a 2-torsion free semiprime ring and $D: R \rightarrow R$ be a derivation such that $x[D(x), x]=0$ or $[D(x), x] x=0$ for all $x \in R$. Then D maps R into $Z(R)$.

In the following theorem we generalize this result.
2.13. Theorem. Let R be a 2 -torsion free semiprime ring and F be a generalized derivation associated with a derivation D on R. Also let $[F(x), x] x=0$ for all $x \in R$. In this case D maps R into $Z(R)$.

Proof. The linearization of $[F(x), x] x=0$ gives

$$
\begin{equation*}
[F(x), y] x+[F(y), x] x+[F(x), x] y=0, \quad x, y \in R . \tag{2.15}
\end{equation*}
$$

Replacing y by $y x$ in (2.15), we get

$$
[F(x), y] x^{2}+[F(y), x] x^{2}+y[D(x), x] x+[y, x] D(x) x+[F(x), x] y x=0
$$

Right multiplication of (2.15) by x and subtracting the obtained relation from the above relation, gives
(2.16) $\quad y[D(x), x] x+[y, x] D(x) x=0, \quad x, y \in R$.

Replacing y by $D(x) y$ in (2.16), we have

$$
D(x) y[D(x), x] x+D(x)[y, x] D(x) x+[D(x), x] y D(x) x=0, \quad x, y \in R .
$$

Using (2.16), we infer $[D(x), x] y D(x) x=0$. Hence (2.16) implies that $[D(x), x] x y[D(x), x] x=$ 0 for all $x, y \in R$. Since R is semiprime, $[D(x), x] x=0$ for all $x \in R$. Therefore D maps R into $Z(R)$ by Theorem 2.12.
2.14. Theorem. Let R be a 2-torsion free semiprime ring and let D and G be two derivations on R. Suppose that $(D(x) x+x G(x)) x=0$ for all $x \in R$. In this case D and G map R into $Z(R)$.

Proof. A routine calculation shows that

$$
\begin{equation*}
D(x) y x+D(y) x^{2}+x G(y) x+y G(x) x+D(x) x y+x G(x) y=0 \tag{2.17}
\end{equation*}
$$

Let y be $y x$ in (2.17). Then

$$
\begin{aligned}
& D(x) y x^{2}+D(y) x^{3}+y D(x) x^{2}+x G(y) x^{2} \\
& +x y G(x) x+y x G(x) x+D(x) x y x+x G(x) y x=0, \quad x, y \in R
\end{aligned}
$$

Multiplying (2.17) from the right by x and then subtracting the obtained relation from the above relation, we get

$$
y\left(D(x) x^{2}+x G(x) x\right)+x y G(x) x-y G(x) x^{2}=0, \quad x, y \in R
$$

Hence by the assumption, we get

$$
x y G(x) x-y G(x) x^{2}=0, \quad x, y \in R
$$

Replacing y by $G(x) x y$, we get

$$
x G(x) x y G(x) x+G(x) x y\left(-G(x) x^{2}\right)=0, \quad x, y \in R
$$

By Lemma 2.3 we get

$$
\begin{equation*}
[G(x), x] x y G(x) x=0, \quad x, y \in R \tag{2.18}
\end{equation*}
$$

If we replace y by $y x$ in (2.18), then

$$
[G(x), x] x y x G(x) x=0, \quad x, y \in R
$$

Multiplying (2.18) from the right by x and subtracting the obtained relation from the above relation, we obtain

$$
[G(x), x] x y[G(x), x] x=0, \quad x, y \in R
$$

Since R is semiprime, $[G(x), x] x=0$ for all $x \in R$. Hence G maps R into $Z(R)$ by Theorem 2.12. Also using same argument shows that D maps R into $Z(R)$.
2.15. Theorem. Let R be a 2-torsion free prime ring and let D and G be two derivations on R. Suppose that $(D(x) x+x G(x)) x=0$ for all $x \in R$. In this case $D=-G$ and R is commutative, unless $D=G=0$.

Proof. By Theorem 2.14 we get that G maps R into $Z(R)$. So by the assumption, we obtain $(D+G)(x) x^{2}=0$ for all $x \in R$. Therefore $D+G=0$ by Lemma 2.9, and we conclude that D maps R into $Z(R)$.

Our last result generalizes a result of [4].
2.16. Theorem. Let R be a semiprime ring, F be a generalized derivation associated with a derivation D on R and $\alpha: R \rightarrow R$ be an onto homomorphism. If $F(x) x+x(\alpha(x)-x)=0$ holds for all $x \in R$, then $\alpha=I$ and $F=D=0$.

Proof. The linearization of $F(x) x+x(\alpha(x)-x)=0$ gives

$$
\begin{equation*}
F(x) y+F(y) x+x G(y)+y G(x)=0, \tag{2.19}
\end{equation*}
$$

where $G(x)=\alpha(x)-x$. Substituting $y x$ for y in (2.19), we have

$$
\begin{aligned}
0 & =F(x) y x+F(y) x^{2}+y D(x) x+x \alpha(y) \alpha(x)-x y x+y x G(x) \\
& =(F(x) y+F(y) x-x y) x+y D(x) x+x \alpha(y) \alpha(x)+y x G(x) \\
& =-x \alpha(y) x-y G(x) x+y D(x) x+x \alpha(y) \alpha(x)+y x G(x) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
x \alpha(y) G(x)+y[x, G(x)]+y D(x) x=0, \quad x, y \in R . \tag{2.20}
\end{equation*}
$$

Replacing y by $x y$ in (2.20), we get

$$
x \alpha(x) \alpha(y) G(x)+x y[x, G(x)]+x y D(x) x=0, \quad x, y \in R .
$$

Multiplying (2.20) from the left by x and subtracting the obtained relation from the above relation, we get

$$
x G(x) \alpha(y) G(x)=0, \quad x, y \in R .
$$

Since α is onto, $x G(x) y G(x)=0$ for all $x, y \in R$. Hence $x G(x) y x G(x)=0$ for all $x, y \in R$. Since R is semiprime, $x G(x)=0$ for all $x \in R$. By Lemma 2.7 we get $G=0$, which implies that $\alpha=I$. Now by (2.19) we have $F(x) x=0$ for all $x \in R$. Hence $F=0$ by Lemma 2.7. On the other hand, we have $F(x y)=F(x) y+x D(y)$ for all $x, y \in R$. So $x D(y)=0$ for all $x, y \in R$. Since R is semiprime, we infer $D=0$.

Acknowledgments

The authors would like to thank the referee for his (her) useful comments.

References

[1] D. Benkovič and D. Eremita, Characterizing left centralizers by their action on a polynomial, Publ. Math. Debercen 64 (2004), 343-351.
[2] M. Brešar, On Skew-Commuting mappings of rings, Bull. Austral. Math. Soc. 47 (1993), 291-296.
[3] B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime ring, Beitr. Algebra Geom. 53 (2012), 203-209.
[4] J. Vukman, Identities with derivations and automorphisms on semiprime rings, Int. J. Math. Math. Sci. 7 (2005), 1031-1038.
[5] J. Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Carolin. 42 (2001), 237-245.
[6] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609-614.

[^0]: *Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
 Email: a.najati@uma.ac.ir, a.nejati@yahoo.com
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
 Email:m.mohammadisaem@yahoo.com

