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A two-step approach to ratio and regression
estimation of finite population mean using optional

randomized response models

Geeta Kalucha*, Sat Guptal and Javid Shabbir?

Abstract

We propose a modified two-step approach for estimating the mean of a
sensitive variable using an additive optional RRT model which allows
respondents the option of answering a quantitative sensitive question
directly without using the additive scrambling if they find the ques-
tion non-sensitive. This situation has been handled before in Gupta et
al. (2010) using the split sample approach. In this work we avoid the
split sample approach which requires larger total sample size. Instead,
we estimate the finite population mean by using an Optional Addi-
tive Scrambling RRT Model but the corresponding sensitivity level is
estimated from the same sample by using the traditional Binary Un-
related Question RRT Model of Greenberg et al. (1969). The initial
mean estimation is further improved by utilizing information from a
non-sensitive auxiliary variable by way of ratio and regression estima-
tors. Expressions for the Bias and MSE of the proposed estimators
(correct up to first order approximation) are derived. We compare the
results of this new model with those of the split-sample based Optional
Additive RRT Model of Kalucha et al. (2015), Gupta et al. (2015) and
the simple optional additive RRT Model of Gupta et al. (2010). We see
that the regression estimator for the new model has the smallest MSE
among all of the estimators considered here when they have the same
sample size.
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1. Introduction

The randomized response technique of reducing respondent bias in obtaining answers
to sensitive questions developed by Warner (1965) has been extended from the situation
where response is categorical to that in which the response is quantitative. Choice of
scrambling mechanism plays an important role in quantitative response models. Eichhron
and Hayre (1983), Gupta and Shabbir (2004), Gupta et al. (2002, 2010), Wu et al. (2008)
and many others have estimated the mean of a sensitive variable when the study variable
is sensitive and no auxiliary information is available. While Eichhron and Hayre (1983)
have used multiplicative scrambling, Gupta et al. (2010) have used additive scrambling
in the context of optional randomized response models where a respondent provides a
true response if he/she considers the question non-sensitive, and provides a scrambled
response if the question is deemed sensitive. The researcher will not know which type of
response has been provided. Sousa et al. (2010) and Gupta et al. (2012) suggested mean
estimators based on full additive RRT models using an auxiliary variable. Kalucha et al.
(2015) and Gupta et al. (2015) improved the mean estimators further by using optional
additive RRT models which apart from estimating py (the mean of sensitive variable
Y') also estimated W (the sensitivity level of the research question) using a split-sample
approach. Recently Singh and Tarray (2014) have studied optional randomized response
model in the stratified sampling setting.

The main motivation for the proposed model is to avoid the split sample approach
which requires unnecessarily larger total sample sizes. We estimate the mean of the
sensitive characteristic by using an Additive Optional RRT model but the corresponding
sensitivity level is estimated from the same sample by using the Greenberg et al. (1969)
model. This eliminates the need for split-sample approach that requires a larger total
sample size.

Let py and 032/ be the unknown mean and variance of the sensitive variable Y, pux
and ¢% be the known mean and variance of the auxiliary variable X. Let W be the
unknown sensitivity level of the survey question in the population.

2. The Split-Sample Model — Gupta et al. (2010)

Here the sample of size n is split into two sub-samples of sizes n1 and n2 (n1+n2 = n).
Let Si, S2 be scrambling variables used in the two sub-samples. Let the mean and

variance respectively of S; (¢ = 1,2) be 6; and a%i. We assume that Y, X and S;
(¢ = 1,2) are mutually independent. For the i*" population unit (i=1,2,...,N), let y;
and x; respectively be the values of the study variable Y and the auxiliary variable X.

SPw g _ Sfpe s _ Xf
n ’ n

Moreover let § = L “L be the sample means, and py = E(Y),
ux = E(X) and pz = E(Z) be the corresponding population means for Y, X and the
scrambled response Z respectively. We assume that px is known. In each sub sample, we
will observe X directly but will only have an additively scrambled version of Y. According
to this model, the reported response Z; in the " sub-sample is given by

Y with probability (1 — W) 19

i = . o =1
(Y +5;) with probability W

The mean and variance respectively for Z; (i = 1,2) are given by

(2.1) E(Z»L) = py + 0, W  where E(SZ) =0; (’L = 172),
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and
(2.2) U%i =0y +a§iW—|—0i2W(1 - W)
It follows easily from (2.1) that for 6; # 62,
02E(Z1) — 01 E(Z2) E(Z>) — E(Zy)
= d = ——
6> — 01 d W=, o)

Hence if information on X is ignored, expressions in (2.3) lead to the following unbiased
estimators of py and W:

(2.3)

02zZ1 — 6012
—_—, 91 92 and W_i 91 027

02 — 61 7 (02 — 01)’ 7
where Z1, Zs respectively are the sample mean of reported responses in the two sub-
samples.

It can be verified that iy and W are unbiased estimators of the population mean py
and the sensitivity level W. Variances of these estimators are given by

(2.5) Var(ﬂy)=(92_101) [9 ( nfl)a§1+9%(1;2f2>aéz}

and
Var(W) 92—91 (1_f1) 2 + (1;2‘)‘.2)0'%2] )

where 917592, f1— N’f2 % = fl+f27
1 N
O'Z1 = — 1 Z and 0%2 = ﬁZ(ZQ
=1

3. The Proposed Model

In the proposed model, the underlying sensitivity level W and its variance are esti-
mated by using the Greenberg et al. (1969) model. Here the sensitive question is “Whether
or not you consider the underlying main research question sensitive for a face-to-face sur-
vey”. Let 7, be the known probability of the binary innocuous unrelated question and
p» be the known probability of the respondent selecting the sensitivity question. We
consider a finite population U = {1,2,..., N} of size N and a random sample of size
n be drawn without replacement. When estimating the mean, let S be the scrambling
variable used to additively scramble the responses in the sample with mean E(S) = 6.
We assume that Y, X and S are mutually independent.

(24) iy =

3.1. Estimation of Sensitivity Level (W). The probability of “yes response” to the
sensitivity question is given by
(3.1) Py :pbW+(1*pb)7Tb
Solving for W, we have
Py — (1 —py)m
Y43

Thus the estimate of W, as per the Greenberg et al. (1969) model, is given by
P, — (1 —py)m

3.3 W= T
(33) -

(32) W=

where Py is the proportion of yes response in the sample.
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We know that W is an unbiased estimator and its variance is given by

(34)  Var(W) = <1 -/ > Py(1—P,))

2
n D;

An unbiased estimator of this variance is given by

(35)  Var(W) = (:L:]I) Py(lpg P,)

3.2. Estimation of Mean. The reported quantitative response Z to the main research
question according to optional additive RRT model can be expressed as

7 Y + S with probability W
B Y  with probability 1 — W

The mean and variance respectively of Z are given by
EZ)=WEY +5)+(1-W)E()
=EY)+WE(S)
(3.6) = py + W0,
and
Var(Z) = WE(Y + 5)*> + (1 - W)E(Y?) — %
(3.7) =0y +Was +0°W(1 - W)
From equation (3.6) we have
py =pz — W6
This leads to an estimator for puy given by
(38)  fyws = fz — W0,

where [iz = Z is the sample mean of reported responses and W is given by equation (3.3).
We note that fiyw- is an unbiased estimator of py and its variance is given by

Var(fiyw+) = Var(z — W)
= Var(z) + 6 Var(W)
(3.9) :<%)(a§)+92<17f> Py(lgpy)

n Dy

The variance of the estimator in (3.9) can be conveniently estimated by
Loin _(1=F\, .2 27 1R
(3.10) Var(fiyw+) = — (sz) + 0°Var(W)

where s? is the sample variance of reported responses given by
s2=m—-1)""3" (2 —2)? and Var(W) is as given in (3.5) above.

We further modify the proposed mean estimator fyw+ in the presence of an auxiliary
variable by proposing ratio (firw~+) and regression (fireqw=) estimators and compare it
with the estimators proposed in Kalucha et al. (2015) and Gupta et al. (2015), both
based on split-sample approach.
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4. Ratio Estimator

4.1. Kalucha et al. (2015) — Split-Sample Based Ratio Estimator. Kalucha et
al. (2015) proposed the following additive ratio estimator for the mean of Y:

ian = (202 (x| px ) (]
(4.1) HAR = ( Y ) (51 + T 5 ) 61 7& 0s.

where (%) is the unbiased estimator of puy given by Gupta et al. (2010), and
Z1 and T2 are the respective sub-sample means for X. It was shown that this estimator
performs better than the ratio estimator proposed by Sousa et al. (2010) utilizing a
non-optional additive RRT model.

Bias and MSEFE of iar, correct up to first order of approximation, are given by

Bias(fiar) = ( n1f1> {/‘%cg _ (92 j91> Py 02y }

L=fo [z (O puwovCe
+( n2 )|:2cx+(92—91) 2

(42) — i [a= e

and

. 1 2f(1—=/f1) 2 2 (1= fa) o
MSE(fiar) = 0 —01)° |:92 ( nlf >O’Z1 + 61 ( n2f )JZQ:|

1y Cs
4
where a = (%) + (%), 8= (1251) (929_291) - (1252) (029%91), and C; is the

coefficient of variation for X.

(4.3) +

a — py pyzoy Cu

4.2. Proposed Ratio Estimator-New Approach. In this section we propose a ratio
estimator where the RRT estimator of the mean of Y given by (3.8) above is further
improved by using information on an auxiliary variable X. We define §, = (Z — uz)/uz,
0z = (Z — px)/pnx. Note that E(;) =0 for i = z, .

The proposed estimator is given by

(44)  frw- = (5 — W) (’“‘?X) = (uz(1+8.) — WO)(1 + oz) "

Using Taylor’s approximation and retaining terms of order up to 2, (4.4) can be rewritten
as

(4.5)  firwr — pz = pz(8s — 6z — 6204 +02) — WO(1 — 6, + 62)
Substituting the value of pz from (3.6) in (4.5), we have
(4.6)  firw+ — py =y (82 — 6z — 6204 + 62) + (W — W)O(L — 6, + 62) + WO(5. — 6.6,)

Under the assumption of bivariate normality (see Sukhatme and Sukhatme, 1970), we
have

1

! ! ~fo
n

1-— 1-—
E(02) = —2LC2, E(62) = —C2, E(6.6,) =
n n
where C.y = p..C.Cy, C, and C, are the coefficients of variation of Z and X, respec-
tively.
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Also, we have:

(4.7)

Cc? =

2 2 | p2
W W@ -w @
oy + USE})Q ( )and Pag = Py
(72 —
\/1+W7§+w
Y Yy

From equation (4.6), we can get expression for the Bias of figw+, correct up to first order
of approximation, as given by

1-f

(4.8)  Bias(irw+) = py | —= ) (C2 = p.C=.Cy) — W6 Bl p20C-Co
n n

Similarly from (4.6), MSE of jirw~, correct to first order of approximation, is given by

or

(4.9)

MSE(ju

MSE(ju

rw+) = E(ftaw= — py)?
>~ 13 B(82 4 02 — 20.0,) + O E(W — W)2E(1 — 26, + 362)
+ W20PE(52) 4 2uy WOE(62 — 6.6,)

1—
+ 6% Var(W) (1 +3 (%) cf,) + W% (#) c?

+ 2uy W6 <¥) (C2 — p:2C-Cy)

where Var(W) is given by (3.4) above.

4.3. Mean and Variance of the Proposed Ratio Estimator. The proposed ratio
estimator can be rewritten as

(4.10)  frw- = (%) yx, where§=z— W0

Hence

(4.11)

The mean of
than 2.

(4.12)

E(firw+) = pxE {%}

Using a Taylor series expansion of % around (py,px):

SIS
IR
SRS

8

#(2)

0 0 [y
+@- )5 (2) @ -y (2)
(1y,px) Yy (myspx) T AT (uy ux)
1 0% [y 1. 2 0% /7
TR ay) *—(z)( +3@=—m'5z (3)
By BX) (my mx)
? (7
+ (=)@ —px) 55 S
950z (x) (By px)

~ ) o\ /g
+0 (((y—uy)ay @) ) (J)
can now be found by taking expected value, ignoring all terms higher

Hy py  Cov(y,T)

Y v _ ORIt

px (@) 5 5% 5%

py < i COV(?;, ))

NX 1

1%

Il
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Substituting (4.12) in (4.11), we get

(4.13)  E(firw=) = py + (1;7]0) (Var(x)% - %)

It is clear from the above expression that jirw+ is asymptotically unbiased. Now
(4.14)  Var(firw~) = ux Var (%)

An approximation of the variance of g is obtained by using the first order terms of Taylor
series expansion:

o (£) = { (2 {2))")

o Var(y) | pi Var(z)  2uy Cov(y, )
ok 1 1%
(4.15) o 1-5 (VarQ(y) T By er(x) _ 2py C(;v(y, x))
m Fx Hx Hx

Substituting (4.15) in (4.14), we have

§3 Var(z)  2uy Cov(y, x))
M px
Substituting for Var(y) and using the fact that Cov(y,z) = Cov(z,z) in (4.16), we get

(4.16)  Var(jigw+) = % (Var(y) +

(4.17)  Var(igpw-) = % <Var(z) — W Var(S) — 6°W(1 — W)

n u¥ Var(z) _ 2py Cov(z,w))

I fix
The above variance can be estimated by using:

> i B —(—pym

V;aur(z) =s,, W » , and Cz)v(zgx) = Sza,
b

where sample covariance s.o = (n —1)"' 30 (2 — 2)(z; — 7).

5. Regression Estimator

5.1. Gupta et al. (2015) — Split-Sample Based Regression Estimator. Gupta
et al. (2015) suggested a regression estimator of the mean using split-sample approach,
as given by:

02z1 — 0122

(5.1)  fiareg = (ﬂ) + {lexl (bx — 1) + Bzyx, (ux — 592)} <%> ,

where /éZiXi (i = 1,2) are the sample regression coefficients between Z; and X; respec-
tively, and z;, Z; (¢ = 1,2) are the two sub-sample means. It was shown that this
estimator performs better than the regression estimator proposed by Gupta et al. (2012)
utilizing a non-optional additive RRT model. Bias and MSE of [iareq, correct up to first
order of approximation, are given by

(5.2)  Bias(fareg) = {*%521)( (1 ;1f1> - %ﬁZzX (1 — fz)} {@ —~ @}

na M1t Ho2
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and
. 1 1-f1 1—fa\ o
. MSE™ (fiareq) = 02 2 467
(5 3) S (:UJA 9) (92 — 01)2 2 n1 0z, + 01 . 02,
2 52
+ py4 Ya - pizo—%f%

where 02 # 61; « and 8 are defined earlier and p,s = ﬁ Zfil(zl — Z)T(a:i — )_()S.

5.2. Proposed Regression Estimator-New Approach. We modify the mean es-
timator in (3.8) above by using the regression estimation approach and propose the
following estimator for the population mean of Y:

(5.4)  fReqw+ = (2 — WO) + Bow(px — T)

We obtain the expressions for the bias and the mean square error for the proposed
regression estimator figegw+. If e0 = (Z—pz)/uz, e1 = (T—pux)/ux, e2 = (62 —0%)/c%
and e3 = (0.0 —0zx)/0zx, then we have E(e;) =0,7=0,1,2,3.

Using Taylor’s approximation and retaining terms of order up to 2, (5.4) can be
rewritten as

(5.5)  flRegw+ — iz = pzeo — WO — Boapx[er + eres — eres)

Substituting for pz, (5.5) can be written as

(5.6)  firegw — by = pzeo — Baopix[e1 + e1e3 — erea] + (W — W)

From Mukhopadhyay (1998, p. 123), we have E(e?) = %C’i, E(ed) = %C’f, E(eiez) =

% L ”—02, E(eie3) = %%%, where prs = ﬁ vazl(zl — Z)T(:vi — X)S and C;, C,

X po
are the coefficients of variation of z and z, respectively. Also, we have:

_ Ozz _ Oyx ﬁ _
5.7) Bre = o2 = o2 —pyxaz = Byx

—~

where py, and p., are the coefficients of correlation between y and x, and between z and
x, respectively.
Using this in (5.6), the Bias of [igegw, to first order of approximation, is given by

(5.8)  Bias(fipegw+) = — B (1 - f) {& _ @}
n H11 o2

The expression for MSE of jireqw= to first order of approximation, is given by

2
MSE(fipegw+) = (ﬂ) {gz - %} + 0 Var(W)

n T

(5.9) = (%) o2 { (1 4 Wos+ 92‘;‘/(1 - W)) - piz} + 0% Var(W)

Oy

where Var(W) is given by (3.4) above.
We note that [iregw+ is an unbiased estimator and hence

Va/r(ﬂRegW* ) = MSE(//)‘REQW*)

(5.10) ~ (1 - f> {03 - ‘%] + 0% Var(W)

n

The above variance can be estimated by using:

(1-p)BO-PB)

62 =52, &iw =62, =52, and V%Lr(W) = =1 e
b
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6. Efficiency comparisons

6.1. Efficiency Comparison of jigw+ and fiyw~. We have from equations (3.9) and
(4.9), MSE(firw+) < MSE(fiyw~) if

36 Var(W) C
6.1) 1+ "—? <2pyp
(6.1) + 12 < 2py: C.
Since w approaches 0 because Var(W) approaches 0 as the sample becomes

Y
larger, (6.1) will generally hold if
C 1C,

6.2) 1< ZpWC—z or pys > 30,
If we assume (Cy =~ Cy), we can conclude from (6.2) that

N . . 1
(6.3) MSE(irw+) < MSE(fiyw~) if pye > 3

Hence the proposed ratio estimator (firw=) is more efficient than the proposed ordinary
mean estimator ({iyw~) when the correlation between the study variable and the auxiliary
variable is high (pyz > 3).

6.2. Efficiency Comparison of [igegw+ with jipw+ and fyw=.

(i) It can be verified from (3.9) and (5.9) that according to first order approximation
MSE(ﬂRegw*) < MSE(,ELYW") if
1—f\ oo
4 —2 )X >0
o (1) %>
(ii) It can be verified from (4.9) and (5.9) that up to first order approximation
MSE(ﬂRng*) < MSE(ﬂRw*) if
Cy, o C2 30> Var(W)
(65)  1=2pp" + Py + B e
With (Cy = Cy), (6.5) can be rewritten as

362 Var(W
(66) (1 pyo)? + 20 Var(V)
Hy

Since the conditions (6.4) and (6.6) will always hold true, up to first order of approxima-
tion, the regression estimator [igreqw= performs better than the ordinary mean estimator
fyw= and the ratio estimator frw=.

>0

>0

7. Simulation Study

7.1. Comparison of the Proposed Model with the Split-Sample Model in the
Presence of Auxiliary Information. The tables below provide a comparison between
the proposed model and the split-sample additive scrambling models of Kalucha et al.
(2015) and Gupta et al. (2015) in the presence of non-sensitive auxiliary information.
We choose the parameters as per the observation Al (given below) that was obtained
in Gupta et al. (2015) under which the regression estimator fiarey is more efficient than
both additive ratio estimator jiar and the ordinary mean estimator fiy under the split
sample approach:

A1. We choose our scrambling variables S; and S; in such a way that their means 6,
and 02 are opposite in signs and associate the one with the smaller magnitude to
the larger sub-sample and vice-versa. Also if one of the chosen means is zero then
we associate it to the larger split sample.
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In the simulation study, we consider a finite population of size N = 5000 generated from a
bivariate normal distribution. The simulated bivariate normal population has theoretical
mean of [Y, X] as u = [6,4]. The covariance matrix (}_) is as given below:

9 438
S=lis W] e =00

We estimate the empirical MSE using 5000 samples of various sizes selected from this
population. The scrambling variables S; and Sy are taken to be normal variates with
Ugl = 2 and ng = 1. The scrambling variable means are chosen as per Al (given
above). The selected means are 1 = 5, 2 = —0.5 and n2 > ni. For the population
we consider two sample sizes: n = 500, 1000 for different values of the sensitivity level
W =0.3,0.7,0.9.

For the proposed model we choose 8 = 0> = —0.5 with 7, = 0.25 and p, = 0.7.

Table 1. Theoretical (bold) and empirical MSE comparisons of the
mean estimator (fyw+), the ratio estimator (irw~) and the regression
estimator (figegw+) of the proposed model with the mean estimator
(fty), the additive ratio estimator (fiar) and the regression estimator
(ftAreq) of the split-sample model with pyx = 0.7996.

MSE Estimation
n | w Proposed Model Split-Sample Model
Var(W) | MSE(fuiyyy+ ) | MSE(figyy=) | MSE(fi gagyy*) [n1 | na | Var(W) ‘MSE(@Y) MSE(;lAR)‘MSE(pAWg)
0.000749|0.017141 0.007283 0.006706 0.003511|0.024982 [0.019001 |0.017437
0.3 200|300
0.000821 |0.016916 0.007221 0.006638 0.004487 |0.023217 [0.018106 0.01665
0.000903 |0.0179 0.008041 0.007465 0.003688 |0.02605 |0.020069 |0.018505
500 |0.7 200|300
0.000999 |0.017614 0.008264 0.007608 0.004821 |0.025906 |[0.020948 0.019584
0.000764(0.018171 0.008313 0.007736 0.003277|0.026387 |0.020406 |0.018842
0.9 200|300
0.000853 |0.018221 0.008534 0.008002 0.002443 |0.029625 |[0.023441 0.022628
0.3(0.000333 |0.007618 0.003237 0.002981 0.001665 |0.012846 [0.009044 |0.008528
450|550
0.000416 |0.00738 0.003224 0.002915 0.003114 |0.011986 |0.009241 0.008602
0.000401 |0.007956 0.003574 0.003318 0.001748(0.013394 |0.009593 |0.009076
1000{0.7 450|550
0.000497 |0.007744 0.003589 0.003319 0.002965 |0.012035 [0.009007 0.008506
0.000340 |0.008076 0.003694 0.003438 0.001568|0.013578 [0.009777 |0.009260
0.9 450|550
0.000423 |0.008367 0.003914 0.003693 0.001270 |0.012051 [0.008914 0.008395

We note from the table that consistently the regression estimator (firegw=) iS more
efficient than the ratio (firw~+) and the mean estimator (Zyw=) of the proposed model
for all values of W. Also as the sensitivity W increases, the MSE’s increase, highlighting
the usefulness of an Optional RRT model since W is highest (equal to 1) for non-optional
model. While comparing the proposed model with the split-sample model, we note that
MSE’s of the proposed model estimators (fiyw+, Lrw=LRegw=) are consistently smaller
as compared to (fiy,[lAR, flareg) estimators. We observe that for a fixed sample size
the MSE’s for the proposed model are reduced by more than two and a half times as
compared to the split-sample based model.

7.2. Comparison of the Point Estimates of Proposed Model with the Split-
Sample Model in the Presence of Auxiliary Information.
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Table 2. Empirical values of the estimators W, the mean estima-
tor (fiyw=), the ratio estimator (irw+) and the regression estimator
(firegw=) of the proposed model and the corresponding split sample
model for W = 0.3,0.7,0.9 and the population mean py = 6.

Point Estimates
n w Proposed Model Split-sample Model

W [y w ARW* | fRegw* W iy faAR ftAreg

0.3 | 0.30049 | 5.91234 | 5.90924 | 5.90958 | 0.34439 | 5.90478 | 5.90812 | 5.90471

500 | 0.7 | 0.69978 | 5.90947 | 5.91254 | 5.91158 | 0.6523 | 5.86084 | 5.86545 | 5.86143
0.9 | 0.89957 | 5.91218 | 5.90169 | 5.91065 | 0.90461 | 5.83561 | 5.83925 | 5.83557

0.3 | 0.30052 | 5.91076 5.912 5.91161 | 0.34351 | 5.92844 | 5.93066 | 5.92885

1000} 0.7 | 0.69979 | 5.9116 | 5.91047 | 5.91053 | 0.65809 | 5.89841 | 5.90048 | 5.8986
0.9 | 0.89997 | 5.91107 | 5.91144 | 5.91125 | 0.90812 | 5.89409 | 5.89618 | 5.89436

We note that both methods produce nearly unbiased estimators of the population
mean. However, the proposed model produces better estimates of the sensitivity level.
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