\int Hacettepe Journal of Mathematics and Statistics Volume 44 (5) (2015), 1133–1145

Some properties of soft θ -topology

O. R. SAYED * and A. M. KHALIL †

Abstract

For dealing with uncertainties researchers introduced the concept of soft sets. Georgiou et al. [10] defined several basic notions on soft θ -topology and they studied many properties of them. This paper continues the study of the theory of soft θ -topological spaces and presents for this theory new definitions, characterizations, and results concerning soft θ -boundary, soft θ -exterior, soft θ -generalized closed sets, soft Λ -sets, and soft strongly pu- θ -continuity.

2000 AMS Classification: 54A05,54C08,54C10,54D10.

Keywords: soft set; soft θ -topology; soft θ -generalized closed set; soft Λ -set.

Received 27/08/2013 : Accepted 15/04/2014 Doi : 10.15672 /HJMS.2015449437

1. Introduction

In 1999, Molodtsov [20] initiated the theory of soft sets as a new mathematical tool for dealing with uncertainties. Also, he applied this theory to several directions (see, for example, [21-23]). The soft set theory has been applied to many different fields (see, for example, [1-2], [4-5], [7-8], [13-18], [24], [26], [28], [30]). Later, few researches (see, for example, [3], [6], [11-12], [19], [25], [27], [29]) introduced and studied the notion of soft topological spaces. Recently, in 2013, D. N. Georgiou, A. C. Megaritis, and V. I. Petropoulos [10] initiated the study of soft θ -topology. They proved that the family of all soft θ -open sets defines a soft topology on X. Consequently, they defined some basic notions of soft θ -topological spaces such as soft θ -interior point, soft θ -closure set, and soft θ -continuity and established some of their properties. This paper continues the study of the theory of soft θ -topology. It is organized as follows . The first section is the introduction. In section 2 known basic notions and results concerning the theory of soft sets, soft topological spaces and soft θ -topological spaces are given. In section 3 the notions of soft θ -boundary and soft θ -exterior are defined and some of their properties are studied. Also, some other characterizations of soft θ -closure and soft θ -interior are

^{*}Department of Mathematics, Faculty of Science, Assiut University Assiut, 71516, Egypt Email: o_r_sayed@yahoo.com; o_sayed@aun.edu.eg

[†]Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt Email:a_ m_ mohmed1@yahoo.com; a.khalil@azhar.edu.eg

given. In section 4 the basic properties of soft θ -generalized closed sets, soft θ -generalized open sets, and soft Λ -sets are introduced. Finally, in section 5, the basic properties of soft strongly pu- θ -continuity are introduced and studied.

2. preliminaries

2.1. Definition. [20]. Let X be an initial universe set, P(X) the power set of X, that is the set of all subsets of X, and A a set of parameters. A pair (F, A), where F is a map from A to P(X), is called a soft set over X.

In what follows by SS(X, A) we denote the family of all soft sets (F, A) over X.

2.2. Definition. [20]. Let $(F, A), (G, A) \in SS(X, A)$. We say that the pair (F, A) is a soft subset of (G, A) if $F(p) \subseteq G(p)$, for every $p \in A$. Symbolically, we write $(F, A) \sqsubseteq (G, A)$. Also, we say that the pairs (F, A) and (G, A) are soft equal if $(F, A) \sqsubseteq (G, A)$ and $(G, A) \sqsubseteq (F, A)$. Symbolically, we write (F, A) = (G, A).

2.3. Definition. [20]. Let I be an arbitrary index set and $\{(F_i, A) : i \in I\} \subseteq SS(X, A)$. Then

(1) The soft union of these soft sets is the soft set $(F, A) \in SS(X, A)$, where the map $F : A \to P(X)$ is defined as follows: $F(p) = \bigcup \{F_i(p) : i \in I\}$, for every $p \in A$. Symbolically, we write $(F, A) = \bigcup \{(F_i, A) : i \in I\}$.

(2) The soft intersection of these soft sets is the soft set $(F, A) \in SS(X, A)$, where the map $F : A \to P(X)$ is defined as follows: $F(p) = \bigcap \{F_i(p) : i \in I\}$, for every $p \in A$. Symbolically, we write $(F, A) = \bigcap \{(F_i, A) : i \in I\}$.

2.4. Definition. [29]. Let $(F, A) \in SS(X, A)$. The soft complement of (F, A) is the soft set $(H, A) \in SS(X, A)$, where the map $H : A \to P(X)$ defined as follows: $H(p) = X \setminus F(p)$, for every $p \in A$. Symbolically, we write $(H, A) = (F, A)^c$. Obviously, $(F, A)^c = (F^c, A)$ [10]. For two given subsets $(M, A), (N, A) \in SS(X, A)$ [27], we have

- (i) $((M, A) \sqcup (N, A))^c = (M, A)^c \sqcap (N, A)^c;$
- (ii) $((M, A) \sqcap (N, A))^c = (M, A)^c \sqcup (N, A)^c$.

2.5. Definition. [20]. The soft set $(F, A) \in SS(X, A)$, where $F(p) = \phi$, for every $p \in A$ is called the *A*-null soft set of SS(X, A) and denoted by $\mathbf{0}_A$. The soft set $(F, A) \in SS(X, A)$, where F(p) = X, for every $p \in A$ is called the *A*-absolute soft set of SS(X, A) and denoted by $\mathbf{1}_A$.

2.6. Definition. [29]. The soft set $(F, A) \in SS(X, A)$ is called a soft point in X, denoted by e_F , if for the element $e \in A, F(e) \neq \mathbf{0}_A$ and $F(e') = \mathbf{0}_A$ for all $e' \in A \setminus \{e\}$. The set of all soft points of X is denoted by $\mathbf{SP}(X)$. The soft point e_F is said to be in the soft set (G, A), denoted by $e_F \in (G, A)$, if for the element $e \in A$ and $F(e) \subseteq G(e)$.

2.7. Definition. [29]. Let SS(X, A) and SS(Y, B) be families of soft sets. Let $u : X \to Y$ and $p : A \to B$ be mappings. Then the mapping $f_{pu} : SS(X, A) \to SS(Y, B)$ is defined as:

(1) The image of $(F, A) \in SS(X, A)$ under f_{pu} is the soft set $f_{pu}(F, A) = (f_{pu}(F), B)$ in SS(Y, B) such that

$$f_{pu}(F)(y) = \begin{cases} \bigcup_{x \in p^{-1}(y)} u(F(x)), & p^{-1}(y) \neq \phi \\ \phi, & \text{otherwise} \end{cases}$$

for all $y \in B$.

(2) The inverse image of $(G, B) \in SS(Y, B)$ under f_{pu} is the soft set $f_{pu}^{-1}(G, B) = (f_{pu}^{-1}(G), A)$ in SS(X, A) such that $f_{pu}^{-1}(G)(x) = u^{-1}(G(p(x)))$ for all $x \in A$.

2.8. Proposition. [9]. Let (F, A), $(F_1, A) \in SS(X, A)$ and (G, B), $(G_1, B) \in SS(Y, B)$. The following statements are true:

 $\begin{array}{l} (1) \ If \ (F,A) \sqsubseteq (F_1,A), \ then \ f_{pu}(F,A) \sqsubseteq f_{pu}(F_1,A). \\ (2) \ If \ (G,B) \sqsubseteq (G_1,B), \ then \ f_{pu}^{-1}(G,B) \sqsubseteq f_{pu}^{-1}(G_1,B). \\ (3) \ (F,A) \sqsubseteq f_{pu}^{-1}(f_{pu}(F,A)). \\ (4) \ f_{pu}(f_{pu}^{-1}(G,B)) \trianglerighteq (G,B). \\ (5) \ f_{pu}^{-1}((G,B)^c) = (f_{pu}^{-1}(G,B))^c. \\ (6) \ f_{pu}((F,A) \sqcup (F_1,A)) = f_{pu}(F,A) \sqcup f_{pu}(F_1,A). \\ (7) \ f_{pu}((F,A) \sqcap (F_1,A)) \trianglerighteq f_{pu}(F,A) \sqcap f_{pu}(F_1,A). \\ (8) \ f_{pu}^{-1}((G,B) \sqcup (G_1,B)) = f_{pu}^{-1}(G,B) \sqcup f_{pu}^{-1}(G_1,B). \\ (9) \ f_{pu}^{-1}((G,B) \sqcap (G_1,B)) = f_{pu}^{-1}(G,B) \sqcap f_{pu}^{-1}(G_1,B). \end{array}$

2.9. Definition. [29]. Let X be an initial universe set, A a set of parameters, and $\tilde{\tau} \subseteq SS(X, A)$. We say that the family $\tilde{\tau}$ defines a soft topology on X if the following axioms are true:

(1) $\mathbf{0}_A, \mathbf{1}_A \in \widetilde{\tau}$.

(2) If $(G, A), (H, A) \in \tilde{\tau}$, then $(G, A) \sqcap (H, A) \in \tilde{\tau}$.

(3) If $(G_i, A) \in \tilde{\tau}$ for every $i \in I$, then $\sqcup \{ (G_i, A) : i \in I \} \in \tilde{\tau}$.

The triplet $(X, \tilde{\tau}, A)$ is called a soft topological space. The members of $\tilde{\tau}$ are called soft open sets in X. Also, a soft set (F, A) is called soft closed if the complement $(F, A)^{\circ}$ belongs to $\tilde{\tau}$. The family of all soft closed sets is denoted by $\tilde{\tau}^{\circ}$.

2.10. Definition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. (1) The soft closure of (F, A) [27] is the soft set

$$Cl_{\scriptscriptstyle S}(F,A) = \sqcap \{(S,A): (S,A) \in \widetilde{\tau}^{\,\,}, (F,A) \sqsubseteq (S,A) \}.$$

(2) The soft interior of (F, A) [29] is the soft set

$$Int_{S}(F,A) = \sqcup \{ (S,A) : (S,A) \in \widetilde{\tau}, (S,A) \sqsubseteq (F,A) \}.$$

2.11. Definition. [29]. A soft set (G, A) in a soft topological space $(X, \tilde{\tau}, A)$ is called a soft neighborhood (briefly: nbd) of a soft point $e_F \in \mathbf{SP}(X)$ if there exists a soft open set (H, A) such that $e_F \in (H, A) \sqsubseteq (G, A)$. The soft neighborhood system of a soft point e_F , denoted by $N_{\tilde{\tau}}(e_F)$, is the family of all of its soft neighborhoods.

2.12. Definition. [3]. Let $(X, \tilde{\tau}, A)$ be a soft topological space.

(1) A subcollection B of $\tilde{\tau}$ is called a base for $\tilde{\tau}$ if every member of $\tilde{\tau}$ can be expressed as a union of members of B.

(2) A subcollection S of $\tilde{\tau}$ is said to be a subbase for $\tilde{\tau}$ if the family of all finite intersections of members of S forms a base for $\tilde{\tau}$.

2.13. Definition. [29]. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces, $u: X \to Y$ and $p: A \to B$ be mappings, and $e_F \in \mathbf{SP}(X)$.

(1) The map $f_{pu} : SS(X, A) \to SS(Y, B)$ is soft *pu*-continuous at $e_F \in \mathbf{SP}(X)$ if for each $(G, B) \in N_{\tau^*}(f_{pu}(e_F))$, there exists $(H, A) \in N_{\tau}(e_F)$ such that $f_{pu}(H, A) \sqsubseteq (G, B)$.

(2) The map $f_{pu} : SS(X, A) \to SS(Y, B)$ is soft *pu*-continuous on X if f_{pu} is soft *pu*-continuous at each soft point in X.

2.14. Definition. [12]. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$.

(1) (F, A) is said to be a soft generalized closed set in $(X, \tilde{\tau}, A)$ if $Cl_S(F, A) \sqsubseteq (G, A)$ whenever $(F, A) \sqsubseteq (G, A)$ and $(G, A) \in \tilde{\tau}$. The set of all soft generalized closed sets of X is denoted by $(GC)_S(X)$. (2) (F, A) is said to be a soft generalized open set in $(X, \tilde{\tau}, A)$ if $(F, A)^{c}$ is a soft generalized closed set. The set of all soft generalized open sets of X is denoted by $(GO)_{S}(X)$.

2.15. Definition. [10]. Let $(X, \tilde{\tau}, A)$ be a soft topological space. The soft θ -interior of a soft subset $(F, A) \in SS(X, A)$ is the soft union of all soft open sets over X whose soft closures are soft contained in (F, A), and is denoted by $Int_{S}^{\theta}(F, A)$. The soft subset (F, A) is called soft θ -open if $Int_{S}^{\theta}(F, A) = (F, A)$. The complement of a soft θ -open set is called soft θ -closed. Alternatively, a soft set (F, A) of X is called soft θ -closed set if $Cl_{S}^{\theta}(F, A) = (F, A)$, where $Cl_{S}^{\theta}(F, A)$ is the soft θ -closure of (F, A) and is defined to be the soft intersection of all soft closed soft subsets of X whose soft interiors contain $(F, A)^{c}$ [10, Proposition 5.18 (3) and Definitions 5.10 and 5.11]. We observe that $Cl_{S}^{\theta}(F, A) = (Int_{S}^{\theta}(F, A)^{c})^{c}$ [10, Corollary 5.17 (1)]. The family of all soft θ -open sets forms a soft topology on X, denoted by $\tilde{\tau}_{\theta}$.

2.16. Definition. [10]. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces, $u : X \to Y$ and $p : A \to B$ be mappings, and $e_F \in \mathbf{SP}(X)$.

(1) The map $f_{pu} : SS(X,A) \to SS(Y,B)$ is soft pu- θ -continuous at e_F if for each $(G,B) \in N_{\tau^*}(f_{pu}(e_F))$, there exists $(H,A) \in N_{\tau}(e_F)$ such that $f_{pu}(Cl_s(H,A)) \sqsubseteq Cl_s(G,B)$

(2) The map $f_{pu} : SS(X, A) \to SS(Y, B)$ is soft pu- θ -continuous on X if f_{pu} is soft pu- θ -continuous at each soft point in X.

3. Soft θ -boundary and soft θ -exterior

3.1. Definition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. The soft θ -boundary of soft set (F, A) over X is denoted by $Bd_{S}^{\theta}(F, A)$ and is defined as $Bd_{S}^{\theta}(F, A) = Cl_{S}^{\theta}(F, A) \sqcap Cl_{S}^{\theta}(F^{c}, A)$.

3.2. Remark. From the above definition it follows directly that the soft sets (F, A) and (F^{c}, A) have same soft θ -boundary.

3.3. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A), (G, A) \in SS(X, A)$. Then:

Then: (1) $Int_{S}^{\theta}(\mathbf{0}_{A}) = \mathbf{0}_{A}$ and $Int_{S}^{\theta}(\mathbf{1}_{A}) = \mathbf{1}_{A}$; (2) $Int_{S}^{\theta}(F,A) \sqsubseteq (F,A)$; (3) $Int_{S}^{\theta}(Int_{S}^{\theta}(F,A)) \sqsubseteq Int_{S}^{\theta}(F,A)$; (4) $(F,A) \sqsubseteq (G,A)$ implies $Int_{S}^{\theta}(F,A) \sqsubseteq Int_{S}^{\theta}(G,A)$; (5) $Int_{S}^{\theta}(F,A) \sqcap Int_{S}^{\theta}(G,A) = Int_{S}^{\theta}((F,A) \sqcap (G,A))$; (6) $Int_{S}^{\theta}(F,A) \sqcup Int_{S}^{\theta}(G,A) \sqsubseteq Int_{S}^{\theta}((F,A) \sqcup (G,A))$.

Proof. Obvious.

The following example shows that the equalities do not hold in Proposition 3.3 (3) and (6).

3.4. Example. (1) Let $X = \{h_1, h_2\}, A = \{e_1, e_2\}$ and $\tilde{\tau} = \{\mathbf{0}_A, \mathbf{1}_A, (F_1, A), (F_2, A), (F_3, A), (F_4, A)\}$, where $(F_1, A) = \{(e_1, X), (e_2, \{h_2\})\}, (F_2, A) = \{(e_1, \{h_1\}), (e_2, \phi)\}, (F_3, A) = \{(e_1, \{h_2\}), (e_2, \phi)\}, \text{ and } (F_4, A) = \{(e_1, X), (e_2, \phi)\}.$ Then $\tilde{\tau}$ defines a soft topology on X. Let $(F, A) = \{(e_1, \{h_1\}), (e_2, X)\}$. One observe that $Int_S^{\theta}(Int_S^{\theta}(F, A)) \sqsubseteq Int_S^{\theta}(F, A) \Rightarrow Int_S^{\theta}(F, A) \neq Int_S^{\theta}(F, A)).$

(2) Let $X = \{h_1, h_2, h_3\}, A = \{e_1, e_2\}$ and $\tilde{\tau} = \{\mathbf{0}_A, \mathbf{1}_A, (F_1, A), (F_2, A)\}$, where $(F_1, A) = \{e_1, e_2\}$ $\{(e_1, \{h_1\}), (e_2, \{h_1, h_2\})\}$, and $(F_2, A) = \{(e_1, \{h_2, h_3\}), (e_2, \{h_3\})\}$. Then $\tilde{\tau}$ defines a soft topology on X. Suppose that $(F, A) = \{(e_1, \{h_1, h_3\}), (e_2, \{h_1, h_2\})\}$, and $(G, A) = \{(e_1, \{h_1, h_3\}), (e_2, \{h_1, h_2\})\}$ $\{(e_1, \{h_2\}), (e_2, \{h_3\})\}. \text{ One can deduce that } Int_s^{\theta}(F, A) \sqcup Int_s^{\theta}(G, A) \sqsubset Int_s^{\theta}((F, A) \sqcup (G, A)) \neq Int_s^{\theta}(F, A) \sqcup Int_s^{\theta}(G, A).$

3.5. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(H, A), (M, A) \in SS(X, A)$. Then:

(1) $Cl_{s}^{\theta}(\mathbf{0}_{A}) = \mathbf{0}_{A}$ and $Cl_{s}^{\theta}(\mathbf{1}_{A}) = \mathbf{1}_{A};$ (2) $(H, A) \sqsubseteq Cl_{s}^{\theta}(H, A);$ (3) $Cl_{s}^{\theta}(H,A) \sqsubseteq Cl_{s}^{\theta}(Cl_{s}^{\theta}(H,A));$ $\begin{array}{l} (4) \ (H,A) \sqsubseteq (M,A) \ implies \ Cl_{_{\mathcal{S}}}^{\theta}(H,A) \sqsubseteq Cl_{_{\mathcal{S}}}^{\theta}(M,A); \\ (5) \ Cl_{_{\mathcal{S}}}^{\theta}((H,A) \sqcup (M,A)) = Cl_{_{\mathcal{S}}}^{\theta}(H,A) \sqcup Cl_{_{\mathcal{S}}}^{\theta}(M,A); \\ (6) \ Cl_{_{\mathcal{S}}}^{\theta}((H,A) \sqcap (M,A)) \sqsubseteq Cl_{_{\mathcal{S}}}^{\theta}(H,A) \sqcap Cl_{_{\mathcal{S}}}^{\theta}(M,A). \end{array}$

Proof. (1), (2) and (4) are obvious.

(3) Follows from [10, Proposition 5.13 (3)].

(5) Follows from (2) above and [10, Proposition 5.13 (2)].

(6) Follows from (4) above.

The following example shows that the equalities do not hold in Proposition 3.5 (3) and (6).

3.6. Example. (1) The soft topological space $(X, \tilde{\tau}, A)$ is the same as in Example 3.4 (1). Let $(R, A) = (F, A)^c$. We have $Cl_s^{\theta}(Cl_s^{\theta}(R, A)) = \{(e_1, X), (e_2, X)\} \neq Cl_s^{\theta}(R, A) =$ $\{(e_1, \{h_2\}), (e_2, X)\}.$

(2) The soft topological space $(X, \tilde{\tau}, A)$ is the same as in Example 3.4 (2). Suppose that $(H,A) = (F,A)^c \text{ and } (M,A) = (G,A)^c. \text{ So } Cl_s^{\theta}((H,A) \sqcap (M,A)) = \mathbf{0}_A \sqsubset Cl_s^{\theta}(H,A) \sqcap Cl_s^{\theta}(M,A) = \{(e_1,\{h_2,h_3\}), (e_2,\{h_3\})\}. \text{ Therefore } Cl_s^{\theta}(H,A) \sqcap Cl_s^{\theta}(M,A) \neq Cl_s^{\theta}((H,A) \sqcap Cl_s^{\theta}(H,A) \sqcap Cl_s^{\theta}(H,A) = \{(e_1,\{h_2,h_3\}), (e_2,\{h_3\})\}. \text{ Therefore } Cl_s^{\theta}(H,A) \sqcap Cl_s^{\theta}(H,A) \neq Cl_s^{\theta}((H,A) \sqcap Cl_s^{\theta}(H,A) \mid A) = \{(e_1,\{h_2,h_3\}), (e_2,\{h_3\})\}. \text{ Therefore } Cl_s^{\theta}(H,A) \sqcap Cl_s^{\theta}(H,A) \mid A \in Cl_s^{\theta}(H,A) \mid A \in$ $(\tilde{M}, A)).$

3.7. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then the following statements are true.

- (1) $Bd_{s}^{\theta}(F,A) = Cl_{s}^{\theta}(F,A) \setminus Int_{s}^{\theta}(F,A).$ (2) $Bd_{s}^{\theta}(F,A) \sqcap Int_{s}^{\theta}(F,A) = \mathbf{0}_{A}.$
- (3) $(F, A) \sqcup Bd_{S}^{\theta}(F, A) = Cl_{S}^{\theta}(F, A).$
- (4) $Bd_{s}^{\theta}(F,A) \notin \widetilde{\tau}_{a}^{c}$.

Proof. (1), (2) and (3) are obvious.

(4) Let $(X, \tilde{\tau}, A)$ be a soft topological space, where $X = \{h_1, h_2, h_3\}, A = \{e_1, e_2\}$ and $\widetilde{\tau} = \{\mathbf{0}_A, \mathbf{1}_A, \{(e_1, \{h_1\}), (e_2, \{h_1\})\}, \{(e_1, \{h_2\}), (e_2, \{h_2\})\}, \{(e_1, \{h_1, h_2\}), (e_2, \{h_1, h_2\})\} \}.$ $\text{Then } Bd_s^{\theta}(\{(e_1, X), (e_2, \{h_1, h_3\})\}) = \{(e_1, \{h_2, h_3\}), (e_2, \{h_2, h_3\})\} \notin \widetilde{\tau}_{\theta}^{\circ}.$

3.8. Theorem. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then $Bd_{s}^{\theta}(F,A) = \mathbf{0}_{A}$ if and only if (F,A) is soft θ -closed and soft θ -open.

Proof. Obvious.

3.9. Theorem. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then

(1) (F, A) is soft θ -open if and only if (F, A) $\sqcap Bd_{s}^{\theta}(F, A) = \mathbf{0}_{A}$.

(2) (F, A) is soft θ -closed if and only if $Bd_{S}^{\theta}(F, A) \sqsubseteq (F, A)$.

Proof. (1) Necessity. Follows from Proposition 3.7 (2).
Sufficiency. Follows from [29, Proposition 3.6 (1)].
(2) Necessity. Obvious.
Sufficiency. Follows from (1) above. ■

3.10. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then the following statements are true.

(1) $(F, A) \setminus Bd_{S}^{\theta}(F, A) = Int_{S}^{\theta}(F, A).$

(2) If (F, A) is soft θ -closed, then $(F, A) \setminus Int_{S}^{\theta}(F, A) = Bd_{S}^{\theta}(F, A)$.

Proof. (1) Obvious.

(2) Follows from Proposition 3.7 (1).

3.11. Definition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. The soft θ -exterior of (F, A) over X is denoted by $Ext^{\theta}_{S}(F, A)$ and is defined as $Ext^{\theta}_{S}(F, A) = Int^{\theta}_{S}(F, A)^{c}$.

3.12. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then the following statements are true.

(1) $Ext^{\theta}_{S}(\mathbf{0}_{A}) = \mathbf{1}_{A} \text{ and } Ext^{\theta}_{S}(\mathbf{1}_{A}) = \mathbf{0}_{A}.$ (2) $Ext^{\theta}_{S}((F, A) \sqcup (G, A)) = Ext^{\theta}_{S}(F, A) \sqcap Ext^{\theta}_{S}(G, A).$ (3) $Ext^{\theta}_{S}(F, A) \sqcup Ext^{\theta}_{S}(G, A) \sqsubseteq Ext^{\theta}_{S}((F, A) \sqcap (G, A)).$ (4) $Ext^{\theta}_{S}((Ext^{\theta}_{S}(F, A))^{c}) \sqsubseteq Ext^{\theta}_{S}(F, A).$ (5) $Ext^{\theta}_{S}(F, A) \notin \widetilde{\tau}_{\theta}.$

Proof. (1), (2), (3) and (4) are obvious. (5) See Example 3.13. ■

The following example shows that the equalities do not hold in Proposition 3.12 (3) and (4).

3.13. Example. In Example 3.4 (1), we have $Ext_{s}^{\theta}((Ext_{s}^{\theta}(F_{3},A))^{c}) \neq Ext_{s}^{\theta}(F_{3},A)$ and $Ext_{s}^{\theta}(F_{3},A) \notin \tilde{\tau}_{\theta}$. In Example 3.4 (2), we obtain $Ext_{s}^{\theta}(F,A) \sqcup Ext_{s}^{\theta}(G,A) \sqsubset Ext_{s}^{\theta}(G,A) \sqcup G(G,A)$ and $Ext_{s}^{\theta}((F,A) \sqcap (G,A)) \neq Ext_{s}^{\theta}(F,A) \sqcup Ext_{s}^{\theta}(G,A)$.

4. Basic properties of soft θ -generalized closed sets

4.1. Definition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. (F, A) is said to be a soft θ -generalized closed set in $(X, \tilde{\tau}, A)$ if $Cl_{S}^{\theta}(F, A) \sqsubseteq (G, A)$ whenever $(F, A) \sqsubseteq (G, A)$ and $(G, A) \in \tilde{\tau}$. The set of all soft θ -generalized closed sets over X is denoted by $(GC)_{S}^{\theta}(X)$.

4.2. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then the following statement are true.

(1) If $(F, A) \in \widetilde{\tau}_{\theta}^{c}$, then $(F, A) \in (GC)_{S}^{\theta}$; (2) If $(F, A) \in (GC)_{S}^{\theta}$, then $(F, A) \in (GC)_{S}$.

Proof. (1) Obvious.

(2) Follows from [10, Definition 5.11]. \blacksquare

The converses of (1) and (2) in Proposition 4.2 are not true as illustrated by the following examples.

4.3. Example. Let $(X, \tilde{\tau}, A)$ be the soft topological space of Example 3.4 (2) and Example 3.6 (2). Since $(F_2, A) \in \tilde{\tau}$, $(H, A) \sqsubseteq (F_2, A)$ and $Cl_s^{\theta}(H, A) \sqsubseteq (F_2, A)$, we have $(H, A) \in (GC)^{\theta}_{s}$. But $(H, A) \notin \tilde{\tau}^{c}_{\theta}$.

4.4. Example. Let $X = \{h_1, h_2\}, A = \{e_1, e_2\}$ and $\tilde{\tau} = \{\mathbf{0}_A, \mathbf{1}_A, (F_1, A), (F_2, A), (F_3, A), (F_$ (F_3, A) where $(F_1, A) = \{(e_1, X), (e_2, \{h_2\})\}, (F_2, A) = \{(e_1, \{h_1\}), (e_2, X)\}, \text{ and } (F_3, A) = \{(e_1, A), (e_2, A), (e_3, A), (e$ $\{(e_1, \{h_1\}), (e_2, \{h_2\})\}$. Then $(X, \tilde{\tau}, A)$ is a soft topological space over X. We have $(H_2, A) = (F_2, A)^c$ is a soft closed set and hence soft generalized-closed. But $(H_2, A) \notin$ $(GC)_{S}^{\circ}$.

4.5. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F_1, A), (F_2, A) \in SS(X, A)$. If $(F_1, A), (F_2, A) \in (GC)_S^{\theta}$, then $(F_1, A) \sqcup (F_2, A) \in (GC)_S^{\theta}$.

Proof. Follows from Proposition 3.5 (5).

4.6. Corollary. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A), (G, A) \in SS(X, A)$. Then the following statement are true.

- (1) If $(F, A) \in \widetilde{\tau}_{\theta}^{\circ}$ and $(G, A) \in (GC)_{S}^{\theta}$, then $(F, A) \sqcup (G, A) \in (GC)_{S}^{\theta}$. (2) If $(F, A) \in (GC)_{S}^{\theta}$ and $(G, A) \in (GC)_{S}$, then $(F, A) \sqcup (G, A) \in (GC)_{S}$.

Proof. (1) Follows from Proposition 4.2 (1) and Proposition 4.5. (2) Follows from Proposition 4.2 (2) and [12, Theorem 3.5].

4.7. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then the following statement are true.

- (1) If $(F, A) \in \tilde{\tau}$ and $(F, A) \in (GC)^{\theta}_{S}$, then $(F, A) \in \tilde{\tau}^{c}_{\theta}$. (2) If $\tilde{\tau} = \tilde{\tau}^{c}_{\theta}$, then every soft subset of X is in $(GC)^{\theta}_{S}$.

Proof. Clear.

4.8. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A) \in SS(X, A)$. Then $(G,A) \in (GC)^{\theta}_{S}$ if and only if the only soft closed soft subset of $Cl^{\theta}_{S}(G,A) \setminus (G,A)$ is $\mathbf{0}_A$.

Proof. Necessity. Let $(F, A) \in \tilde{\tau}^c$ such that $(F, A) \sqsubseteq Cl_s^{\theta}(G, A) \setminus (G, A) = Cl_s^{\theta}(G, A) \sqcap$ $(G, A)^{c}$ which implies that $(F, A) \sqsubseteq Cl_{s}^{\theta}(G, A), (F, A) \sqsubseteq (G, A)^{c}$. Thus $(G, A) \sqsubseteq (F, A)^{c}$. Since $(G,A) \in (GC)^{\theta}_{s}$ and $(F,A)^{c} \in \tilde{\tau}$, we have $Cl^{\theta}_{s}(G,A) \sqsubseteq (F,A)^{c}$ or $(F,A) \sqsubseteq (Cl^{\theta}_{s}(G,A))^{c}$. Since $(F,A) \sqsubseteq Cl^{\theta}_{s}(G,A)$, we have $(F,A) \sqsubseteq (Cl^{\theta}_{s}(G,A))^{c} \sqcap Cl^{\theta}_{s}(G,A) = (Cl^{\theta}_{s}(G,A))^{c} \sqcap Cl^{\theta}_{s}(G,A)$ $\mathbf{0}_A$. This shows that $(F, A) = \mathbf{0}_A$.

Sufficiency. Suppose that $(G, A) \sqsubseteq (U, A)$ and that $(U, A) \in \widetilde{\tau}$. If $Cl_s^{\theta}(G, A) \not\sqsubseteq (U, A)$, then $Cl_{s}^{\theta}(G,A) \sqcap (U,A)^{c}$ is a non-A-null soft closed soft subset of $Cl_{s}^{\theta}(G,A) \setminus (G,A)$, a contradiction. Therefore $Cl_{s}^{\theta}(G,A) \sqsubseteq (U,A)$ and $(G,A) \in (GC)_{s}^{\theta}$.

4.9. Corollary. Let $(X, \tilde{\tau}, A)$ be a soft topological space, $(F, A) \in SS(X, A)$ and $(F, A) \in SS(X, A)$ $(GC)^{\theta}_{s}$. Then $(F, A) \in \widetilde{\tau}^{c}_{\theta}$ if and only if $Cl^{\theta}_{s}(F, A) \setminus (F, A) \in \widetilde{\tau}^{c}$.

4.10. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then $(F, A) \in (GC)_{S}^{\theta}$ if and only if $(F, A) \sqcup (Cl_{S}^{\theta}(F, A))^{c} \in (GC)_{S}^{\theta}$.

Proof. Follows from Proposition 4.8.

4.11. Lemma. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. If $(F,A) \in \widetilde{\tau}_{a}, \text{ then } (F,A) \in \widetilde{\tau}^{`}.$

The converse of Lemma 4.11 is not true in general as illustrated by the following example.

4.12. Example. Let $X = \{h_1, h_2\}, A = \{e_1, e_2\}$ and $\tilde{\tau} = \{\mathbf{0}_A, \mathbf{1}_A, (F_1, A)\}$ is a soft topology over X, where $(F_1, A) = \{(e_1, X), (e_2, \{h_2\})\}$. We observe that $(H_1, A) = \{(e_1, X), (e_2, \{h_2\})\}$. $(F_1, A)^c \in \widetilde{\tau}$. But $(H_1, A) \notin \widetilde{\tau}_a$.

4.13. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A) \in SS(X, A)$. Then $(G, A) \in (GC)_{S}^{\theta}$ if and only if $(G, A) = (F, A) \setminus (H, A)$, where $(F, A) \in \tilde{\tau}_{\theta}^{c}$ and the only soft closed soft subset of (H, A) is $\mathbf{0}_{A}$.

Proof. Necessity. Follows from Proposition 4.8. Sufficiency. Follows from Lemma 4.11.

4.14. Definition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A) \in SS(X, A)$. (G, A) is said to be a soft θ -generalized open set in $(X, \tilde{\tau}, A)$ if $(G, A)^{c}$ is soft θ -generalized closed. The set of all soft θ -generalized open sets over X is denoted by $(GO)_{s}^{\theta}(X)$.

4.15. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A), (F, A) \in SS(X, A)$. Then $(G, A) \in (GO)_{S}^{\theta}$ if and only if $(F, A) \sqsubseteq Int_{S}^{\theta}(G, A)$ whenever $(F, A) \sqsubseteq (G, A)$ and $(F, A) \in \widetilde{\tau}$.

Proof. Obvious.

As a direct consequence of Proposition 4.2 we have

4.16. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A) \in SS(X, A)$. Then

(1) If $(G, A) \in \tilde{\tau}_{\theta}$, then $(G, A) \in (GO)_{s}^{\theta}$;

(2) If $(G, A) \in (GO)_{s}^{\theta}$, then $(G, A) \in (GO)_{s}$.

The converses of (1) and (2) in Proposition 4.16 are not true as illustrated by the following examples.

4.17. Example. Let $(X, \tilde{\tau}, A)$ be the soft topological space of Example 3.4 (2) and Example 3.6 (2). Since $(R_2, A) \in \tilde{\tau}^c$, $(R_2, A) \sqsubseteq (F, A)$ and $(R_2, A) \sqsubseteq Int_s^{\theta}(F, A)$, we have $(F, A) \in (GO)_{S}^{\theta}$. But $(F, A) \notin \tilde{\tau}_{\theta}$.

4.18. Example. The soft topological space $(X, \tilde{\tau}, A)$ is the same as in Example 4.4. We observe that $(F_2, A) \in (GO)_S$. But $(F_2, A) \notin (GO)_S^{\theta}$.

4.19. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G_1, A), (G_2, A) \in$ SS(X, A). If $(G_1, A), (G_2, A) \in (GO)_S^{\theta}$, then $(G_1, A) \sqcap (G_2, A) \in (GO)_S^{\theta}$.

Proof. Follows from Proposition 3.3 (5).

- **4.20. Corollary.** Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A), (G, A) \in SS(X, A)$. (1) If $(F, A) \in \tilde{\tau}_{\theta}$ and $(G, A) \in (GO)_{S}^{\theta}$, then $(F, A) \sqcap (G, A) \in (GO)_{S}^{\theta}$. (2) If $(F, A) \in (GO)_{S}^{\theta}$ and $(G, A) \in (GO)_{S}$, then $(F, A) \sqcap (G, A) \in (GO)_{S}$.

Proof. (1) Follows from Proposition 4.16 (1) and Proposition 4.19.

(2) Follows from Proposition 4.16 (2) and [12, Theorem 4.5].

4.21. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A) \in SS(X, A)$. Then $(G, A) \in (GO)_{S}^{\theta}$ if and only if $(U, A) = \mathbf{1}_{A}$ whenever $(U, A) \in \widetilde{\tau}$ and $Int_{S}^{\theta}(G, A) \sqcup \mathbb{C}_{S}^{\theta}$ $(G, A)^{c} \sqsubseteq (U, A).$

Proof. Necessity. Follows from Proposition 4.8. *Sufficiency.* Obvious.

4.22. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(G, A) \in SS(X, A)$. Then $(G, A) \in (GC)_{S}^{\theta}$ if and only if $Cl_{S}^{\theta}(G, A) \setminus (G, A) \in (GO)_{S}^{\theta}$.

Proof. Necessity. Follows from Propositions 4.8 and 4.15.

Sufficiency. Suppose that $(U, A) \in \tilde{\tau}$ such that $(G, A) \sqsubseteq (U, A)$ or $(U, A)^c \sqsubseteq (G, A)^c$. Now, $Cl_s^{\theta}(G, A) \sqcap (U, A)^c \sqsubseteq Cl_s^{\theta}(G, A) \sqcap (G, A)^c = Cl_s^{\theta}(G, A) \backslash (G, A)$ and since $Cl_s^{\theta}(G, A) \sqcap (U, A)^c \in \tilde{\tau}^c$ and $Cl_s^{\theta}(G, A) \backslash (G, A) \in (GO)_s^{\theta}$, it follows that $Cl_s^{\theta}(G, A) \sqcap (U, A)^c \sqsubseteq Int_s^{\theta}(Cl_s^{\theta}(G, A) \backslash (G, A)) = \mathbf{0}_A$. Therefore $Cl_s^{\theta}(G, A) \sqcap (U, A)^c = \mathbf{0}_A$ or $Cl_s^{\theta}(G, A) \sqsubseteq (U, A)$. Hence $(G, A) \in (GC)_s^{\theta}$.

4.23. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A), (G, A) \in SS(X, A)$. If $(G, A) \in \tilde{\tau}^{c}$ and $(G, A) \in (GO)_{S}^{\theta}$, then $(G, A) \in \tilde{\tau}_{\theta}$.

Proof. Obvious.

4.24. Definition. A soft set (F, A) in a soft topological space $(X, \tilde{\tau}, A)$ is said to be soft Λ -set if $(F, A) = (F, A)^{\Lambda}$, where $(F, A)^{\Lambda} = \sqcap \{(G, A) \in \tilde{\tau} : (F, A) \sqsubseteq (G, A)\}.$

4.25. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A), (H, A), (F_i, A) \in SS(X, A), i \in I$. Then the following statements are true.

 $(1) (F, A) \sqsubseteq (F, A)^{\Lambda}.$ $(2) If (F, A) \sqsubseteq (H, A), then (F, A)^{\Lambda} \sqsubseteq (H, A)^{\Lambda}.$ $(3) ((F, A)^{\Lambda})^{\Lambda} = (F, A)^{\Lambda}.$ $(4) (\underset{i \in I}{\sqcap} (F_i, A))^{\Lambda} \sqsubseteq \underset{i \in I}{\sqcap} (F_i, A)^{\Lambda}.$ $(5) (\underset{i \in I}{\sqcup} (F_i, A))^{\Lambda} = \underset{i \in I}{\sqcup} (F_i, A)^{\Lambda}.$

Proof. Clear.

The following example shows that the equality does not hold in Proposition 4.25 (4).

4.26. Example. Let us consider the soft topological space $(X, \tilde{\tau}, A)$ over X in Example 3.4 (2). One can deduce that $(F, A)^{\Lambda} \sqcap (G, A)^{\Lambda} \neq ((F, A) \sqcap (G, A))^{\Lambda}$.

4.27. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space. Then the following statements are true.

- (1) $\mathbf{0}_A$ and $\mathbf{1}_A$ are soft Λ -sets.
- (2) Every soft union of soft Λ -sets is a soft Λ -set.
- (3) Every soft intersection of soft Λ -sets is a soft Λ -set.

Proof. Follows from Proposition 4.25.

4.28. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Then $(F, A) \in (GC)^{\theta}_{S}$ if and only if $Cl^{\theta}_{S}(F, A) \sqsubseteq (F, A)^{\Lambda}$.

Proof. Clear.

4.29. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. Let (F, A) be a soft Λ -set. Then $(F, A) \in (GC)_{S}^{\theta}$ if and only if $(F, A) \in \tilde{\tau}_{\theta}^{c}$.

Proof. Necessity. Follows from Proposition 4.28.

Sufficiency. Follows from the fact that every soft θ -closed set is soft θ -generalized closed (Proposition 4.2(1)).

4.30. Proposition. Let $(X, \tilde{\tau}, A)$ be a soft topological space and $(F, A) \in SS(X, A)$. If $(F, A)^{\Lambda} \in (GC)_{\mathfrak{S}}^{\theta}$, then $(F, A) \in (GC)_{\mathfrak{S}}^{\theta}$.

Proof. Clear.

5. Soft strongly pu- θ -continuity

In this section, we introduce the notion of soft strongly pu- θ -continuity of functions induced by two mappings $u: X \to Y$ and $p: A \to B$ on soft topological spaces $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau}^*, B)$.

5.1. Definition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces, $u: X \to Y$ and $p: A \to B$ be mappings, and $e_F \in \mathbf{SP}(X)$.

(1) The map $f_{pu} : SS(X, A) \to SS(Y, B)$ is soft strongly pu- θ -continuous at e_F if for each $(G, B) \in N_{\widetilde{\tau^*}}(f_{pu}(e_F))$, there exists $(H, A) \in N_{\widetilde{\tau}}(e_F)$ such that $f_{pu}(Cl_S(H, A)) \sqsubseteq (G, B)$.

(2) The map $f_{pu} : SS(X, A) \to SS(Y, B)$ is soft strongly pu- θ -continuous on X if f_{pu} is soft strongly pu- θ -continuous at each soft point in X.

5.2. Proposition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces. Then the following statements are equivalent.

- (1) The map $f_{pu}: SS(X, A) \to SS(Y, B)$ is soft strongly pu- θ -continuous;
- (2) For each $(G,B) \in \widetilde{\tau^*}, f_{pu}^{-1}(G,B) \in \widetilde{\tau}_{\theta};$
- (3) For each $(H, B) \in (\widetilde{\tau^*})^c$, $f_{pu}^{-1}(H, B) \in \widetilde{\tau}_{\theta}^c$.

Proof. Similar to the proof of [29, Theorem 6.3].

5.3. Proposition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces, $u : X \to Y$, $p : A \to B$ and $f_{pu} : SS(X, A) \to SS(Y, B)$ be mappings. Then the following statements are true.

- (1) If f_{pu} is soft strongly pu- θ -continuous, then f_{pu} is soft pu-continuous.
- (2) If f_{pu} is soft strongly pu- θ -continuous, then f_{pu} is soft pu- θ -continuous.

Proof. (1) Obvious.

(2) Follows from (1) and [10, Proposition 5.26]. \blacksquare

The converses of (1) and (2) in Proposition 5.3 are not true as illustrated by the following example.

5.4. Example. Let $X = \{h_1, h_2, h_3\}, Y = \{m_1, m_2, m_3\}, A = \{e_1, e_2\}, \text{ and } B = \{u_1, u_2\}.$ We consider the soft topology $\tilde{\tau} = \{\mathbf{0}_A, \mathbf{1}_A, \{(e_1, \{h_3\}), (e_2, \{h_1, h_2\})\}, \{(e_1, \phi), (e_2, \{h_3\})\}, \{(e_1, \{h_3\}), (e_2, X)\}\}$ over X and the soft topology $\tilde{\tau}^* = \{\mathbf{0}_B, \mathbf{1}_B, \{(u_1, \{m_1\}), (u_2, \{m_3\})\}, \{(u_1, \{m_1, m_2\}), (u_2, \{m_3\})\}\}$ over Y. Let $u: X \to Y$ be the map such that $u(h_1) = u(h_2) = m_1$ and $u(h_3) = m_3$ and $p: A \to B$ be the map such that $p(e_1) = u_2$ and $p(e_2) = u_1$. Then, the map $f_{pu}: SS(X, A) \to SS(Y, B)$ is both soft pu-continuous and soft pu- θ -continuous but it is not soft strongly pu- θ -continuous.

5.5. Proposition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces and S^* be a soft subbase of $\tilde{\tau^*}$. A map $f_{pu} : SS(X, A) \to SS(Y, B)$ is soft strongly pu- θ -continuous if and only if for each $(G, B) \in S^*, f_{pu}^{-1}(G, B) \in \tilde{\tau}_{\theta}$.

Proof. Necessity. Follows from Proposition 5.2.

Sufficiency. Follows from [10, Proposition 5.7] and Proposition 5.2.

5.6. Proposition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces. Then the following statements are equivalent.

(1) The map $f_{pu}: SS(X, A) \to SS(Y, B)$ is soft strongly pu- θ -continuous;

(2) For each $(F, A) \in SS(X, A), f_{pu}(Cl_S^{\theta}(F, A)) \sqsubseteq Cl_S(f_{pu}(F, A));$

(3) For each $(G, B) \in SS(Y, B), Cl_{s}^{\theta}(f_{pu}^{-1}(G, B)) \sqsubseteq f_{pu}^{-1}(Cl_{s}(G, B)).$

Proof. $(1) \Rightarrow (2)$ Follows from Proposition 5.2 (3).

 $(2) \Rightarrow (3)$ This is trivial.

 $(3) \Rightarrow (1)$ Let $e_F \in \mathbf{SP}(X)$ and $(M, B) \in N_{\widetilde{\tau^*}}(f_{pu}(e_F))$. Since $(M, B)^c \in (\widetilde{\tau^*})^c$, we have $Cl_{S}^{\theta}(f_{pu}^{-1}(M,B)^{c}) \subseteq f_{pu}^{-1}(Cl_{S}(M,B)^{c}) = f_{pu}^{-1}(M,B)^{c}$. Therefore $f_{pu}^{-1}(M,B)^{c} =$ $\begin{pmatrix} f_{pu}^{-1}(M,B) \end{pmatrix}^c \in \widetilde{\tau}_{\theta}^c \text{ and so } f_{pu}^{-1}(M,B) \in \widetilde{\tau}_{\theta}. \text{ Moreover, } e_F \widetilde{\in} f_{pu}^{-1}(M,B). \text{ There exists } \\ (U,A) \in N_{\widetilde{\tau}}(e_F) \text{ such that } Cl_S(U,A) \sqsubseteq f_{pu}^{-1}(M,B). \text{ Therefore } f_{pu}(Cl_S(U,A)) \sqsubseteq (M,B).$ Hence f_{pu} is soft strongly pu- θ -continuous.

5.7. Definition. A soft set (F, A) in a soft topological space $(X, \tilde{\tau}, A)$ is called a soft θ -neighborhood of a soft point $e_F \in \mathbf{SP}(X)$ if there exists a soft open set (G, A) such that $e_F \widetilde{\in} (G, A) \sqsubseteq Cl_s(G, A) \sqsubseteq (F, A)$. The soft θ -neighborhood system of a soft point e_F , denoted by $N_{\tilde{\tau}_a}(e_F)$, is the family of all its soft θ -neighborhoods.

Note that a soft θ -neighborhood is not necessarily a soft neighborhood in the soft θ -topology.

5.8. Proposition. The soft θ -neighborhood system $N_{\tilde{\tau}_{\alpha}}(e_F)$ at e_F in a soft topological space $(X, \tilde{\tau}, A)$ has the following properties: (1) If $(F, A) \in N_{\tilde{\tau}_{\theta}}(e_F)$, then $e_F \tilde{\in} (F, A)$.

(2) If $(F, A) \in N_{\tilde{\tau}_{\theta}}^{\theta}(e_{F})$ and $(F, A) \sqsubseteq (G, A)$, then $(G, A) \in N_{\tilde{\tau}_{\theta}}(e_{F})$. (3) If $(F, A), (G, A) \in N_{\tilde{\tau}_{\theta}}(e_{F})$, then $(F, A) \sqcap (G, A) \in N_{\tilde{\tau}_{\theta}}(e_{F})$. (4) If $(F, A) \in N_{\tilde{\tau}_{\theta}}(e_{F})$, then there is a $(H, A) \in N_{\tilde{\tau}_{\theta}}(e_{F})$ such that $(F, A) \in N_{\tau_{\theta}}(e'_{M})$ for each $e'_M \widetilde{\in} (H, A)$.

Proof. Similar to the proof of [29, Theorem 4.10].

The main results can be paraphrased as follows: soft pu- θ -continuity corresponds to f_{pu}^{-1} (soft θ -neighborhood) = soft θ -neighborhood and strong pu- θ -continuity corresponds to f_{pu}^{-1} (soft neighborhood) = soft θ -neighborhood.

5.9. Proposition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces, $u: X \to Y$ and $p: A \rightarrow B$ be mappings. Then the following statements are equivalent. (1) f_{pu} is soft pu- θ -continuous;

(2) For each $e_F \in \mathbf{SP}(X)$ and $(H, B) \in N_{\widetilde{\tau^*}}(f_{pu}(e_F)), f_{pu}^{-1}(H, B) \in N_{\widetilde{\tau}_a}(e_F).$

Proof. $(1) \Rightarrow (2)$ Follows from Proposition 2.8 (2) and (3). $(2) \Rightarrow (1)$ Follows from Propositions 5.8 (2) and 2.8 (1) and (4).

5.10. Proposition. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\tau^*}, B)$ be two soft topological spaces, $u: X \to Y$ and $p: A \to B$ be mappings. Then the following statements are equivalent.

(1) f_{pu} is soft strongly pu- θ -continuous;

(2) For each $e_F \in \mathbf{SP}(X)$ and $(H, B) \in N_{\widetilde{\tau^*}}(f_{pu}(e_F)), f_{pu}^{-1}(H, B) \in N_{\widetilde{\tau}_a}(e_F).$

Proof. Similar to the proof of Proposition 5.9.

Acknowledgement. The authors are grateful to the referees for their valuable comments and suggestions.

References

- [1] Aktas, H. and Cağman, N. Soft sets and soft groups, Inf. Sci., 177 (2007), 2726-2735.
- [2] Ali, M. I. Feng, F. Liu, X. Min, W. K. and Shabir, M. On some new operations in soft set theory, *Comput. Math. Appl.*, 57 (2009), 1547-1553.
- [3] A. Aygünoğlu and H. Aygün, Some notes on soft topological spaces, Neural. Comput. Appl., 21 (1) (2012), 113-119.
- [4] Cağman, N. and Enginoglu, S. Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207 (2010), 848-855.
- [5] Cağman, N. and Enginoglu, S. Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 3308-3314.
- [6] Cağman, N. Karatas, S. and Enginoglu, S. Soft topology, Comput. Math. Appl., 62 (2011), 351-358.
- [7] Chen, D. Tsang, E. C. C. Yeung, D. S. and Wang, X. The parameterization reduction of soft sets and its applications, *Comput. Math. Appl.*, 49 (2005), 757-763.
- [8] Feng, F. Jun, Y. B. Zhao, X. Z. Soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628.
- [9] Georgiou, D. N. and Megaritis, A. C. Soft Set Theory and Topology, Appl. Gen. Topol., 15 (1) (2014), 93-109.
- [10] Georgiou, D. N. Megaritis, A. C. and Petropoulos, V. I. On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889-1901.
- [11] Hussain, S. and Ahmad, B. Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058-4067.
- [12] Kannan, K. Soft generalized closed sets in soft topological spaces, J. Theo. Appl. Inf. Techn., 37 (2012), 17-21.
- [13] Kazanci, O. Yilmaz, S. and Yamak, S. Soft Sets and Soft BCH-Algebras, Hacet. J. Math. Stat., 39 (2010), 205-217.
- [14] Kharal, A. and Ahmad, B. Mappings of soft classes, New. Math. Nat. Comput., 7 (3) (2011), 471-481.
- [15] Maji, P. K. Roy, A. R. and Biswas, R. An application of soft sets in a decision making problem, *Comput. Math. Appl.*, 44 (2002), 1077-1083.
- [16] Maji, P. K. Biswas, R. and Roy, A. R. Soft set theory, Comput. Math. Appl., 45 (2003), 555-562.
- [17] Maji, P. K. Biswas, R. and Roy, A. R., Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589-602.
- [18] Majumdar, P. and Samanta, S. K. Similarity measure of soft sets, New. Math. Nat. Comput., 4 (2008), 1-12.
- [19] Min, W. K. A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524-3528.
- [20] Molodtsov, D. A. Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31.
- [21] Molodtsov, D. A. The description of a dependence with the help of soft sets, J. Comput. Sys. Sc. Int., 40 (2001), 977-984.
- [22] Molodtsov, D. A. The theory of soft sets (in Russian), URSS Publishers, Moscow, (2004).
- [23] Molodtsov, D. A. Leonov, V. Y. and Kovkov, D. V. Soft sets technique and its application, Nech. Siste. Myagkie Vychisleniya, 1 (2006), 8-39.
- [24] Pei, D. and Miao, D. From soft sets to information systems, In: Hu, X. Liu, Q. Skowron, A. Lin, T. Y. Yager, R. R. Zhang, B. ,eds., *Proceedings of Granular Computing*, IEEE, 2 (2005), 617-621.
- [25] Peyghan, E. Samadi, B. Tayebi, A. About soft topological spaces, J. New Results in Sci., (2) (2013), 60-75.
- [26] Zhu, P. and Qiaoyanwen, Operations on soft sets revisited, J. Applied Math., 2013 (2013), 7 pages. http://dx.doi.org/10.1155/2013/105752.
- [27] Shabir M. and Naz, M. On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799.
- [28] Shao, Y. C. Qin, K. The lattice structure of the soft groups, Procedia Engineering, 15 (2011), 3621-3625.
- [29] Zorlutuna, I. Akdag, M. Min, W. K. and Atmaca, S. Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171-185.

[30] Zou, Y. and Xiao, Z. Data analysis approaches of soft sets under incomplete information, *Knowl. Base. Syst.*, **21** (2008), 941-945.