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Wavelet decomposition for time series:
Determining input model by using mRMR

criterion

Budi Warsito∗ , Subanar† and Abdurakhman‡

Abstract

Determining the level of decomposition and coefficients used as input in
the wavelet modeling for time series has become an interesting problem
in recent years. In this paper, the detail and scaling coefficients that
would be candidates of input determined based on the value of Mutual
Information. Coefficients generated through decomposition with Max-
imal Overlap Discrete Wavelet Transform (MODWT) were sorted by
Minimal Redundancy Maximal Relevance (mRMR) criteria, then they
were performed using an input modeling that had the largest value
of Mutual Information in order to obtain the predicted value and the
residual of the initial (unrestricted) model. Input was then added one
based on the ranking of mRMR. If additional input no longer produced
a significant decrease of the residual, then process was stopped and the
optimal model was obtained. This technique proposed was applied in
both generated random and financial time series data.
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1. Introduction
Wavelet transform for time series analysis has been proposed in many papers in re-

cent years. Previous researches that deserve to be references are in [6] and [10]. Several
approaches have been proposed for time series prediction by wavelet transform, as in [12]
that used undecimated Haar transform. The choice of Haar transform was motivated by
the fact that wavelet coefficients are calculated only from data obtained previously. One
of the issues raised in this modeling is the determination of lagged value as an input so
that it needs a technique to obtain the optimal input. Input selection aims to select the
most relevant input set for a given task. [11] proposed the input selection uses sparse
modeling based on a small number of coefficients on each of the signal in autoregressive
case, and it is called Multiscale Autoregressive. Wavelet transform used in the method is
redundant “ â trous” wavelet transform which is similar with Maximal Overlap Discrete
Wavelet Transform (MODWT) introduced by [10], which has the advantage of being
shift-invariant. In this paper, we will utilize Minimal Redundancy Maximal Relevance
(mRMR) feature selection technique proposed in [8] to select the scaling and detail coef-
ficients of wavelet decomposition MODWT up to a certain level. Selection criteria used
is the Mutual Information that measures the relationship between input variables and
output.

Some researches on Mutual Information have been conducted mainly deal with the
feature selection as in [4], [13] and [14], while [5] used it for detection of the input time
series data and [7] applied for input selection on Wavelet Neural Network Model. On
wavelet modeling for time series with mRMR, the initial model is a model formed with
only one input, i.e the coefficient of detail or scale generated by MODWT, which has the
largest value of Mutual information criterion. Input is then added one by one based on
mRMR criteria until the desired amount achieved. Restrictions on the number of coeffi-
cients based on the difference of residual are obtained from the addition of the input with
the previous model. If there are no significant differences, then the addition is stopped
and optimal model is obtained. This paper is organized as follows; Section 2 discusses
the wavelet decomposition, especially MODWT; Section 3 discusses the Mutual Informa-
tion and input selection algorithm with mRMR; and a set of experiments illustrating the
method is discussed in Section 4, covers random generate and the real data in financial
field.

2. Wavelet Decomposition
Wavelet is a mathematical function that contains certain properties such as oscillating

around zero (such as sine and cosine functions) and is localized in time domain, meaning
that when the domain value is relatively large, wavelet function will be worth zero.
Wavelet is divided into two types, namely father wavelet (φ) and mother wavelet (ψ)
which has the properties:

(2.1)
∞∫
−∞

φ (x)dx = 1 dan

∞∫
−∞

ψ (x)dx = 0

Father and mother wavelet will give birth wavelet family by dyadic dilation and integer
translation, those are:

(2.2) φj,k (x) =
(

2j
)1/2

φ
(

2jx− k
)

(2.3) ψj,k (x) =
(

2j
)1/2

ψ
(

2jx− k
)

In this case, j is the dilation parameter and k is the translation parameter.



Base wavelet can be seen as a form of dilation and translation with j = 0 and k =
0. Dilation index j and translation index k influence the change of support and range
of base wavelet. Dilation index j influences the change of support and range in reverse,
i.e if the support is narrow, the range will be widened. The translation index k affects
the shift in position on the horizontal axis without changing the width of the support.
In this case, the support is closure of the set of points which gives the value of function
domain that is not equal to zero. Suppose a mapping belongs to f : xεR → y = f(x)εR
then support(f) = {x |f(x) 6= 0}.

Wavelet function can build a base for L2R space, or in other words every function
fεL2R can be expressed as a linear combination of a base built by wavelet, and can be
written in the following equation.

(2.4) f(x) =
∑
k∈Z

cJ,kφJ,k(x) +
∑
j<J

∑
k∈Z

dj,kψj,k(x)

where

cJ,k =

∫
f(x)φJ,k(x)dx

dj,k =

∫
f(x)ψj,k(x)dx

The transformation in equation (2.4) is Continue Wavelet Transform (CWT) in which
the wavelet coefficients are obtained through the integration process, so that the value of
wavelet must be defined at each xεR. Another form of transformation is Discrete Wavelet
Transform (DWT) where the wavelet values are defined only at finite points. Vector
containing the values of wavelet is called wavelet filter or detail filter {hl : l = 0, ..., L−1},
where L is the length of the filter and must be an even integer. A detail filter must meet
the need of the following three basic properties [10]:

(1)
L−1∑
l=0

hl = 0 and
L−1∑
i=0

g2i = 1 where L is the length of filter

(2)
L−1∑
l=0

h2
l = 1

(3)
L−1∑
l=0

hlhl+2n =
∞∑

l=−∞
hlhl+2n = 0

for all nonzero integers n. To fulfill these properties, it is required that the filter length
L is even. The required second filter is the scaling filter {gl} that corresponds to {hl}:

gl ≡ (−1)l+1hL−1−l

or in the inverse relationship:

hl = (−1)lgL−1−l

Suppose given wavelet filter h = (h0, h1, ..., hL − 1) while the f = (f1, f2, ..., fn) is a
realization of function f on x1, x2, ..., xn. In this case, n = 2J for some positive integer
J. DWT can be written as:

(2.5) W = Wf

where W = result of DWT and W = transformation matrix with the size nxn. DWT will
map the vector f = (f1, f2, ..., fn) to the coefficient vector W = (W1,W2, ...,WJ) where
W contains wavelet coefficients dj,k and scaling coefficients cJ,k, for j = 1,2, ..., J. These
are an approximation of the coefficients in equation (2.4). DWT can be used to reduce
or eliminate the random disturbances in a data (de-noising process) by the absence of
wavelet coefficients which are quite small. Wavelet coefficients are great values, they



have a major contribution in reconstruction of a function, while the small coefficients
contribute negligibly small (essentially zero).

Filtering by DWT as in equation (2.5) cannot be done on any sample size, which
cannot be expressed in the form 2J where J is a positive integer. As an alternative,
the calculation of coefficients dj,k and cJ,k can be done with Maximal Overlap Discrete
Transform (MODWT). The advantage of MODWT is that it can eliminate data reduction
by half (down-sampling), so that in each level there will be wavelet and scaling coefficients
as much as length of the data [10]. Suppose a time series data of length N, MODWT
transformation will give the column vector w1, w2, ..., wJ0 and vJ0 each of length N.

In order to easily make relations between DWT and MODWT, it is convenient to
define an MODWT wavelet filter {h̃l} through h̃l ≡ hl/

√
2 and scaling filter {g̃l} through

g̃l ≡ hl/
√

2. Wavelet filter and scaling filter from MODWT must fulfill the following
conditions:

L−1∑
l=0

h̃l = 0,

L−1∑
l=0

h̃2
l =

1

2
, and

∞∑
l=−∞

h̃lh̃l+2n = 0

L−1∑
l=0

g̃l = 1,

L−1∑
l=0

g̃2l =
1

2
, and

∞∑
l=−∞

g̃lg̃l+2n = 0

In MODWT, the number of wavelet coefficients at each level is always the same, so
it is more suitable for time series modeling compared with DWT. Prediction one step
forward of time series data X is modeled linearly, based on coefficients of wavelet decom-
position at previous times. Lag of coefficients that will be candidate of input to predict
t are detail and scaling coefficients resulted from MODWT transformation in the form
dj,t−k and cj,t−k or can be written in the following equation:

(2.6) X̂t =

J∑
j=1

Aj∑
k=1

(âj,kcj,t−k + b̂j,kdj,t−k)

the J symbol states the level of decomposition, while Aj describes the number of lag
coefficients on the level of decomposition. If the number of lag coefficients at each level is
the same, Aj = A, for each level j, then the number of variables that become candidates
of input is 2AJ. Lag of coefficients which serves as inputs of the model will be determined
by Minimal Redundancy Maximal Relevance criteria based on Mutual Information.

3. Maximal Relevance Minimal Redundancy
3.1. Entropy and Mutual Information. The entropy of a random variable, denoted
by H(X), quantifies an uncertainty present in the distribution of X [2]. It is defined as,

(3.1) H (X) = −
∑
x∈X

p (x) log p (x)

where the lower case x denotes a possible value that the variable X can adopt from
the alphabet X. If the distribution is highly biased toward one particular event x ∈ X,
that is little uncertainty over the outcome, then the entropy is low. If all events are
equally likely, that is maximum uncertainty over the outcome, then H(X) is maximum
[2]. Following the standard rules of probability theory, entropy can be conditioned on
other events. The conditional entropy of X given Y is denoted as follows.

(3.2) H (X |Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p (x |y ) log p (x |y )



This can be thought as the amount of uncertainty remaining in X after we learn
the outcome of Y. The Mutual Information (MI) between X and Y is the amount of
information shared by X and Y.

(3.3)
MI (X;Y ) = H (X)−H (X |Y )

=
∑
x∈X

∑
y∈Y

p (xy) log p(xy)
p(x)p(y)

This is the difference of two entropies, i.e. the uncertainty before Y is known, H(X),
and the uncertainty after Y is known, H(X|Y ). This can also be interpreted as the
amount of uncertainty in X which is removed by knowing Y. Thus it follows the intuitive
meaning of mutual information as the amount of information that one variable provides
about another [2]. On the other words, the mutual information is the amount by which
the knowledge provided by the feature vector decreases the uncertainty about the class
[1]. The Mutual Information is symmetric, MI(X;Y) = MI(Y;X). If the variables are
statistically independent, p(xy) = p(x)p(y), the Mutual Information will be zero.

To compute (3.1), we need an estimate of the distribution p(X). When X is discrete this
can be estimated by frequency counts from data, p̂ (x) = #x

N
, the fraction of observations

takes on value x from the total N [2]. When at least one of variables X and Y is continuous
we need to incorporate data discretization as a preprocessing step. An alternative solution
is to use density estimation method [9]. Given N samples of a variable X, the approximate
density function p̂(x) has the following form:

(3.4) p̂ (x) =
1

N

N∑
i=1

δ
(
x− x(i), h

)
where x(i) is the ith sample, h is the window width and δ(z, h) is the Parzen Window,

for example the Gaussian window:

(3.5) δ (z, h) = exp

(
−z

T ∑−1 z

2h2

)/{
(2π)d/2 hd

∣∣∣∑∣∣∣1/2}
where z = x− x(i); d is the dimension of the sample x and Σ is the covariance of z.

3.2. mRMR Selection. The feature selection’s goal in terms of mutual information is
to find a feature set S with k features xi which jointly have the largest dependency to
the target y called maximum dependency (Max-Dependency).

(3.6) maxD (S, y) , D = MI ({xi, i = 1, ..., k} ; y)

To simplify the implementation of (3.6), [8] proposed an alternative way to select features
based on maximal relevance (Max-Relevance) and minimal redundancy (Min-Redundancy)
criterion. Max-Relevance is to search features satisfying (3.7), which approximates
D(S, y) in (3.6) with the mean value of all mutual information values between individual
feature xi and the output y:

(3.7) maxD (S, y) , D = 1
|S|

∑
xi∈S

MI (xi; y)

According to Max-Relevance, the features selected could have rich redundancy, i.e., the
dependency among these features could be large. If two features highly depend on each
other, the respective class-discriminative power would not change much if one of them
were removed. Therefore, minimal redundancy (Min-Redundancy) condition is added to
select mutually exclusive features:

(3.8) minD (S) , R = 1
|S|2

∑
xi,xj∈S

MI (xi, xj)



The criterion combining the eq. (3.7) and (3.8) is called “minimal-redundancy-maximal-
relevance” (mRMR). The operator to combine D and R is defined as a simple form to
optimize D and R simultaneously:

(3.9) max Φ (D,R) ,Φ = D −R

In order to get the near optimal features defined by Φ(.), incremental search methods
can be used. If we have n candidates of input, the first input X is included into the
model that has the highest MI(X, y). The remaining input consists of n-1 feature. To
determine the next inputs, suppose we already have Sm−1, the feature set with m - 1
features. The task is to select the mth feature from the set X−Sm−1. This is undertaken
by selecting the feature that optimizes the following condition:

(3.10) max
xj∈X−Sm−1

MI (xj ; y)− 1

m− 1

∑
xi∈Sm−1

MI (xj , xi)


The main goal of this algorithm is to select a subset of features S from inputs X,

which has minimum redundancy and has maximum relevance with the target y (output).
Determination of the value of m is based on the difference between prediction accuracy
of the model with m inputs and prediction accuracy of the model with m + 1 input. If
the difference is smaller than the desired value, then the input is selected as m. This
algorithm computes MI(xi, xj) and MI(xi, y), where y is the target (output) and (xi,
xj) are individual inputs, i.e. all of scaling and detail coefficients from MODWT until
level J. Systematically, algorithm for determining the input of wavelet model uses MI as
similarity measure are:

(1) Use MODWT to decompose the data up to a certain level in order to obtain
detail and scaling coefficients of each level

(2) At each level of decomposition, specify the detail and scaling coefficients that
would be candidates of input until a certain lag

(3) Compute the Mutual Information between candidate of input xi and target y,
MI(xi,y)

(4) Select the initial input xi so that MI(xi,y) is the highest MI and xi ∈ S then
compute MSE of the initial (unrestricted) model

(5) Sort by ascending the remaining input based on mRMR:

mRMR =

[
MI (xi, y)− 1

|S|
∑

xj∈S
MI (xi, xj)

]
(6) (a) Add selected input to S based on greatest value of mRMR then calculate

the MSE
(b) Calculate the difference in MSE from the previous model and model with

the addition of input
(c) If the difference is greater than the desired number then back to 6(a)

(7) Process of adding suspended and optimal model is obtained

The desired number in step 6(c) was chosen, the one that was small enough to the
initial MSE. The addition of input was stopped when errors no longer decrease signifi-
cantly. In this paper, the desired number chosen was equal to 1/100000 of MSE of the
initial model.



4. Experimental Results
The using of mRMR in wavelet for time series would be applied in three types of data,

they are randomly generated data from Autoregressive models, randomly generated data
from GARCH model and real data in the financial fields.

4.1. Autoregressive Simulation Data. The data used is randomly generated by AR
(2), AR (3) and ARMA (2,1) model of 500 respectively, the following equations are the
description:

(4.1) Xt = 1.5Xt−1 − 0.7Xt−2 + εt

(4.2) Xt = 0.8Xt−1 + 0.4Xt−2 − 0.7Xt−3 + εt

(4.3) Xt = 1.5Xt−1 − 0.7Xt−2 + 0.5εt−1 + εt

After getting the data generated from random generation, the first step taken is to
decompose the data with MODWT up to 4th level to obtain the detail and scaling
coefficients of each level. In each level of decomposition, the lags of detail and scaling
coefficients are determined as potential inputs. In this case, we choose the coefficients
up to lag 16, so there will be 2x4x16 = 128 candidates of input. This value chosen on
the ground can accommodate different types of past data that affects the present data.
The next stage is to calculate the value of Mutual Information of each candidate and
determine the highest MI used as the initial of input. From this result, modeling is
executed by ordinary least squares method to obtain prediction values and the residuals.

The next stage is to sort mRMR value of each candidate without lagged value selected
as the initial. One by one of the candidates is added into the model sequentially based
on mRMR and then calculate the MSE. If additional input does not reduce the previous
MSE by at least 1/100000 of the initial MSE, then the process of adding is suspended, and
the optimal model is obtained. This stopping criteria is chosen based on the thinking that
the decreasing does not affect the difference of MSE significantly. The obtained results
are compared with autoregressive models. To calculate the MODWT decomposition, we
use the wmtsa toolkit for Matlab while to calculate Mutual Information and mRMR we
use MIToolbox package. In each model generated we repeat it five times. The calculation
results are presented in table 1.

Based on table 1, it appears that for data generated from linear autoregressive models,
wavelet model with MODWT decomposition combined with mRMR procedure to obtain
the input always provides a more predictive results than the original models, characterized
by the value of both MSE and R square. For the data generated from AR(2), there are
two coefficients that are always involved as inputs in wavelet model building, i.e 1st lag
of 1st level and 1st lag of 4th level from the scaling coefficients. On the data generated
from the AR(3), coefficients that always come up are 1st and 5th lags of 1st level from the
scaling coefficients, as well as 1st lag from 4th level. While the data generated from the
ARMA(2,1), the 1st lag of the 1st, 2nd, and 4th level from scaling coefficients, respectively,
have always become inputs of the model. Meanwhile, for the three data types, the detail
coefficients are never entered as input irrespective of levels or lags.

By considering the selected input, the resulting model yields only a few parameter
from a lot of candidates. The proposed procedure has succeeded in selecting candidates
which have great contribution and dismiss a lot of candidates which are not considered
giving significant contribution. This gives a wavelet model for time series with a few
coefficients as input and still gives good results.



Table 1. Comparison of MODWT-mRMR with autoregressive models

autoregressive mRMR-MODWT

model exp MSE Rsq Input scaling coefficients (level;lags) MSE Rsq

AR(2) 1 0.1670 0.6539 3 (1;1,5)(4;1) 0.1309 0.7293

2 0.2274 0.6759 9 (1;1,6,8)(2;1,11)(3;15)(4;1,9,16) 0.0975 0.8630

3 0.2046 0.6364 3 (1;1,5)(4;1) 0.1681 0.7019

4 0.1786 0.6174 3 (1;1,6)(4;1) 0.1604 0.6571

5 0.1855 0.6439 6 (1;1,12,16)(2;1,6)(4;1) 0.1400 0.7334

AR(3) 1 0.1022 0.6105 4 (1;1,5)(3;3)(4;1) 0.0866 0.6705

2 0.1017 0.7081 6 (1;1,5)(2;5)(3;6)(4;1,2) 0.0824 0.7649

3 0.1033 0.6540 10 (1;1,5,7)(2;1,5)(3;4)(4;1,2,7,12) 0.0710 0.7655

4 0.1118 0.7030 4 (1;1,4,5)(4;1) 0.0852 0.7740

5 0.1124 0.6402 8 (1;1,5,6)(2;10)(3;3)(4;1,2,15) 0.0667 0.7887

ARMA(2,1) 1 0.0349 0.6918 4 (1;1,5)(3;3)(4;1) 0.0306 0.7311

2 0.1017 0.7081 6 (1;1,5)(2;5)(3;6)(4;1,2) 0.0824 0.7649

3 0.0419 0.7362 6 (1;1,6)(2;1)(3;11,16)(4;1) 0.0362 0.7738

4 0.0421 0.6866 7 (1;1)(2;1,5)(3;6,16)(4;1,5) 0.0333 0.7545

5 0.0365 0.7424 10 (1;1)(2;1,12)(3;5,6)(4;1,6,8,11,15) 0.0278 0.8070

4.2. GARCH Simulation Data. In this section, randomly generated data with a
length of 500 will be discussed, following the ARIMA (0,0,0) as a mean model and
GARCH (1,1) as a variant model with the following equation:

(4.4) yt = 0.00001 + εt σ2
t = 0.00005 + 0.8σ2

t−1 + 0.1ε2t−1

Further studies will be conducted with the application of the MODWT using mRMR
input selection, for which the data are generated and then carried out a comparative
study of the accuracy with GARCH model. We also repeat the experiments for five
times and the results obtained are as table (2).

Table 2. MODWT-mRMR Model Comparison with GARCH

GARCH(1,1) mRMR-MODWT
exp MSE Rsq Input scaling (level;lags) detail MSE Rsq

(x10−4) (x10−4)
1 4.7645 0.9744 4 (1;3,4)(2;2)(3;1) - 3.0886 0.9926
2 4.3848 0.8739 8 (1;1)(2;1,2,3)(3;1,16)(4;1,5) - 3.7462 0.9715
3 5.0352 0.9491 4 (1;3)(2;3)(3;1)(4;13) - 2.9922 0.9717
4 5.4082 0.9383 4 (1;1,2)(2;1)(4;16) - 2.5345 0.9918
5 4.9960 0.9167 8 (1;1,2,7)(2;1,16)(3;2)(4;2,16) - 2.7526 0.9847

Calculation results in table (2) indicate that the MODWT with mRMR input selection
yields better predictions compared to GARCH model. It is characterized by a smaller
value of MSE and R square is greater. Although the lag of selected scaling coefficients
are not consistent at a certain value, but it appears that the initial lagged of each level
of decomposition dominates the coefficients entrance to the model. As in the random
data from AR and ARMA models, in the randomly generated data from GARCH model
the coefficients entered into the model are only the scaling coefficients, none of the lag



of detail coefficients is chosen. As mentioned earlier, this procedure was successful for
selecting a few coefficients included into the model.

4.3. Applications on the Financial Data. In this section we apply the method pro-
posed in two financial time series data. The first is Quarterly Real Gross Private Domestic
Investment from Bureau of Economic Analysis, U.S. Department of Commerce, January
1947 to January 2013 and the second is Monthly Price of the Indonesian Liquified Nat-
ural Gas data, from May 2003 to March 2013. The first data can be downloaded from
http://research.stlouisfed.org/fred2/, while the second is http://www.indexmundi.com/
commodities/. We have investigated that the first data were not stationer and after first
order differencing, it would be stationer. The best linear model from the differenced
data is AR(1) without constant, and by LM test we found that the residuals have an
ARCH effect. The best model for the variance of residuals is GARCH(1,0) by BHHH
optimization method.

In the second case, we focused on the monthly change price of the data. Investigation
to the type of the data got the best linear model is ARMA(2,2) with constant, and by LM
test we found that the residuals have an ARCH effect. The best model for the variance of
residuals is GARCH(0,3) by BHHH optimization method. To show the efficiency of the
proposed method we analyzed the both data and compared them with the appropriate
models. R square value shows the influence of the price data instead of the change. The
result is shown in the table (3).

Table 3. MODWT-mRMR Model of the Financial Time Series Data

Real Gross Private Domestic Investment data

GARCH(1,0) mRMR-MODWT

MSE Rsq Input scaling (level;lags) detail MSE Rsq

1517.0429 0.9986 12 (1;1,2,8,10),(2;2,4),(3;3,4,5,7,9),(3;2) - 1517.5143 0.9978

Indonesian Liquified Natural Gas data

GARCH(0,3) mRMR-MODWT

MSE Rsq Input scaling (level;lags) detail MSE Rsq

40.8585 0.9995 3 (1;2)(4;1,3) - 42.9082 0.9960

MSE value resulted from the calculation as shown in table (3) explains that in the
first case, the proposed method gives result as good as the GARCH model, while in
the second, the GARCH model is still superior. In both examined data, as in random
generated data, only the scaling coefficients that are included into the model, but none
of the detail coefficients is chosen. We can also make a conclusion that the scaling
coefficients have dominant influence to the output, while the detail coefficients have
almost no significant role. Overall, mRMR technique can be used to determine input of
wavelet model for time series efficiently. It can be seen that the number of input selected
with mRMR criteria was a few. This procedure has successfully resulted a model which
was more parsimonious in the number of parameters and still gave a good description of
the observed data.

5. Closing
A technique combining MODWT decomposition and mRMR criterion was proposed

for constructing forecasting model for time series. In MODWT for time series we use



a linear prediction based on some coefficients of decomposition of the past values. The
mRMR criteria was used as a tool to determine the input. Coefficients which have
high values of mRMR were chosen as the input. By this procedure, model resulted
just contained coefficients that were considered important enough to gave influence to
the present value. The advantage of this technique is opening up the possibility of
development by utilizing more sophisticated processing such as Neural Network that
results hybrid model, which is called Wavelet Neural Network.
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