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A new nonparametric estimation method of the
variance in a heteroscedastic model

Xiaoqin Zhang∗ † ‡, Hongxia Hao§ and Jiye Liang¶

Abstract
In most economic phenomena, the assumption of homoscedasticity in
the classic linear regression model is not necessarily true, which leads to
heteroscedasticity. The heteroscedastic estimate is an important aspect
for the problem of heteroscedasticity. For this hot issue, this paper pro-
poses a nonparametric estimation method with simple calculation for
the estimation of heteroscedasticity through orthogonal arrays, which
does not rely on the distribution of data. The performance of the pro-
posed method is investigated by prediction error in real data sets and
simulations. The results suggest that this method offers substantial
improvements over the existing tests.
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1. Introduction
In model analysis in many areas such as sociology, economics and technology, ho-

moscedastic assumption in classic linear regression model is not necessarily true. That is
to say, the variance of random error term changes with the observed values. This model
is called a heteroscedasticity model[1]. What leads to the heteroscedasticity? One reason
is because the random error term includes the measurement error and the impact of some
factors omitted in the model on the dependent variable, on the other hand, the value
of the dependent variable in different sampling unit may be very different. If we use
ordinary least squares (OLS) to estimate the parameters under heteroscedasticity model,
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it will have serious consequences, for example, the estimated variance of the parameter
does not have the validity (i.e. minimum variance), although with no bias, significant
test and interval estimation will draw the wrong statistical inference, which directly leads
to the decline of the accuracy and the prediction accuracy[1][2]. Therefore, the research
for heteroscedastic linear regression models is of great significance.

Currently, there are many ways to solve the problem of heteroscedasticity. Early,
the weighted least squares method can be used in the situation that the variance is not
constant[3], but it often requires the mean and covariances of the dependent variable
satisfy the linear relationship except for known variance. In general, it is very difficult to
meet these two requirements. Thus literature [4] studied the model yi = m(xi) +σ(xi)εi
and estimated the unknown function m(·) and σ(·), but their method can only handle
the situation where the covariate xi is one-dimensional. When the covariate is high-
dimensional, the paper [5] discussed the heteroscedastic model Yi = m(Xiβ)+σ(Xiβ, θ)εi
where m(·) and σ(·) are known. A high-dimensional Xi is projected to a direction of
where Xiβ is and the function m(·), σ(·) are changed to unary function. Thereby, the
paper solved the problem of dimensionality reduction. The model requires a known
contact function m(·) and a variance affected by the mean, however, these two points
often can not be satisfied in practice. The article [6] studied two estimators, namely:
the HC3 estimator and the weighted bootstrap estimator. Furthermore, it evaluated the
finite sample behavior of two bootstrap tests and proposed a new estimator. The litera-
ture [7] employed the maximum likelihood method to study parameter estimation based
on Lognormal distribution jointly logarithmic mean and logarithmic variance model.
yi ∼ LN(µi, σ

2
i ), µi = x′iβ, ln(σ2

i ) = z′iγ, i = 1, 2, · · · , n. The model asked yi to obey a
Lognormal distribution. The literature [8] proposed a method to estimate the coefficient
in heteroscedastic model, but it still has some disadvantages.

So, with aid of orthogonal arrays, this paper proposes a nonparametric estimation
method with simple calculation for the estimation of heteroscedasticity, which has im-
proved the method in literature [8]. Most importantly, this method does not rely on
the specific distribution type for yi. As a consequence, compared with the result in the
literature [7], the proposed method in this paper has a a wider range in use.

The paper is structured as follows: Section 2 gives the steps for the estimation of
heteroscedasticity by orthogonal table. In section 3, in conjunction with simulated and
real data sets, we illustrate the validity of proposed method. Section 4 does a brief
summary and points out the direction of future research.

2. Estimation for heteroscedasticity
2.1. Assumptions of the model. Assume that data (xi1, xi2, · · · , xip, yi), i = 1, 2,
· · · , n, has the following linear relationship:

(2.1)


Y = Xβ + ε,
E(ε) = 0n, D(ε) = Σ = diag(σ2

1 , σ
2
2 , · · · , σ2

n),
σ2
i is not the same, i = 1, 2, · · · , n.

where

Y =


y1

y2

...
yn

 , X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...
1 xn1 xn2 · · · xnp

 , β =


β0

β1

...
βp

 , ε =


ε1

ε2

...
εn

 .

β is parameter to be estimated. The model is called a heteroscedastic linear model[2].



When heteroscedasticity occurs in the model, if covariance matrix of random item ε

is known, we can use generalized least squares estimation (GLSE) β̂ as the estimation of
model coefficients β, that is:

(2.2) β̂ = (X
′
Σ−1X)−1X

′
Σ−1Y.

However, in most practical problems, Σ is unknown. To solve this problem, it is
necessary to estimate Σ. Therefore, combining with the nature of the orthogonal array,
this paper gives a reasonable estimate of covariance matrix Σ of random error term ε.

2.2. Estimation of variance. This subsection gives a method to estimate the covari-
ance matrix Σ of random errors ε in the formula of (2.2) by using orthogonal array. For
the convenience of description, we consider the case p = 3, i.e, there are three independent
variables x1, x2, x3 in the model, and other situations can be promoted similarly.

For example, orthogonal array L9(34), which is generated with the help of the knowl-
edge of combinatorial mathematics and probability[9].

(2.3) L9(34) =


1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2
1 2 3 3 1 2 2 3 1


′

.

The detailed process of heteroscedastic estimation for the case p = 3 is as follows:
(1) For each set of observation (xi1, xi2, xi3), i = 1, 2, · · · , n, taking each independent

variable as a factor, we make the following treatment for it: using (xi1, xi2, xi3) as central
value and (xi1

∆
, xi2

∆
, xi3

∆
) as tolerance, we can get three levels of each factor:

(xi1, xi2, xi3)→

 xi1 − xi1
∆

xi2 − xi2
∆

xi3 − xi3
∆

xi1 xi2 xi3
xi1 + xi1

∆
xi2 + xi2

∆
xi3 + xi3

∆


Where 1

∆
is usually called tolerance and its value often depends on magnitude of data.

(2) Regarding the data produced in the first step as three levels of each factor, we can
obtain following data with the help of orthogonal array L9(34):

xi1 − xi1
∆

xi2 − xi2
∆

xi3 − xi3
∆

xi1 − xi1
∆

xi2 xi3
xi1 − xi1

∆
xi2 + xi2

∆
xi3 + xi3

∆

xi1 xi2 − xi2
∆

xi3
xi1 xi2 xi3 + xi3

∆

xi1 xi2 + xi2
∆

xi3 − xi3
∆

xi1 + xi1
∆

xi2 − xi2
∆

xi3 + xi3
∆

xi1 + xi1
∆

xi2 xi3 − xi3
∆

xi1 + xi1
∆

xi2 + xi2
∆

xi3


.
=



xi11 xi21 xi31

xi12 xi22 xi32

xi13 xi23 xi33

xi14 xi24 xi34

xi15 xi25 xi35

xi16 xi26 xi36

xi17 xi27 xi37

xi18 xi28 xi38

xi19 xi29 xi39


(3) For each set of observation yi, i = 1, 2, · · · , n, we can take 9 independent random

numbers yik, (k = 1, 2, · · · , 9) from normal distribution N(yi, θ
2) or uniform distribution

U [yi − h, yi + h], where θ2 and h often take a relatively small value to satisfy the need
that produced data yik have little deviation.

(4) According to the source of data in previous step, we know that 9 random numbers
are produced from one distribution independently, i.e. they have same variance. Fur-
ther, from the regression model we can see the variance of random error term and the
variance of dependent variable are the same. So we can consider that the regression of
yik and xijk(fix i, j = 1, 2, 3, k = 1, 2, · · · , 9) is homoscedastic. So, using the OLS for this



regression is reasonable. For each i, according to the regression of yik and xijk,

(2.4)
{
yik = γ0 + γ1xi1k + γ2xi2k + γ3xi3k + εik,
E(εik) = 0, D(εik) = σ2

ik, k = 1, 2, · · · , 9.

we can obtain residual squares:

(2.5)
{
e2
ik = (yik − ŷik)2, ŷik = γ̂0 + γ̂1xi1k + γ̂2xi2k + γ̂1xi3k,
i = 1, 2, · · · , n; k = 1, 2, · · · , 9.

(5) Note the variance of εi in the model (2.1) as σ2
i . According to the calculation

formula of variance σ2
i = E(ε2

i )− [E(εi)]
2 and the basic assumptions for εi, i.e. E(εi) =

0, there is a conclusion that σ2
i = E(ε2

i ). So this paper uses
9∑
k=1

e2
ik/9 to estimate

E(ε2
i ), i.e. σ̂2

i =
9∑
k=1

e2
ik/9, i = 1, 2, · · · , n, Finally we get the covariance matrix of ε as

Σ̂=diag(σ̂2
1 , σ̂

2
2 , · · · , σ̂2

n).

3. Example
Simulation Study: In this part, we want to confirm our results by simulation exper-

iments. Here we consider a simple heteroscedastic variance problem where the variance
is the square of first variable x1 corresponding to it.

Let us consider a simple three variable linear model:

(3.1)
{
yi = 0.2 + 2xi1 + 3xi2 + 4xi3 + εi,
εi ∼ N(0, x2

i1), i = 1, 2, · · · , n.

Above all, in our simulation study, all the values of independent variables are being
taken equally from the uniform distribution U [0, 1]. From the model we know εi are
generated from N(0, x2

i1). Further, yi is easily obtained.
Then, using the simulation data, we take advantage of the proposed method in subsec-

tion 2.2 to estimate the variance and get the simulation equation with the aid of formula
(2.2). Further, we obtain the absolute value of prediction error. We run this simula-
tion experiment under the following situation: normal distribution N(yi, θ

2) or uniform
distribution U [yi − h, yi + h], three different sample sizes n = 30, 60, 90, the number of
experiment m = 100, 1000, 1

∆
= 0.01 or 0.001 and θ2=0.01 or 0.001. The absolute value

of prediction error of this simulation experiment is arranged in table 1(using SAS macro).
From the table 1, we can find that the absolute value of prediction error has little

differences by the proposed method (method 1) in this paper, which is unrelated to
the the choice of distribution and parameters. Therefore the choice of distribution and
parameters has little effect on the proposed method (method 1) in this paper and the
proposed method is stable.

To confirm the performance of our method, we adopt the method (method 2) in paper
[10] and the method (method 3) in paper [6] and also get the absolute value of prediction
error with the help of weighted least square estimation (WLSE). See Table 1. The process
of method 2 can be described as follows: Sort the explanatory variables x1 from small
to large and other variables yi, x2, x3 maintain the original correspondence. Divide the
x1 into k groups and j-th group contains nj numbers. Let the mean of numbers in the
j-th group as x′1j and use x′1j in place of the original data in j-th group. So the data
becomes (x′1j , xi2, xi3, yi), j = 1, 2, · · · , k. i = 1, 2, · · · , n. We divide the sample variance
of the i-th group s2

i on the both sides of the classic linear regression model and use OLS
to estimate the parameter. Meanwhile, the estimator proposed in paper [6], called HC4,
is as formula (3.2).



Table 1: The absolute value of prediction error in simulation
m=100 m=1000
1
∆ = 0.01 1

∆ = 0.01 1
∆ = 0.001 1

∆ = 0.001 1
∆ = 0.01 1

∆ = 0.01 1
∆ = 0.001 1

∆ = 0.001
normal θ2=0.01 θ2=0.001 θ2=0.01 θ2=0.001 θ2=0.01 θ2=0.001 θ2=0.01 θ2=0.001

distribution n=30 0.4094 0.4092 0.4160 0.4133 0.4050 0.4038 0.4032 0.4046
(by method 1)n=60 0.4152 0.4122 0.4104 0.4165 0.4108 0.4101 0.4108 0.4110

n=90 0.4072 0.4096 0.4128 0.4106 0.4105 0.4099 0.4108 0.4088
1
∆ = 0.01 1

∆ = 0.01 1
∆ = 0.001 1

∆ = 0.001 1
∆ = 0.01 1

∆ = 0.01 1
∆ = 0.001 1

∆ = 0.001
uniform h=0.02 h=0.04 h=0.02 h=0.04 h=0.02 h=0.04 h=0.02 h=0.04

distribution n=30 0.4089 0.4064 0.4121 0.4110 0.4002 0.3998 0.4024 0.4012
(by method 1)n=60 0.4077 0.4109 0.4115 0.4084 0.4071 0.4094 0.4079 0.4085

n=90 0.4097 0.4089 0.4086 0.4102 0.4081 0.4072 0.4080 0.4083
m=100 m=1000

by method 2 n=30 0.6934 0.6711
n=60 0.5743 0.5759
n=90 0.5196 0.5222

m=100 m=1000
by method 3 n=30 0.3974 0.3893

n=60 0.40387 0.40249
n=90 0.40650 0.40470

Figure 1-6: Simulation study

(3.2) Ω̂ = diag{û1
2/(1− h1)δ1 , · · · , ûn2/(1− hn)δn}

Where δi = min{4, nhi
n∑

j=1
hi

}, hi is the ith diagonal element of the "hat matrix" H =

X(X ′X)−1X ′ and ûi2 is i-th diagonal element of the diagonal matrix formed out of the
vector of squared least-squares residuals.



From the table 1, we can see, on the one hand, the results using method 1 are smaller
than them using method 2 on the whole. On the other hand, with the increase of the
number of samples, the error by method 1 is changing little compared with those by
method 2, which illustrates its stability and also shows that the newly proposed method
in this paper is fitted with the data including 90 samples. Also, we can see that the
results in table 1 by method 1 are almost the same with them by method 3. But the
most important point we should not neglect is that the method 1(proposed method in
this paper) does not rely on the distribution of data. However, according to formula of
estimator proposed in paper [6], we can find that it depends on the normal distribution.
So, the method we proposed in this paper has a wider range in practise.

Meanwhile, we use Figure 1-6(using MATLAB) to demonstrate the advantage of the
method proposed (method 1) in this paper. In Figure 1-6, the horizontal axis represents
the number of sample and the longitudinal axis notes the predicted value of the dependent
variable obtained by different method. Red, blue and green lines respectively denote
the value of independent variable using different methods. Red notes real values of
dependent variable, blue indicates the predicted value of dependent variable using the
proposed method (method 1, using N(yi, θ

2), 1
∆

= 0.01, θ2 = 0.01) in this paper and
green represents the values of dependent variable using the method proposed in article
[10](method 2). As is shown in Figure 1-3(fix m), with the increasing of n, the value
of dependent variable Y is closer to the real value using method 1. On the other hand,
from the Figure 1 and 4, we can see that the effect of method 1(blue line) is better than
method 2(green line) with the increasing of m.

Real Example: This example uses the proposed method to estimate the het-
eroscedasticity of data in example 2.6.2 in literature [7] and gives the regression equation
in the presence of heteroscedasticity.

Let y, x1, x2, x3 expresses total GDP and its components in the three industry re-
spectively, namely primary industry, secondary industry and tertiary industry. We take
the data from 31 provinces (autonomous regions and municipalities) of China in 2009 for
example.

According to the way proposed in 2.2(N(yi, θ2), 1
∆

= 0.01 and θ2 = 0.01), calculate
the variance of random term. By the formula (2.2), we get the regression equation and
the prediction of dependent variable ŷ. See Table 2 (using SAS macro).

Table 2: data about real example
No. y x1 x2 x3 ŷ No. y x1 x2 x3 ŷ
1 12153.03 118.29 2855.55 9179.19 12153.03 17 12961.10 1795.90 6038.08 5127.12 12961.10
2 7521.85 128.85 3987.84 3405.16 7521.85 18 13059.69 1969.69 5687.19 5402.81 13059.69
3 17235.48 2207.34 8959.83 6068.31 17235.48 19 39482.56 2010.27 19419.70 18052.59 39482.56
4 7358.31 477.59 3993.80 2886.92 7358.31 20 7759.16 1458.49 3381.54 2919.13 7759.16
5 9740.25 929.60 5114.00 3696.65 9740.25 21 1654.21 462.19 443.43 748.59 1654.21
6 15212.49 1414.90 7906.34 5891.25 15212.49 22 6530.01 606.80 3448.77 2474.44 6530.01
7 7278.75 980.57 3541.92 2756.26 7278.75 23 14151.28 2240.61 6711.87 5198.80 14151.28
8 8587.00 1154.33 4060.72 3371.95 8587.00 24 3912.68 550.27 1476.62 1885.79 3912.68
9 15046.45 113.82 6001.78 8930.85 15046.45 25 6169.75 1067.60 2582.53 2519.62 6169.753
10 34457.30 2261.86 18566.37 13629.07 34457.30 26 441.36 63.88 136.63 240.85 441.36
11 22990.35 1163.08 11908.49 9918.78 22990.35 27 8169.80 789.64 4236.42 3143.74 8169.80
12 10062.82 1495.45 4905.22 3662.15 10062.82 28 3387.56 497.05 1527.24 1363.27 3387.56
13 12236.53 1182.74 6005.30 5048.49 12236.53 29 1081.27 107.40 575.33 398.54 1081.27
14 7655.18 1098.66 3919.45 2637.07 7655.18 30 1353.31 127.25 662.32 563.74 1353.31
15 33896.65 3226.64 18901.83 11768.18 33896.65 31 4277.05 759.74 1929.59 1587.72 4277.05
16 19480.46 2769.05 11010.50 5700.91 19480.46

Obtain the relation between y and x1, x2, x3 by using σ2
i and formula: y = x1+x2+x3.

Compare and analyze the above regression equation with results of article from the
following aspects:



(1) According to the meaning of independent variable and dependent variable, we can
find the equation above is closer to the actual situation than the literature [7]. This can
also be confirmed from the differences between the actual value of dependent variable
and its prediction in Table 1.

(2) The literature [7] requires the specific distribution type for yi, however the reported
method in this paper does not rely on the limitation. As a consequence, the proposed
method in this paper has a wider range in use.

4. Conclusions
When the covariance matrix of the random error term in the heteroscedastic regression

model is unknown, this paper proposes a nonparametric method for the estimation of
heteroscedasticity by orthogonal arrays. Most of all, this method does not rely on the
distribution of data. Based on the fact that orthogonal arrays have good statistical
properties, from the regression equation and the results in the simulation we can find that
the proposed method is better than some other methods, which presents the validity and
the stability of the proposed method in the paper. In most of the cases, people only focus
on the test on the existence of heteroscedasticity and estimation of the heteroscedasticity,
however, few people study the degree of impact of heteroscedasticity and variable that
causes heteroscedasticity. These two aspects can be discussed further.
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