Some results on σ -ideal of σ -prime ring

Selin Türkmen[∗] and Neşet Aydın[†]

Abstract

Let R be a σ -prime ring with characteristic not 2, $Z(R)$ be the center of R, I be a nonzero σ -ideal of R, α , β : $R \to R$ be two automorphisms, d be a nonzero (α, β) -derivation of R and h be a nonzero derivation of R. In the present paper, it is shown that (i) If $d(I) \subset C_{\alpha,\beta}$ and β commutes with σ then R is commutative. (ii) Let α and β commute with σ . If $a \in I \cap S_{\sigma}(R)$ and $[d(I), a]_{\alpha,\beta} \subset C_{\alpha,\beta}$ then $a \in Z(R)$. (iii) Let α, β and h commute with σ . If $dh(I) \subset C_{\alpha,\beta}$ and $h(I) \subset I$ then R is commutative.

Keywords: σ -prime ring, σ -ideal, (α, β) -derivation

2000 AMS Classification: Primary 16N60; Secondary 16W25, 16U80

Received 27/03/2014 : Accepted 28/07/2014 Doi : 10.15672/HJMS.2015449665

1. Introduction

Let R be an associative ring with center $Z(R)$. R is said to be 2-torsion free if whenever $2x = 0$ with $x \in R$, then $x = 0$. Recall that a ring R is prime if $aRb = 0$ implies $a = 0$ or $b = 0$. An involution σ of a ring R is an additive mapping satisfying $\sigma (xy) = \sigma (y) \sigma (x)$ and $\sigma^2(x) = x$ for all $x, y \in R$. A ring R equipped with an involution σ is said to be σ prime if $aRb = aR\sigma(b) = 0$ implies $a = 0$ or $b = 0$. Note that every prime ring which has an involution σ is a σ -prime but the converse is in generally not true. An example, due to Shuliang [8], if R^0 denotes the opposite ring of a prime ring R, then $R \times R^0$ equipped with the exchange involution σ_{ex} , defined by $\sigma_{ex}(x, y) = (y, x)$, is σ_{ex} -prime but not prime. An additive subgroup I of R is said to be an ideal of R if $xr, rx \in I$ for all $x \in I$ and $r \in R$. An ideal I which satisfies $\sigma(I) = I$ is called a σ -ideal of R. An example, due to Rehman [8], Set $R = \begin{cases} \begin{pmatrix} a & b \end{pmatrix}$ $0 \quad c$ $\Big\}$ | a, b, $c \in \mathbb{Z}$. We define a map $\sigma : R \to R$ as follows: $\sigma\left(\begin{array}{cc} a & b \\ 0 & a \end{array}\right)$ $0 \quad c$ $\Bigg) = \left(\begin{array}{cc} c & -b \\ 0 & -c \end{array} \right)$ $0 \quad a$). It is easy to check that $I = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} | b \in \mathbb{Z} \right\}$ is a

[∗]Çanakkale Onsekiz Mart University, Dept. Math. Çanakkale - Turkey Email: selinvurkac@gmail.com

[†]Çanakkale Onsekiz Mart University, Dept. Math. Çanakkale - Turkey Email: neseta@comu.edu.tr

σ-ideal of R. Note that an ideal I of a ring R may be not a σ-ideal. Let $R = \mathbb{Z} \times \mathbb{Z}$. Consider a map $\sigma: R \to R$ defined by $\sigma((a, b)) = (b, a)$ for all $(a, b) \in R$. For an ideal $I = \mathbb{Z} \times \{0\}$ of R, I is not a σ -ideal of R since $\sigma(I) = \{0\} \times \mathbb{Z} \neq I$. $S_{\sigma}(R)$ will denote the set of symmetric and skew symmetric elements of R. i.e. $S_{\sigma}(R) = \{x \in R \mid \sigma(x) = \pm x\}.$ As usual the commutator $xy - yx$ will be denoted by $[x, y] = xy - yx$. An additive mapping $h : R \to R$ is called a derivation if $h(xy) = h(x)y + xh(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a: R \to R$ is given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation which is determined by a. Let α and β be two maps of R. Set $C_{\alpha,\beta} = \{c \in R \mid c\alpha(r) = \beta(r) c \text{ for all } r \in R\}$ and known as (α, β) -center of R. In particular, $C_{1,1} = Z(R)$ is the center of R, where $1: R \to R$ is identity map. As usual the (α, β) -commutator $a\alpha(b) - \beta(b)a$ will be denoted by $[a, b]_{\alpha, \beta} = a\alpha(b) - \beta(b)a$. An additive mapping $d : R \to R$ is called an (α, β) -derivation if $d(xy) = d(x) \alpha(y) + \beta(x) d(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a: R \to R$ is given by $I_a(x) = [a, x]_{\alpha, \beta}$ is an (α, β) -inner derivation which is determined by a.

Many studies have been objected the relationship between commutativity of a ring and the act of derivations defined on this ring. These results have been generalized by many authors in several ways. Herstein $[2]$ proved that if R is a prime ring of characteristic not 2, d is a nonzero derivation of R and $a \in R$ such that $[a, d(R)] = 0$ then $a \in R$ $Z(R)$. N. Aydın and K. Kaya [1] proved that if R is a prime ring of characteristic not 2, I is a nonzero right ideal of R, σ and τ are two automorphisms of R, $d: R \to R$ is a nonzero (σ, τ) -derivations of R and $a \in R$ such that (i) $d(I) \subset Z(R)$ then R is commutative. (ii) $[d(R), a]_{\sigma,\tau} \subset C_{\alpha,\beta}$ then $a \in Z(R)$. In [5], this result was extended to on a σ -ideal of a σ -prime ring by L. Oukhtite and S. Salhi. On the other hand, Posner [7] proved that if R is a prime ring of characteristic not 2 and d_1, d_2 are derivations of R such that the composition d_1d_2 is also a derivation; then one at least of d_1, d_2 is zero. K. Kaya $[3]$ proved that if R is a prime ring of characteristic not 2, I is a nonzero ideal of R, σ and τ are two automorphisms of R, $d_1: R \to R$ is a nonzero (σ, τ) -derivations of R and d_2 is a nonzero derivation of R such that $d_1d_2(I) \subset C_{\sigma,\tau}$ then R is commutative. In [4], Posner's result was extended to a nonzero σ -ideal of a σ -prime ring by L. Oukhtite and S. Salhi. Motivated by these results, we follow this line of investigation.

In this paper, our main goal is to extend these results on a σ -ideal of a σ -prime ring. Throughout the present paper, R is a σ -prime ring, $Z(R)$ is the center of R and α, β are two automorphisms of R . We use the following basic commutator identities:

> $[x, yz] = y[x, z] + [x, y]z$ $[xy, z] = x [y, z] + [x, z] y$ $[xy, z]_{\alpha,\beta} = x [y, z]_{\alpha,\beta} + [x, \beta(z)] y = x [y, \alpha(z)] + [x, z]_{\alpha,\beta} y$ $[x, yz]_{\alpha,\beta} = \beta(y)[x, z]_{\alpha,\beta} + [x, y]_{\alpha,\beta} \alpha(z)$ $\Big[[x,y]_{\alpha,\beta}\,,z\Big]_{\alpha,\beta}=\Big[[x,z]_{\alpha,\beta}\,,y\Big]_{\alpha,\beta}+[x,[y,z]]_{\alpha,\beta}$

The material in this work is a part of first author's PH. Dissertation which is supervised by Prof. Dr. Neşet Aydın.

2. Results

For the proof of our theorems, we give the following known Lemmas.

2.1. Lemma. [6, Theorem 2.2] Let I be a nonzero σ -ideal of σ -prime ring R. If a, b in R are such that $aIb = 0 = aI\sigma(b)$ then $a = 0$ or $b = 0$.

2.3. Lemma. Let I be a nonzero σ -ideal of R and $a \in R$. If $Ia = 0$ (or $aI = 0$) then $a=0.$

Proof. Since I is a σ -ideal, we know that $IR \subset I$. By hypothesis, we have $IRa \subset Ia = 0$. Thus, we get $IRa = 0$. Moreover, since I is invariant under σ , we have $\sigma(I) Ra = 0$. It follows that

$$
IRa = \sigma(I) Ra = 0
$$

Using σ -primeness of R, we get

 $a = 0$

Similarly, using $RI \subset I$, one can show that if $aI = 0$ then $a = 0$.

- 2.4. Lemma. Let $a, b \in R$.
	- i) If $b, ab \in C_{\alpha,\beta}$ and a (or $b \in S_{\sigma}(R)$ then $a \in Z(R)$ or $b = 0$.
	- ii) If $a, ab \in C_{\alpha,\beta}$ and a (or $b) \in S_{\sigma}(R)$ then $a = 0$ or $b \in Z(R)$.

Proof. i) By the hypothesis, we have $[ab, r]_{\alpha, \beta} = 0$ for all $r \in R$. Expanding this equation by using $b \in C_{\alpha,\beta}$, holding for all $r \in R$

$$
0 = [ab, r]_{\alpha, \beta} = a [b, r]_{\alpha, \beta} + [a, \beta (r)] b
$$

= $[a, \beta (r)] b$

Since $b \in C_{\alpha,\beta}$, we get

 (2.1) $[a, R]$ $Rb = 0$

In the event of $a \in S_{\sigma}(R)$, we derive $\sigma([a, R]) Rb = 0$. Using the last obtained equation together with (2.1), we yield

$$
[a, R] R b = \sigma ([a, R]) R b = 0
$$

Applying the σ -primeness of R, we have

 $a \in Z(R)$ or $b = 0$

In case of $b \in S_{\sigma}(R)$, from (2.1) , we get $[a, R] R\sigma(b) = 0$. Using the last obtained equation together with (2.1), we find

 $[a, R] Rb = [a, R] R\sigma (b) = 0$

Applying the σ -primeness of R,

 $a \in Z(R)$ or $b = 0$

is obtained.

ii) Since $ab \in C_{\alpha,\beta}$, we have $[ab,r]_{\alpha,\beta} = 0$ for all $r \in R$. Expanding this equation by using $a \in C_{\alpha,\beta}$, holding for all $r \in R$

$$
0 = [ab, r]_{\alpha, \beta} = a [b, \alpha (r)] + [a, r]_{\alpha, \beta} b
$$

= a [b, \alpha (r)]

Since $a \in C_{\alpha,\beta}$,

$$
aR[b,R] = 0
$$

is obtained. After here, it is similar as above. \Box

2.5. Lemma. Let I be a nonzero σ -ideal of R and h be a nonzero derivation of R. If $h(I) \subset Z(R)$ then R is commutative.

Proof. For any $x, y \in I$ and $r \in R$, using hypothesis,

$$
0 = [r, h(xy)] = [r, h(x) y + xh(y)]
$$

= h(x) [r, y] + [r, h(x)] y + x [r, h(y)] + [r, x] h(y)
= h(x) [r, y] + [r, x] h(y)

And so,

$$
h(x) [r, y] + [r, x] h (y) = 0, \forall x, y \in I, r \in R
$$

is obtained. In the last equality, x is taken instead of r and we obtain $h(x)[x, y] = 0$ for all $x, y \in I$. Substituting y by zy where $z \in I$, it holds that

$$
(2.2) \t h(x) I[x, y] = 0, \forall x, y \in I
$$

It is supposed that $x \in I \cap S_{\sigma}(R)$. In (2.2), replacing y with $\sigma(y)$, we get $h(x) I \sigma([x, y]) =$ 0 for all $y \in I$. According to Lemma 2.1, it is derived that

(2.3)
$$
h(x) = 0 \text{ or } x \in Z(R), \ \forall x \in I \cap S_{\sigma}(R)
$$

Assume that $x \in I$. In this case, $x - \sigma(x) \in I \cap S_{\sigma}(R)$. So, from (2.3), we have $h(x - \sigma(x)) = 0$ or $x - \sigma(x) \in Z(R)$ for all $x \in I$. We set $A = \{x \in I \mid h(x - \sigma(x)) = 0\}$ and $B = \{x \in I \mid x - \sigma(x) \in Z(R)\}\.$ It is clear that A and B are additive subgroups of I such that $I = A \cup B$. But, a group can not be an union of two of its proper subgroups. Therefore, it is implied $I = A$ or $I = B$. In the former case, $h(x) = h(\sigma(x))$ for all $x \in I$. In (2.2), replacing y by $\sigma(y)$ and x by $\sigma(x)$, we have $h(x) I\sigma([x,y]) = 0$ for all $x, y \in I$. And so,

$$
h(x) I[x, y] = h(x) I\sigma([x, y]) = 0, \ \forall x, y \in I
$$

is obtained. By Lemma 2.1, get $h(x) = 0$ or $x \in Z(R)$ for all $x \in I$. In the latter case, $x-\sigma(x) \in Z(R)$ for all $x \in I$. This means $[x, r] = [\sigma(x), r]$ for all $x \in I, r \in R$. In (2.2), taking $\sigma(y)$ instead of y, we get $h(x) I\sigma([x, y]) = 0$ for all $x, y \in I$. And so,

$$
h(x) I[x, y] = h(x) I\sigma([x, y]) = 0, \forall x, y \in I
$$

is derived. According to Lemma 2.1, we have $h(x) = 0$ or $x \in Z(R)$ for all $x \in I$. So, both the cases yield either

 $h(x) = 0$ or $x \in Z(R)$, $\forall x \in I$

Now, we set $K = \{x \in I \mid h(x) = 0\}$ and $L = \{x \in I \mid x \in Z(R)\}\)$. Each of K and L is an additive subgroup of I . Moreover, I is the set-theoretic union of K and L . But a group can not be the set-theoretic union of two proper subgroups, hence $I = K$ or $I = L$. In the former case, $h(I) = 0$. So, we have $h = 0$. But, h is a nonzero derivation of R. So, from the latter case, we get $I \subseteq Z(R)$. Therefore, R is commutative.

2.6. Lemma. Let I be a nonzero σ -ideal of R, d be a (α, β) -derivation of R and $a \in R$. If $ad(I) = \sigma(a) d(I) = 0$ and β commutes with σ (or $d(I) a = d(I) \sigma(a)$) 0 and α commutes with σ) then $a = 0$ or $d = 0$.

Proof. For any $x \in I$ and $r \in R$, using $ad(I) = 0$, we get

$$
0 = ad (xr) = ad (x) \alpha (r) + a\beta (x) d (r)
$$

$$
= a\beta (x) d (r)
$$

It becomes

 $a\beta(I) d(r) = 0, \forall r \in R$

Similarly, using $\sigma(a) d (I) = 0$, we derive

$$
\sigma(a)\beta(I) d(r) = 0, \,\forall r \in R
$$

And so,

$$
a\beta(I) d(r) = \sigma(a)\beta(I) d(r) = 0, \forall r \in R
$$

is obtained. Since β commutes with σ , β (I) is a nonzero σ -ideal of R. Therefore, according to Lemma 2.1, we have

 $a = 0$ or $d = 0$

Let us consider $d(I)$ $a = d(I)$ $\sigma(a) = 0$ and α commutes with σ . Since $\alpha(I)$ is a nonzero σ -ideal of R, one can show that $a = 0$ or $d = 0$ similarly as above.

2.7. Lemma. Let I be a nonzero σ -ideal of R and d be a (α, β) -derivation of R. If $d(I) = 0$ and α (or β) commutes with σ then $d = 0$.

Proof. By hypothesis, it holds that for all $x \in I$ and $r \in R$

$$
0 = d (rx) = d (r) \alpha (x) + \beta (r) d (x)
$$

$$
= d (r) \alpha (x)
$$

Thus, we get

$$
d(r)\,\alpha\,(I) = 0, \,\forall r \in R
$$

Since α commutes with σ , $\alpha(I)$ is a nonzero σ -ideal of R. Therefore, by Lemma 2.3, we have $d = 0$.

Suppose that β commutes with σ . For any $x \in I$ and $r \in R$, from the hypothesis, we get

$$
0 = d (xr) = d (x) \alpha (r) + \beta (x) d (r)
$$

$$
= \beta (x) d (r)
$$

So, it yields that

$$
\beta(I) d(r) = 0, \,\forall r \in R
$$

Since β commutes with σ , β (I) is a nonzero σ -ideal of R. Therefore, by Lemma 2.3, we have $d = 0$.

2.8. Theorem. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ ideal of R and d be a nonzero (α, β) -derivation of R such that β commutes with σ . If $d(I) \subset C_{\alpha,\beta}$ then R is commutative.

Proof. By hypothesis, $d(x^2) = d(x) \alpha(x) + \beta(x) d(x) \in C_{\alpha,\beta}$ for all $x \in I$. Using $d(x) \in$ $C_{\alpha,\beta}$, we get $2\beta(x) d(x) \in C_{\alpha,\beta}$. Since $char R \neq 2$, we obtain $\beta(x) d(x) \in C_{\alpha,\beta}$ which means $[\beta(x) d(x), r]_{\alpha, \beta} = 0$ for all $r \in R, x \in I$. Expanding this equation by using $d(x) \in C_{\alpha,\beta}$, we arrive

$$
0 = [\beta (x) d(x), r]_{\alpha, \beta} = \beta (x) [d(x), r]_{\alpha, \beta} + \beta ([x, r]) d(x) = \beta ([x, r]) d(x)
$$

Since $d(x) \in C_{\alpha,\beta}$, it follows that

(2.4)
$$
\beta([x,r]) Rd(x) = 0, \forall x \in I, r \in R
$$

Assume that $x \in I \cap S_{\sigma}(R)$. In (2.4) taking $\sigma(r)$ instead of r and using the fact that β commutes with σ , we have $\sigma(\beta([x,r]))$ $Rd(x) = 0$ for all $x \in I, r \in R$. Since R is σ -prime, we derive

$$
x \in Z(R)
$$
 or $d(x) = 0$, $\forall x \in I \cap S_{\sigma}(R)$

Assume that $x \in I$. In this case, $x - \sigma(x) \in I \cap S_{\sigma}(R)$. Therefore, we have $x - \sigma(x) \in I$ $Z(R)$ or $d(x - \sigma(x)) = 0$ for all $x \in I$. Set $A = \{x \in I \mid d(x - \sigma(x)) = 0\}$ and $B =$ ${x \in I | x - \sigma(x) \in Z(R)}$. It is clear that A and B are additive subgroups of I such that $I = A \cup B$. But, a group can not be an union of two of its proper subgroups. Therefore, we yield either $I = A$ or $I = B$. In the former case, $d(x) = d(\sigma(x))$ for all $x \in I$. In (2.4) substituting x by $\sigma(x)$ and r by $\sigma(r)$ and using the fact that β commutes with σ , we have $\sigma(\beta([x,r]))$ Rd $(x) = 0$ for all $x \in I, r \in R$. Since R is σ -prime, we arrive $x \in Z(R)$ or $d(x) = 0$ for all $x \in I$. In the latter case, $x - \sigma(x) \in Z(R)$ for all $x \in I$. This means, $[x, r] = [\sigma(x), r]$ for all $r \in R$. In (2.4), replacing r by $\sigma(r)$ and using the fact that β commutes with σ , we get $\sigma(\beta([x,r]))$ Rd $(x) = 0$ for all $x \in I, r \in R$. Since R is σ -prime, we have $x \in Z(R)$ or $d(x) = 0$ for all $x \in I$. As a result, both the cases yield either

$$
x \in Z(R)
$$
 or $d(x) = 0, \forall x \in I$

Now, we set $K = \{x \in I \mid d(x) = 0\}$ and $L = \{x \in I \mid x \in Z(R)\}\$. Each of K and L is an additive subgroup of I. Moreover, I is the set-theoretic union of K and L . But a group can not be the set-theoretic union of two of its proper subgroups, hence $I = K$ or $I = L$. In the former case, $d(I) = 0$. Since β commutes with σ , by Lemma 2.7, we obtain $d = 0$. But, d is a nonzero (α, β) -derivation of R, then I must be contained in $Z(R)$. So, R is commutative. \Box

2.9. Lemma. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a (α, β) -derivation of R such that β commutes with σ and h be a derivation of R satisfying $h\sigma = \pm \sigma h$. If $dh(I) = 0$ and $h(I) \subset I$ then $d = 0$ or $h = 0$.

Proof. By hypothesis, it holds that for all $x, y \in I$

$$
0 = dh (xy)
$$

= dh (x) $\alpha (y) + \beta (h (x)) d(y) + d(x) \alpha (h (y)) + \beta (x) dh (y)$
= $\beta (h (x)) d(y) + d(x) \alpha (h (y))$

And so,

$$
\beta(h(x)) d(y) + d(x) \alpha(h(y)) = 0, \ \forall x, y \in I
$$

Since $h(I) \subset I$, we take $h(x)$ instead of x. Using the hypothesis, we get

 $\beta(h^2(x)) d(I) = 0, \forall x \in I$

Moreover, replacing x by $\sigma(x)$ in the above obtained relation and using the fact that β commute with σ and $h\sigma = \pm \sigma h$, we derive

 $\sigma\left(\beta\left(h^{2}\left(x\right)\right)\right)d\left(I\right)=0, \ \forall x \in I$

And so,

$$
\beta\left(h^{2}\left(x\right)\right)d\left(I\right) = \sigma\left(\beta\left(h^{2}\left(x\right)\right)\right)d\left(I\right) = 0, \ \forall x \in I
$$

Since β commutes with σ , by Lemma 2.6, we yield either $h^2(I) = 0$ or $d = 0$. Since $h\sigma = \pm \sigma h$, by Lemma 2.2, we have $h = 0$ or $d = 0$.

2.10. Lemma. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a nonzero (α, β) -derivation of R such that β commutes with σ . If $a \in I \cap S_{\sigma}(R)$ and $[d(I),a]_{\alpha,\beta}=0$ then $a \in Z(R)$.

Proof. For any $x, y \in I$, from the hypothesis, we have $[d([x, y]), a]_{\alpha, \beta} = 0$. Since $d([x, y]) =$ $[d(x), y]_{\alpha,\beta} - [d(y), x]_{\alpha,\beta}$, we get

$$
\left[\left[d\left(y\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}=\left[\left[d(x),y\right]_{\alpha,\beta},a\right]_{\alpha,\beta},\ \forall x,y\in I
$$

In the above obtained relation, applying $\left[[a, b]_{\alpha,\beta}, c\right]_{\alpha,\beta} = \left[[a, c]_{\alpha,\beta}, b\right]_{\alpha,\beta} + [a, [b, c]]_{\alpha,\beta}$ for all $a, b, c \in R$ and using the hypothesis, it becomes

$$
\begin{aligned} \left[\left[d\left(y\right) , x\right] _{\alpha ,\beta }, a\right] _{\alpha ,\beta } &= \left[\left[d(x), y\right] _{\alpha ,\beta }, a\right] _{\alpha ,\beta } \\ &= \left[\left[d(x), a\right] _{\alpha ,\beta }, y\right] _{\alpha ,\beta } + \left[d\left(x\right) ,\left[y,a\right] \right] _{\alpha ,\beta } \\ &= \left[d\left(x\right) ,\left[y,a\right] \right] _{\alpha ,\beta } \end{aligned}
$$

And so,

$$
\left[\left[d\left(y\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}=\left[d\left(x\right),\left[y,a\right]\right]_{\alpha,\beta},\ \forall x,y\in I
$$

is obtained. In the last equation, substituting x by a and using the hypothesis, we yield

$$
[d(a), [y, a]]_{\alpha, \beta} = 0, \ \forall y \in I
$$

The mapping $I_{d(a)}: R \to R$ is given by $I_{d(a)}(r) = [d(a), r]_{\alpha, \beta}$ is a (α, β) -derivation which is determinated by $d(a)$ and $I_a: R \to R$ is given by $I_a(r) = [r, a]$ is a derivation which is determinated by a. So, we derive

$$
\left(I_{d(a)}I_a\right)(I) = 0
$$

Since $a \in I \cap S_{\sigma}(R)$, we have $I_a \sigma = \pm \sigma I_a$. Therefore, by Lemma 2.9, we have

 $d(a) \in C_{\alpha,\beta}$ or $a \in Z(R)$

Assume that $a \notin Z(R)$ which means that $d(a) \in C_{\alpha,\beta}$. From the hypothesis, we get $d([x, a]) = [d(x), a]_{\alpha, \beta} - [d(a), x]_{\alpha, \beta} = 0$ for all $x \in I$. That is,

$$
(2.5) \qquad d([I, a]) = 0
$$

On the other hand, by hypothesis, we have $[d(xy), a]_{\alpha,\beta} = 0$ for $x, y \in I$. Expanding this equation, it becomes $d(x) \alpha([y, a]) + \beta([x, a]) d(y) = 0$ for all $x, y \in I$. Taking $[x, a]$ instead of x and using (2.5) , we derive $\beta([[x, a], a]) d(I) = 0$ for all $x \in I$. In this equation, replacing x by $\sigma(x)$ and using the fact that β commutes with σ , we obtain $\sigma(\beta[[x, a], a]) d(I) = 0$ for all $x \in I$. And so, we yield

$$
\beta ([[x, a], a]) d(I) = \sigma (\beta ([[x, a], a])) d(I) = 0, \ \forall x \in I
$$

Since β commutes with σ , by Lemma 2.6, it implies that $d = 0$ or $[[x, a], a] = 0$ for all $x \in I$. That is, $d = 0$ or $I_a^2(I) = 0$. Since $a \in I \cap S_{\sigma}(R)$, we have $I_a \sigma = \pm \sigma I_a$. So, by Lemma 2.9, we have $d = 0$. This is a contradiction which completes the proof. \Box

2.11. Theorem. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ-ideal of R, d be a nonzero (α, β)-derivation of R such that α, β commute with σ. If $a \in I \cap S_{\sigma}(R)$ and $[d(I), a]_{\alpha, \beta} \subset C_{\alpha, \beta}$ then $a \in Z(R)$.

Proof. By hypothesis, $[d(a^2), a]_{\alpha, \beta} \in C_{\alpha, \beta}$. Expanding this, it becomes

$$
[d(a^{2}), a]_{\alpha,\beta} = [d(a)\alpha(a) + \beta(a) d(a), a]_{\alpha,\beta}
$$

= $d(a) \alpha[a, a] + [d(a), a]_{\alpha,\beta} \alpha(a) + \beta(a) [d(a), a]_{\alpha,\beta}$
+ $\beta([a, a]) d(a)$
= $[d(a), a]_{\alpha,\beta} \alpha(a) + \beta(a) [d(a), a]_{\alpha,\beta} \in C_{\alpha,\beta}$

And so,

$$
[d(a),a]_{\alpha,\beta}\alpha(a)+\beta(a)[d(a),a]_{\alpha,\beta}\in C_{\alpha,\beta}
$$

is obtained. In the above obtained relation, using $[d(a), a]_{\alpha, \beta} \in C_{\alpha, \beta}$, we have $2\beta(a) [d(a), a]_{\alpha, \beta} \in$ $C_{\alpha,\beta}$. Since *charR* \neq 2, we get

(2.6) $\beta(a) [d(a), a]_{\alpha, \beta} \in C_{\alpha, \beta}$

Since $a \in I \cap S_{\sigma}(R)$, it is clear that $\beta(a) \in S_{\sigma}(R)$. Using the hypothesis together with (2.6) , according to Lemma 2.4 (i) , we yield either

 $a \in Z(R)$ or $\left[d(a),a\right]_{\alpha,\beta}=0$

Assume that $a \notin Z(R)$ which means $[d(a), a]_{\alpha, \beta} = 0$. On the other hand, by hypothesis, it holds that $[d([a, x]), a]_{\alpha, \beta} \in C_{\alpha, \beta}$. So,

$$
\left[d\left(\left[a,x\right]\right),a\right]_{\alpha,\beta}=\left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}-\left[\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta}\in C_{\alpha,\beta}
$$

is obtained. Using the hypothesis, we have

$$
\left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}\in C_{\alpha,\beta},\ \forall x\in I
$$

Replacing x by ax and using $[d(a), a]_{\alpha,\beta} = 0$, it becomes

$$
\beta\left(a\right)\left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}\in C_{\alpha,\beta},\ \forall x\in I
$$

We know that $\beta(a) \in S_{\sigma}(R)$ and $\left[[d(a), x]_{\alpha, \beta}, a \right]_{\alpha, \beta} \in C_{\alpha, \beta}$. Therefore, by Lemma 2.4 (i), we derive $\left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}=0$ for all $x \in I$. Applying the identity $\left[\left[a,b\right]_{\alpha,\beta},c\right]_{\alpha,\beta}=0$ $\left[[a,c]_{\alpha,\beta},b\right]_{\alpha,\beta} + [a,[b,c]]_{\alpha,\beta}$ for all $a,b,c \in R$ and using the assumption, we arrive $[d (a), [x, a]]_{\alpha \beta} = 0, \forall x \in I$

The mapping $I_{d(a)}: R \to R$ is given by $I_{d(a)}(r) = [d(a), r]_{\alpha, \beta}$ is a (α, β) -derivation which is determinated by $d(a)$ and $I_a: R \to R$ is given by $I_a(r) = [r, a]$ is a derivation which is determinated by a. So,

$$
\left(I_{d(a)}I_a\right)(I) = 0
$$

is obtained. Since $a \in I \cap S_{\sigma}(R)$, we have $I_a \sigma = \pm \sigma I_a$. According to Lemma 2.9, we yield either

$$
I_{d(a)} = 0 \text{ or } I_a = 0
$$

which means $d(a) \in C_{\alpha,\beta}$. On the other hand, by hypothesis, we have $[d(ax),a]_{\alpha,\beta} \in C_{\alpha,\beta}$ for all $x \in I$. So, we get

$$
(2.7) \t d(a) \alpha ([x, a]) + \beta (a) [d(x), a]_{\alpha, \beta} \in C_{\alpha, \beta}, \forall x \in I
$$

Commuting (2.7) with a, it follows that

$$
0 = \left[d\left(a\right)\alpha\left(\left[x,a\right]\right) + \beta\left(a\right)\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta}
$$

\n
$$
= \left[d\left(a\right)\alpha\left(\left[x,a\right]\right),a\right]_{\alpha,\beta} + \left[\beta\left(a\right)\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta}
$$

\n
$$
= d\left(a\right)\alpha\left(\left[\left[x,a\right],a\right]\right) + \left[d\left(a\right),a\right]_{\alpha,\beta}\alpha\left(\left[x,a\right]\right)
$$

\n
$$
+ \beta\left(a\right)\left[\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta} + \beta\left(\left[a,a\right]\right)\left[d\left(x\right),a\right]_{\alpha,\beta}
$$

\n
$$
= d\left(a\right)\alpha\left(\left[\left[x,a\right],a\right]\right) + \beta\left(a\right)\left[\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta}
$$

And so, it becomes

$$
d(a) \alpha([[x, a], a]) + \beta(a) \left[[d(x), a]_{\alpha, \beta}, a \right]_{\alpha, \beta} = 0, \ \forall x \in I
$$

Using $[d(x), a]_{\alpha, \beta} \in C_{\alpha, \beta}$, we have $d(a) \alpha([[x, a], a]) = 0$ for all $x \in I$. Since $d(a) \in C_{\alpha, \beta}$,

 $d(a) R\alpha ([[x, a], a]) = 0, \forall x \in I$

is obtained. In the above obtained relation, taking $\sigma(x)$ instead of x and using the fact that α commutes with σ , we derive

$$
d(a) R\sigma(\alpha([[x, a], a])) = 0, \ \forall x \in I
$$

And so, we yield

$$
d(a) R\alpha([[x, a], a]) = d(a) R\sigma(\alpha([[x, a], a])) = 0, \forall x \in I
$$

Since R is σ -prime, we get $d(a) = 0$ or $[[x, a], a] = 0$ for all $x \in I$. That is, $d(a) =$ 0 or $I_a^2(I) = 0$. Since $I_a \sigma = \pm \sigma I_a$, by Lemma 2.9, we have $d(a) = 0$. In (2.7), using $d(a) = 0$, it becomes

$$
\beta\left(a\right)\left[d\left(x\right),a\right]_{\alpha,\beta}\in C_{\alpha,\beta},\forall x\in I
$$

We know that $\beta(a) \in S_{\sigma}(R)$ and $[d(x), a]_{\alpha, \beta} \in C_{\alpha, \beta}$ from the hypothesis. Therefore, according to Lemma 2.4 (i), we have $[d(x), a]_{\alpha, \beta} = 0$ for all $x \in I$. Since $a \in I \cap S_{\sigma}(R)$ and β commutes with σ , by Lemma 2.10, we derive $a \in Z(R)$. This is a contradiction which completes the proof. \Box

2.12. Theorem. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ ideal of R, d be a nonzero (α, β) -derivation of R such that α and β commute with σ and h be a nonzero derivation of R which commutes with σ . If $dh(I) \subset C_{\alpha,\beta}$ and $h(I) \subset I$ then R is commutative.

Proof. For any $x, y \in I$, from the hypothesis, we have $dh([x, y]) \in C_{\alpha, \beta}$. Expanding this identity, it follows that

$$
dh ([x, y]) = d ([h (x), y] + [x, h (y)])
$$

= [(dh) (x), y]_{α,β} - [d (y), h (x)]_{α,β} + [d (x), h (y)]_{α,β}
- [(dh) (y), x]_{α,β}
= [d (x), h (y)]_{α,β} - [d (y), h (x)]_{α,β} ∈ C_{α,β}

And it becomes

$$
\left[d\left(x\right),h\left(y\right)\right]_{\alpha,\beta}-\left[d\left(y\right),h\left(x\right)\right]_{\alpha,\beta}\in C_{\alpha,\beta},\ \forall x,y\in I
$$

Since $h(I) \subset I$, we replace y by $h(y)$. So, we arrive $\left[d(x), h^2(y)\right]_{\alpha,\beta} \in C_{\alpha,\beta}$ for all $x, y \in I$. That is,

$$
\left[d\left(I\right),h^{2}\left(I\right)\right]_{\alpha,\beta}\subset C_{\alpha,\beta}
$$

Using the fact that $h(I) \subset I$ and h commutes with σ , we assure $h^2(I) \subset I \cap S_{\sigma}(R)$. In additional, we know that from the hypothesis α and β commute with σ . Thereby, according to Theorem 2.11, it yields $h^2(I) \subset Z(R)$. So, for all $x, y \in I$

$$
h^{2} ([x, y]) = h ([h (x), y] + [x, h (y)])
$$

= $[h^{2} (x), y] + 2 [h (x), h (y)] + [x, h^{2} (y)]$
= $2 [h (x), h (y)] \in Z (R)$

is obtained. Since $char R \neq 2$, we have $[h(x), h(y)] \in Z(R)$ for all $x, y \in I$. Thus,

$$
[h (I), h (I)] \subset Z (R)
$$

Using $h(I) \subset I \cap S_{\sigma}(R)$, by Theorem 2.11, we derive $h(I) \subset Z(R)$. According to Lemma 2.5, it implies that R is commutative.

Acknowledgement. The first author thanks to TÜBİTAK (The Scientific and Technical Research Council of Turkey) for financial support of BİDEB 2211 National Research Fellowship.

References

- [1] Aydın N., Kaya K.: Some Generalizations in Prime Rings with (σ, τ) -Derivation, Doğa-Tr. J. Mathematics, vol 16 (1992) 169 − 176.
- [2] Herstein I. N. : A Note on Derivation II, Canad. Math. Bull., 22, 4, (1979) 509 − 511.
- [3] Kaya K. : (σ, τ) -Türevli Asal Halkalar Üzerine, Doğa-Tr. J. Mathematics, (1988) 42 45.
- [4] Oukhtite L., Salhi S.: On Commutativity of σ-Prime Rings, Glasnik Matematicki, vol. 41 no. $1 (2006) 57 - 64.$
- [5] Oukhtite L., Salhi S.: Derivations and Commutativity of σ-Prime Rings, Int. J. Contemp. Sci., vol. 1 no. 9 (2006) 439 − 448.
- [6] Oukhtite L., Salhi S.: σ -Prime Rings with a special kind of automorphism, Int. J. Contemp. Math. Sci., vol. 2 no. 3 (2007) 127 − 133.
- [7] Posner E. : Derivations in Prime Rings, Proc. Amer. Math. Soc., 8, (1957).
- [8] Shuliang H.: Some Generalizations in Certain Classes of Rings with Involution, Bol. Soc. Paran. Mat., 29, 1, (2011) 9 − 16.