Some results on σ -ideal of σ -prime ring

Selin Türkmen^{*} and Neşet Aydın[†]

Abstract

Let R be a σ -prime ring with characteristic not 2, Z(R) be the center of R, I be a nonzero σ -ideal of R, $\alpha, \beta: R \to R$ be two automorphisms, d be a nonzero (α, β) -derivation of R and h be a nonzero derivation of R. In the present paper, it is shown that (i) If $d(I) \subset C_{\alpha,\beta}$ and β commutes with σ then R is commutative. (ii) Let α and β commute with σ . If $a \in I \cap S_{\sigma}(R)$ and $[d(I), a]_{\alpha,\beta} \subset C_{\alpha,\beta}$ then $a \in Z(R)$. (iii) Let α, β and h commute with σ . If $dh(I) \subset C_{\alpha,\beta}$ and $h(I) \subset I$ then R is commutative.

Keywords: σ -prime ring, σ -ideal, (α, β) -derivation

2000 AMS Classification: Primary 16N60; Secondary 16W25, 16U80

Received 27/03/2014 : Accepted 28/07/2014 Doi : 10.15672/HJMS.2015449665

1. Introduction

Let R be an associative ring with center Z (R). R is said to be 2-torsion free if whenever 2x = 0 with $x \in R$, then x = 0. Recall that a ring R is prime if aRb = 0 implies a = 0 or b = 0. An involution σ of a ring R is an additive mapping satisfying $\sigma(xy) = \sigma(y) \sigma(x)$ and $\sigma^2(x) = x$ for all $x, y \in R$. A ring R equipped with an involution σ is said to be σ -prime if $aRb = aR\sigma(b) = 0$ implies a = 0 or b = 0. Note that every prime ring which has an involution σ is a σ -prime but the converse is in generally not true. An example, due to Shuliang [8], if R^0 denotes the opposite ring of a prime ring R, then $R \times R^0$ equipped with the exchange involution σ_{ex} , defined by $\sigma_{ex}(x,y) = (y,x)$, is σ_{ex} -prime but not prime. An additive subgroup I of R is said to be an ideal of R if $xr, rx \in I$ for all $x \in I$ and $r \in R$. An ideal I which satisfies $\sigma(I) = I$ is called a σ - ideal of R. An example, due to Rehman [8], Set $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}$. We define a map $\sigma : R \to R$ as follows: $\sigma\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$. It is easy to check that $I = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{Z} \right\}$ is a

^{*}Çanakkale Onsekiz Mart University, Dept. Math. Çanakkale - Turkey Email: selinvurkac@gmail.com

 $^{^{\}dagger}$ Çanakkale Onsekiz Mart University, Dept. Math. Çanakkale - Turkey Email:
 <code>neseta@comu.edu.tr</code>

σ-ideal of *R*. Note that an ideal *I* of a ring *R* may be not a σ-ideal. Let $R = \mathbb{Z} \times \mathbb{Z}$. Consider a map $\sigma : R \to R$ defined by $\sigma((a, b)) = (b, a)$ for all $(a, b) \in R$. For an ideal $I = \mathbb{Z} \times \{0\}$ of *R*, *I* is not a σ-ideal of *R* since $\sigma(I) = \{0\} \times \mathbb{Z} \neq I$. $S_{\sigma}(R)$ will denote the set of symmetric and skew symmetric elements of *R*. i.e. $S_{\sigma}(R) = \{x \in R \mid \sigma(x) = \pm x\}$. As usual the commutator xy - yx will be denoted by [x, y] = xy - yx. An additive mapping $h : R \to R$ is called a derivation if h(xy) = h(x)y + xh(y) holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ is given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation which is determined by a. Let α and β be two maps of *R*. Set $C_{\alpha,\beta} = \{c \in R \mid c\alpha(r) = \beta(r)c$ for all $r \in R\}$ and known as (α, β) -center of *R*. In particular, $C_{1,1} = Z(R)$ is the center of *R*, where $1 : R \to R$ is identity map. As usual the (α, β) -commutator $a\alpha(b) - \beta(b)a$ will be denoted by $[a, b]_{\alpha,\beta} = a\alpha(b) - \beta(b)a$. An additive mapping $d : R \to R$ is called an (α, β) -derivation if $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ is given by $I_a(x) = [a, x]_{\alpha,\beta}$ is an (α, β) -inner derivation which is determined by a.

Many studies have been objected the relationship between commutativity of a ring and the act of derivations defined on this ring. These results have been generalized by many authors in several ways. Herstein [2] proved that if R is a prime ring of characteristic not 2, d is a nonzero derivation of R and $a \in R$ such that [a, d(R)] = 0 then $a \in R$ Z(R). N. Aydın and K. Kaya [1] proved that if R is a prime ring of characteristic not 2. I is a nonzero right ideal of R, σ and τ are two automorphisms of R, $d: R \to R$ is a nonzero (σ, τ) -derivations of R and $a \in R$ such that (i) $d(I) \subset Z(R)$ then R is commutative. (ii) $[d(R), a]_{\sigma,\tau} \subset C_{\alpha,\beta}$ then $a \in Z(R)$. In [5], this result was extended to on a σ -ideal of a σ -prime ring by L. Oukhtite and S. Salhi. On the other hand, Posner [7] proved that if R is a prime ring of characteristic not 2 and d_1, d_2 are derivations of R such that the composition d_1d_2 is also a derivation; then one at least of d_1, d_2 is zero. K. Kaya [3] proved that if R is a prime ring of characteristic not 2, I is a nonzero ideal of R, σ and τ are two automorphisms of $R, d_1: R \to R$ is a nonzero (σ, τ) -derivations of Rand d_2 is a nonzero derivation of R such that $d_1d_2(I) \subset C_{\sigma,\tau}$ then R is commutative. In [4], Posner's result was extended to a nonzero σ -ideal of a σ -prime ring by L. Oukhtite and S. Salhi. Motivated by these results, we follow this line of investigation.

In this paper, our main goal is to extend these results on a σ -ideal of a σ -prime ring. Throughout the present paper, R is a σ -prime ring, Z(R) is the center of R and α, β are two automorphisms of R. We use the following basic commutator identities:

$$\begin{split} & [x,yz] = y \left[x,z \right] + \left[x,y \right] z \\ & [xy,z] = x \left[y,z \right] + \left[x,z \right] y \\ & [xy,z]_{\alpha,\beta} = x \left[y,z \right]_{\alpha,\beta} + \left[x,\beta \left(z \right) \right] y = x \left[y,\alpha \left(z \right) \right] + \left[x,z \right]_{\alpha,\beta} y \\ & [x,yz]_{\alpha,\beta} = \beta \left(y \right) \left[x,z \right]_{\alpha,\beta} + \left[x,y \right]_{\alpha,\beta} \alpha \left(z \right) \\ & \left[\left[x,y \right]_{\alpha,\beta},z \right]_{\alpha,\beta} = \left[\left[x,z \right]_{\alpha,\beta},y \right]_{\alpha,\beta} + \left[x,\left[y,z \right] \right]_{\alpha,\beta} \end{split}$$

The material in this work is a part of first author's PH. Dissertation which is supervised by Prof. Dr. Neşet Aydın.

2. Results

For the proof of our theorems, we give the following known Lemmas.

2.1. Lemma. [6, Theorem 2.2] Let I be a nonzero σ -ideal of σ -prime ring R. If a, b in R are such that $aIb = 0 = aI\sigma(b)$ then a = 0 or b = 0.

2.3. Lemma. Let I be a nonzero σ -ideal of R and $a \in R$. If Ia = 0 (or aI = 0) then a = 0.

Proof. Since I is a σ -ideal, we know that $IR \subset I$. By hypothesis, we have $IRa \subset Ia = 0$. Thus, we get IRa = 0. Moreover, since I is invariant under σ , we have $\sigma(I) Ra = 0$. It follows that

$$IRa = \sigma\left(I\right)Ra = 0$$

Using σ -primeness of R, we get

a = 0

Similarly, using $RI \subset I$, one can show that if aI = 0 then a = 0.

2.4. Lemma. Let $a, b \in R$.

i) If $b, ab \in C_{\alpha,\beta}$ and $a \text{ (or } b) \in S_{\sigma}(R)$ then $a \in Z(R)$ or b = 0. ii) If $a, ab \in C_{\alpha,\beta}$ and $a \text{ (or } b) \in S_{\sigma}(R)$ then a = 0 or $b \in Z(R)$.

Proof. i) By the hypothesis, we have $[ab, r]_{\alpha,\beta} = 0$ for all $r \in R$. Expanding this equation by using $b \in C_{\alpha,\beta}$, holding for all $r \in R$

$$\begin{split} 0 &= \left[ab,r \right]_{\alpha,\beta} = a \left[b,r \right]_{\alpha,\beta} + \left[a,\beta \left(r \right) \right] b \\ &= \left[a,\beta \left(r \right) \right] b \end{split}$$

Since $b \in C_{\alpha,\beta}$, we get

(2.1) [a, R] Rb = 0

In the event of $a \in S_{\sigma}(R)$, we derive $\sigma([a, R]) Rb = 0$. Using the last obtained equation together with (2.1), we yield

$$[a, R] Rb = \sigma ([a, R]) Rb = 0$$

Applying the σ -primeness of R, we have

 $a \in Z(R)$ or b = 0

In case of $b \in S_{\sigma}(R)$, from (2.1), we get $[a, R] R\sigma(b) = 0$. Using the last obtained equation together with (2.1), we find

 $[a, R] Rb = [a, R] R\sigma (b) = 0$

Applying the σ -primeness of R,

 $a \in Z(R)$ or b = 0

is obtained.

ii) Since $ab \in C_{\alpha,\beta}$, we have $[ab, r]_{\alpha,\beta} = 0$ for all $r \in R$. Expanding this equation by using $a \in C_{\alpha,\beta}$, holding for all $r \in R$

$$\begin{split} 0 &= [ab,r]_{\alpha,\beta} = a \left[b,\alpha\left(r\right) \right] + [a,r]_{\alpha,\beta} \, b \\ &= a \left[b,\alpha\left(r\right) \right] \end{split}$$

Since $a \in C_{\alpha,\beta}$,

$$aR\left[b,R\right] = 0$$

is obtained. After here, it is similar as above.

2.5. Lemma. Let I be a nonzero σ -ideal of R and h be a nonzero derivation of R. If $h(I) \subset Z(R)$ then R is commutative.

Proof. For any $x, y \in I$ and $r \in R$, using hypothesis,

$$\begin{split} 0 &= [r, h\left(xy\right)] = [r, h\left(x\right)y + xh\left(y\right)] \\ &= h\left(x\right)[r, y] + [r, h\left(x\right)]y + x\left[r, h\left(y\right)\right] + [r, x]h\left(y\right) \\ &= h\left(x\right)[r, y] + [r, x]h\left(y\right) \end{split}$$

And so,

$$h(x)[r,y] + [r,x]h(y) = 0, \ \forall x, y \in I, r \in R$$

is obtained. In the last equality, x is taken instead of r and we obtain h(x)[x, y] = 0 for all $x, y \in I$. Substituting y by zy where $z \in I$, it holds that

(2.2)
$$h(x) I[x, y] = 0, \ \forall x, y \in I$$

It is supposed that $x \in I \cap S_{\sigma}(R)$. In (2.2), replacing y with $\sigma(y)$, we get $h(x) I\sigma([x, y]) = 0$ for all $y \in I$. According to Lemma 2.1, it is derived that

(2.3)
$$h(x) = 0 \text{ or } x \in Z(R), \forall x \in I \cap S_{\sigma}(R)$$

Assume that $x \in I$. In this case, $x - \sigma(x) \in I \cap S_{\sigma}(R)$. So, from (2.3), we have $h(x - \sigma(x)) = 0$ or $x - \sigma(x) \in Z(R)$ for all $x \in I$. We set $A = \{x \in I \mid h(x - \sigma(x)) = 0\}$ and $B = \{x \in I \mid x - \sigma(x) \in Z(R)\}$. It is clear that A and B are additive subgroups of I such that $I = A \cup B$. But, a group can not be an union of two of its proper subgroups. Therefore, it is implied I = A or I = B. In the former case, $h(x) = h(\sigma(x))$ for all $x \in I$. In (2.2), replacing y by $\sigma(y)$ and x by $\sigma(x)$, we have $h(x) I\sigma([x, y]) = 0$ for all $x, y \in I$. And so,

$$h(x) I[x, y] = h(x) I\sigma([x, y]) = 0, \ \forall x, y \in I$$

is obtained. By Lemma 2.1, get h(x) = 0 or $x \in Z(R)$ for all $x \in I$. In the latter case, $x - \sigma(x) \in Z(R)$ for all $x \in I$. This means $[x, r] = [\sigma(x), r]$ for all $x \in I, r \in R$. In (2.2), taking $\sigma(y)$ instead of y, we get $h(x) I \sigma([x, y]) = 0$ for all $x, y \in I$. And so,

$$h(x) I[x, y] = h(x) I\sigma([x, y]) = 0, \forall x, y \in I$$

is derived. According to Lemma 2.1, we have h(x) = 0 or $x \in Z(R)$ for all $x \in I$. So, both the cases yield either

 $h(x) = 0 \text{ or } x \in Z(R), \forall x \in I$

Now, we set $K = \{x \in I \mid h(x) = 0\}$ and $L = \{x \in I \mid x \in Z(R)\}$. Each of K and L is an additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence I = K or I = L. In the former case, h(I) = 0. So, we have h = 0. But, h is a nonzero derivation of R. So, from the latter case, we get $I \subseteq Z(R)$. Therefore, R is commutative.

2.6. Lemma. Let I be a nonzero σ -ideal of R, d be a (α, β) -derivation of R and $a \in R$. If $ad(I) = \sigma(a) d(I) = 0$ and β commutes with σ (or $d(I) a = d(I) \sigma(a) = 0$ and α commutes with σ) then a = 0 or d = 0.

Proof. For any $x \in I$ and $r \in R$, using ad(I) = 0, we get

$$0 = ad(xr) = ad(x) \alpha(r) + a\beta(x) d(r)$$
$$= a\beta(x) d(r)$$

It becomes

 $a\beta(I) d(r) = 0, \ \forall r \in R$

Similarly, using $\sigma(a) d(I) = 0$, we derive

$$\sigma(a) \beta(I) d(r) = 0, \ \forall r \in R$$

And so,

$$a\beta(I) d(r) = \sigma(a)\beta(I) d(r) = 0, \forall r \in R$$

is obtained. Since β commutes with σ , $\beta(I)$ is a nonzero σ -ideal of R. Therefore, according to Lemma 2.1, we have

a = 0 or d = 0

Let us consider $d(I) a = d(I) \sigma(a) = 0$ and α commutes with σ . Since $\alpha(I)$ is a nonzero σ -ideal of R, one can show that a = 0 or d = 0 similarly as above.

2.7. Lemma. Let I be a nonzero σ -ideal of R and d be a (α, β) -derivation of R. If d(I) = 0 and α (or β) commutes with σ then d = 0.

Proof. By hypothesis, it holds that for all $x \in I$ and $r \in R$

$$0 = d(rx) = d(r) \alpha(x) + \beta(r) d(x) = d(r) \alpha(x)$$

Thus, we get

$$d(r) \alpha(I) = 0, \forall r \in R$$

Since α commutes with σ , $\alpha(I)$ is a nonzero σ -ideal of R. Therefore, by Lemma 2.3, we have d = 0.

Suppose that β commutes with σ . For any $x \in I$ and $r \in R$, from the hypothesis, we get

$$0 = d(xr) = d(x) \alpha(r) + \beta(x) d(r) = \beta(x) d(r)$$

So, it yields that

$$\beta\left(I\right)d\left(r\right) = 0, \ \forall r \in R$$

Since β commutes with σ , $\beta(I)$ is a nonzero σ -ideal of R. Therefore, by Lemma 2.3, we have d = 0.

2.8. Theorem. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R and d be a nonzero (α, β) -derivation of R such that β commutes with σ . If $d(I) \subset C_{\alpha,\beta}$ then R is commutative.

Proof. By hypothesis, $d(x^2) = d(x) \alpha(x) + \beta(x) d(x) \in C_{\alpha,\beta}$ for all $x \in I$. Using $d(x) \in C_{\alpha,\beta}$, we get $2\beta(x) d(x) \in C_{\alpha,\beta}$. Since $charR \neq 2$, we obtain $\beta(x) d(x) \in C_{\alpha,\beta}$ which means $[\beta(x) d(x), r]_{\alpha,\beta} = 0$ for all $r \in R, x \in I$. Expanding this equation by using $d(x) \in C_{\alpha,\beta}$, we arrive

$$\begin{split} 0 &= \left[\beta\left(x\right)d\left(x\right), r\right]_{\alpha,\beta} = \beta\left(x\right)\left[d\left(x\right), r\right]_{\alpha,\beta} + \beta\left(\left[x, r\right]\right)d\left(x\right) \\ &= \beta\left(\left[x, r\right]\right)d\left(x\right) \end{split}$$

Since $d(x) \in C_{\alpha,\beta}$, it follows that

(2.4)
$$\beta([x,r]) Rd(x) = 0, \forall x \in I, r \in R$$

Assume that $x \in I \cap S_{\sigma}(R)$. In (2.4) taking $\sigma(r)$ instead of r and using the fact that β commutes with σ , we have $\sigma(\beta([x, r])) Rd(x) = 0$ for all $x \in I, r \in R$. Since R is σ -prime, we derive

$$x \in Z(R)$$
 or $d(x) = 0, \forall x \in I \cap S_{\sigma}(R)$

Assume that $x \in I$. In this case, $x - \sigma(x) \in I \cap S_{\sigma}(R)$. Therefore, we have $x - \sigma(x) \in Z(R)$ or $d(x - \sigma(x)) = 0$ for all $x \in I$. Set $A = \{x \in I \mid d(x - \sigma(x)) = 0\}$ and $B = \{x \in I \mid x - \sigma(x) \in Z(R)\}$. It is clear that A and B are additive subgroups of I such that $I = A \cup B$. But, a group can not be an union of two of its proper subgroups. Therefore, we yield either I = A or I = B. In the former case, $d(x) = d(\sigma(x))$ for all $x \in I$. In (2.4) substituting x by $\sigma(x)$ and r by $\sigma(r)$ and using the fact that β commutes with σ , we have $\sigma(\beta([x, r])) Rd(x) = 0$ for all $x \in I, r \in R$. Since R is σ -prime, we arrive $x \in Z(R)$ or d(x) = 0 for all $x \in R$. In (2.4), replacing r by $\sigma(r)$ and using the fact that β commutes with σ , we have $x \in Z(R)$ or d(x) = 0 for all $x \in I$. In (2.4), replacing r by $\sigma(r)$ and using the fact that β commutes with σ , we get $\sigma(\beta([x, r])) Rd(x) = 0$ for all $x \in I$. Since R is σ -prime, we have $x \in Z(R)$ or d(x) = 0 for all $x \in R$. In (2.4), replacing r by $\sigma(r)$ and using the fact that β commutes with σ , we get $\sigma(\beta([x, r])) Rd(x) = 0$ for all $x \in I$. As a result, both the cases yield either

$$x \in Z(R)$$
 or $d(x) = 0, \forall x \in I$

Now, we set $K = \{x \in I \mid d(x) = 0\}$ and $L = \{x \in I \mid x \in Z(R)\}$. Each of K and L is an additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two of its proper subgroups, hence I = K or I = L. In the former case, d(I) = 0. Since β commutes with σ , by Lemma 2.7, we obtain d = 0. But, d is a nonzero (α, β) -derivation of R, then I must be contained in Z(R). So, R is commutative.

2.9. Lemma. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a (α, β) -derivation of R such that β commutes with σ and h be a derivation of R satisfying $h\sigma = \pm \sigma h$. If dh(I) = 0 and $h(I) \subset I$ then d = 0 or h = 0.

Proof. By hypothesis, it holds that for all $x, y \in I$

$$\begin{split} 0 &= dh (xy) \\ &= dh (x) \alpha (y) + \beta (h (x)) d (y) + d (x) \alpha (h (y)) + \beta (x) dh (y) \\ &= \beta (h (x)) d (y) + d (x) \alpha (h (y)) \end{split}$$

And so,

$$\beta(h(x)) d(y) + d(x) \alpha(h(y)) = 0, \ \forall x, y \in I$$

Since $h(I) \subset I$, we take h(x) instead of x. Using the hypothesis, we get

 $\beta \left(h^{2} \left(x\right)\right) d\left(I\right) = 0, \ \forall x \in I$

Moreover, replacing x by $\sigma(x)$ in the above obtained relation and using the fact that β commute with σ and $h\sigma = \pm \sigma h$, we derive

 $\sigma\left(\beta\left(h^{2}\left(x\right)\right)\right)d\left(I\right) = 0, \ \forall x \in I$

And so,

$$\beta\left(h^{2}\left(x\right)\right)d\left(I\right) = \sigma\left(\beta\left(h^{2}\left(x\right)\right)\right)d\left(I\right) = 0, \ \forall x \in I$$

Since β commutes with σ , by Lemma 2.6, we yield either $h^2(I) = 0$ or d = 0. Since $h\sigma = \pm \sigma h$, by Lemma 2.2, we have h = 0 or d = 0.

2.10. Lemma. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a nonzero (α, β) -derivation of R such that β commutes with σ . If $a \in I \cap S_{\sigma}(R)$ and $[d(I), a]_{\alpha, \beta} = 0$ then $a \in Z(R)$.

Proof. For any $x, y \in I$, from the hypothesis, we have $[d([x, y]), a]_{\alpha, \beta} = 0$. Since $d([x, y]) = [d(x), y]_{\alpha, \beta} - [d(y), x]_{\alpha, \beta}$, we get

$$\left[\left[d\left(y\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta} = \left[\left[d(x),y\right]_{\alpha,\beta},a\right]_{\alpha,\beta}, \; \forall x,y \in I$$

In the above obtained relation, applying $\left[[a,b]_{\alpha,\beta},c\right]_{\alpha,\beta} = \left[[a,c]_{\alpha,\beta},b\right]_{\alpha,\beta} + [a,[b,c]]_{\alpha,\beta}$ for all $a,b,c \in R$ and using the hypothesis, it becomes

$$\begin{split} \left[\left[d\left(y\right), x\right]_{\alpha,\beta}, a \right]_{\alpha,\beta} &= \left[\left[d(x), y\right]_{\alpha,\beta}, a \right]_{\alpha,\beta} \\ &= \left[\left[d(x), a\right]_{\alpha,\beta}, y \right]_{\alpha,\beta} + \left[d\left(x\right), \left[y, a\right] \right]_{\alpha,\beta} \\ &= \left[d\left(x\right), \left[y, a\right] \right]_{\alpha,\beta} \end{split}$$

And so,

$$\left[\left[d\left(y\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}=\left[d\left(x\right),\left[y,a\right]\right]_{\alpha,\beta},\;\forall x,y\in I$$

is obtained. In the last equation, substituting x by a and using the hypothesis, we yield

$$[d(a), [y, a]]_{\alpha, \beta} = 0, \ \forall y \in I$$

The mapping $I_{d(a)}: R \to R$ is given by $I_{d(a)}(r) = [d(a), r]_{\alpha,\beta}$ is a (α, β) -derivation which is determinated by d(a) and $I_a: R \to R$ is given by $I_a(r) = [r, a]$ is a derivation which is determinated by a. So, we derive

$$\left(I_{d(a)}I_a\right)\left(I\right) = 0$$

Since $a \in I \cap S_{\sigma}(R)$, we have $I_a \sigma = \pm \sigma I_a$. Therefore, by Lemma 2.9, we have

 $d(a) \in C_{\alpha,\beta}$ or $a \in Z(R)$

Assume that $a \notin Z(R)$ which means that $d(a) \in C_{\alpha,\beta}$. From the hypothesis, we get $d([x,a]) = [d(x),a]_{\alpha,\beta} - [d(a),x]_{\alpha,\beta} = 0$ for all $x \in I$. That is,

$$(2.5) d([I,a]) = 0$$

On the other hand, by hypothesis, we have $[d(xy), a]_{\alpha,\beta} = 0$ for $x, y \in I$. Expanding this equation, it becomes $d(x) \alpha([y, a]) + \beta([x, a]) d(y) = 0$ for all $x, y \in I$. Taking [x, a]instead of x and using (2.5), we derive $\beta([[x, a], a]) d(I) = 0$ for all $x \in I$. In this equation, replacing x by $\sigma(x)$ and using the fact that β commutes with σ , we obtain $\sigma(\beta[[x, a], a]) d(I) = 0$ for all $x \in I$. And so, we yield

$$\beta\left(\left[\left[x,a\right],a\right]\right)d\left(I\right) = \sigma\left(\beta\left(\left[\left[x,a\right],a\right]\right)\right)d\left(I\right) = 0, \ \forall x \in I$$

Since β commutes with σ , by Lemma 2.6, it implies that d = 0 or [[x, a], a] = 0 for all $x \in I$. That is, d = 0 or $I_a^2(I) = 0$. Since $a \in I \cap S_\sigma(R)$, we have $I_a \sigma = \pm \sigma I_a$. So, by Lemma 2.9, we have d = 0. This is a contradiction which completes the proof.

2.11. Theorem. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a nonzero (α, β) -derivation of R such that α, β commute with σ . If $a \in I \cap S_{\sigma}(R)$ and $[d(I), a]_{\alpha, \beta} \subset C_{\alpha, \beta}$ then $a \in Z(R)$.

Proof. By hypothesis, $[d(a^2), a]_{\alpha, \beta} \in C_{\alpha, \beta}$. Expanding this, it becomes

$$\begin{aligned} \left[d(a^2), a \right]_{\alpha,\beta} &= \left[d(a)\alpha \left(a \right) + \beta \left(a \right) d\left(a \right), a \right]_{\alpha,\beta} \\ &= d\left(a \right)\alpha \left[a, a \right] + \left[d(a), a \right]_{\alpha,\beta} \alpha \left(a \right) + \beta \left(a \right) \left[d\left(a \right), a \right]_{\alpha,\beta} \\ &+ \beta \left(\left[a, a \right] \right) d\left(a \right) \\ &= \left[d(a), a \right]_{\alpha,\beta} \alpha \left(a \right) + \beta \left(a \right) \left[d\left(a \right), a \right]_{\alpha,\beta} \in C_{\alpha,\beta} \end{aligned}$$

And so,

$$[d(a), a]_{\alpha, \beta} \alpha(a) + \beta(a) [d(a), a]_{\alpha, \beta} \in C_{\alpha, \beta}$$

is obtained. In the above obtained relation, using $[d(a), a]_{\alpha,\beta} \in C_{\alpha,\beta}$, we have $2\beta(a) [d(a), a]_{\alpha,\beta} \in C_{\alpha,\beta}$. Since $charR \neq 2$, we get

 $(2.6) \qquad \beta(a) \left[d(a), a \right]_{\alpha, \beta} \in C_{\alpha, \beta}$

Since $a \in I \cap S_{\sigma}(R)$, it is clear that $\beta(a) \in S_{\sigma}(R)$. Using the hypothesis together with (2.6), according to Lemma 2.4 (i), we yield either

 $a\in Z\left(R
ight)$ or $[d\left(a
ight),a]_{lpha,eta}=0$

Assume that $a \notin Z(R)$ which means $[d(a), a]_{\alpha,\beta} = 0$. On the other hand, by hypothesis, it holds that $[d([a, x]), a]_{\alpha,\beta} \in C_{\alpha,\beta}$. So,

$$\left[d\left(\left[a,x\right]\right),a\right]_{\alpha,\beta} = \left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta} - \left[\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta} \in C_{\alpha,\beta}$$

is obtained. Using the hypothesis, we have

$$\left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}\in C_{\alpha,\beta},\;\forall x\in I$$

Replacing x by ax and using $[d(a), a]_{\alpha,\beta} = 0$, it becomes

$$\beta(a)\left[\left[d\left(a\right),x\right]_{\alpha,\beta},a\right]_{\alpha,\beta}\in C_{\alpha,\beta},\;\forall x\in I$$

We know that $\beta(a) \in S_{\sigma}(R)$ and $\left[[d(a), x]_{\alpha,\beta}, a \right]_{\alpha,\beta} \in C_{\alpha,\beta}$. Therefore, by Lemma 2.4 (*i*), we derive $\left[[d(a), x]_{\alpha,\beta}, a \right]_{\alpha,\beta} = 0$ for all $x \in I$. Applying the identity $\left[[a, b]_{\alpha,\beta}, c \right]_{\alpha,\beta} = \left[[a, c]_{\alpha,\beta}, b \right]_{\alpha,\beta} + [a, [b, c]]_{\alpha,\beta}$ for all $a, b, c \in R$ and using the assumption, we arrive $[d(a), [x, a]]_{\alpha,\beta} = 0, \ \forall x \in I$

The mapping $I_{d(a)}: R \to R$ is given by $I_{d(a)}(r) = [d(a), r]_{\alpha,\beta}$ is a (α, β) -derivation which is determinated by d(a) and $I_a: R \to R$ is given by $I_a(r) = [r, a]$ is a derivation which is determinated by a. So,

$$\left(I_{d(a)}I_a\right)\left(I\right) = 0$$

is obtained. Since $a \in I \cap S_{\sigma}(R)$, we have $I_a \sigma = \pm \sigma I_a$. According to Lemma 2.9, we yield either

$$I_{d(a)} = 0 \text{ or } I_a = 0$$

which means $d(a) \in C_{\alpha,\beta}$. On the other hand, by hypothesis, we have $[d(ax), a]_{\alpha,\beta} \in C_{\alpha,\beta}$ for all $x \in I$. So, we get

$$(2.7) \qquad d(a) \alpha([x,a]) + \beta(a) [d(x),a]_{\alpha,\beta} \in C_{\alpha,\beta}, \forall x \in I$$

Commuting (2.7) with a, it follows that

$$0 = \left[d(a) \alpha([x, a]) + \beta(a) [d(x), a]_{\alpha,\beta}, a \right]_{\alpha,\beta}$$

= $[d(a) \alpha([x, a]), a]_{\alpha,\beta} + \left[\beta(a) [d(x), a]_{\alpha,\beta}, a \right]_{\alpha,\beta}$
= $d(a) \alpha([[x, a], a]) + [d(a), a]_{\alpha,\beta} \alpha([x, a])$
+ $\beta(a) \left[[d(x), a]_{\alpha,\beta}, a \right]_{\alpha,\beta} + \beta([a, a]) [d(x), a]_{\alpha,\beta}$
= $d(a) \alpha([[x, a], a]) + \beta(a) \left[[d(x), a]_{\alpha,\beta}, a \right]_{\alpha,\beta}$

And so, it becomes

$$d\left(a\right)\alpha\left(\left[\left[x,a\right],a\right]\right)+\beta\left(a\right)\left[\left[d\left(x\right),a\right]_{\alpha,\beta},a\right]_{\alpha,\beta}=0,\;\forall x\in I$$

Using $[d(x), a]_{\alpha,\beta} \in C_{\alpha,\beta}$, we have $d(a) \alpha([[x, a], a]) = 0$ for all $x \in I$. Since $d(a) \in C_{\alpha,\beta}$,

 $d\left(a\right)R\alpha\left(\left[\left[x,a\right],a\right]\right)=0, \ \forall x\in I$

is obtained. In the above obtained relation, taking $\sigma(x)$ instead of x and using the fact that α commutes with σ , we derive

$$d(a) R\sigma(\alpha([[x, a], a])) = 0, \ \forall x \in I$$

And so, we yield

 $d(a) R\alpha([[x, a], a]) = d(a) R\sigma(\alpha([[x, a], a])) = 0, \forall x \in I$

Since R is σ -prime, we get d(a) = 0 or [[x, a], a] = 0 for all $x \in I$. That is, d(a) = 0 or $I_a^2(I) = 0$. Since $I_a \sigma = \pm \sigma I_a$, by Lemma 2.9, we have d(a) = 0. In (2.7), using d(a) = 0, it becomes

$$\beta(a) [d(x), a]_{\alpha \beta} \in C_{\alpha, \beta}, \forall x \in I$$

We know that $\beta(a) \in S_{\sigma}(R)$ and $[d(x), a]_{\alpha,\beta} \in C_{\alpha,\beta}$ from the hypothesis. Therefore, according to Lemma 2.4 (i), we have $[d(x), a]_{\alpha,\beta} = 0$ for all $x \in I$. Since $a \in I \cap S_{\sigma}(R)$ and β commutes with σ , by Lemma 2.10, we derive $a \in Z(R)$. This is a contradiction which completes the proof.

2.12. Theorem. Let R be a σ -prime ring with characteristic not 2, I be a nonzero σ -ideal of R, d be a nonzero (α, β) -derivation of R such that α and β commute with σ and h be a nonzero derivation of R which commutes with σ . If $dh(I) \subset C_{\alpha,\beta}$ and $h(I) \subset I$ then R is commutative.

Proof. For any $x, y \in I$, from the hypothesis, we have $dh([x, y]) \in C_{\alpha, \beta}$. Expanding this identity, it follows that

$$dh ([x, y]) = d ([h (x), y] + [x, h (y)])$$

= $[(dh) (x), y]_{\alpha,\beta} - [d (y), h (x)]_{\alpha,\beta} + [d (x), h (y)]_{\alpha,\beta}$
- $[(dh) (y), x]_{\alpha,\beta}$
= $[d (x), h (y)]_{\alpha,\beta} - [d (y), h (x)]_{\alpha,\beta} \in C_{\alpha,\beta}$

And it becomes

$$\left[d\left(x\right),h\left(y\right)\right]_{\alpha,\beta} - \left[d\left(y\right),h\left(x\right)\right]_{\alpha,\beta} \in C_{\alpha,\beta}, \ \forall x,y \in I$$

Since $h(I) \subset I$, we replace y by h(y). So, we arrive $[d(x), h^2(y)]_{\alpha,\beta} \in C_{\alpha,\beta}$ for all $x, y \in I$. That is,

$$\left[d\left(I\right),h^{2}\left(I\right)\right]_{\alpha,\beta}\subset C_{\alpha,\beta}$$

Using the fact that $h(I) \subset I$ and h commutes with σ , we assure $h^2(I) \subset I \cap S_{\sigma}(R)$. In additional, we know that from the hypothesis α and β commute with σ . Thereby, according to Theorem 2.11, it yields $h^2(I) \subset Z(R)$. So, for all $x, y \in I$

$$h^{2}([x, y]) = h([h(x), y] + [x, h(y)])$$

= $[h^{2}(x), y] + 2[h(x), h(y)] + [x, h^{2}(y)]$
= $2[h(x), h(y)] \in Z(R)$

is obtained. Since $charR \neq 2$, we have $[h(x), h(y)] \in Z(R)$ for all $x, y \in I$. Thus,

$$[h(I), h(I)] \subset Z(R)$$

Using $h(I) \subset I \cap S_{\sigma}(R)$, by Theorem 2.11, we derive $h(I) \subset Z(R)$. According to Lemma 2.5, it implies that R is commutative.

Acknowledgement. The first author thanks to TÜBİTAK (The Scientific and Technical Research Council of Turkey) for financial support of BİDEB 2211 National Research Fellowship.

References

- Aydın N., Kaya K.: Some Generalizations in Prime Rings with (σ, τ)-Derivation, Doğa-Tr. J. Mathematics, vol 16 (1992) 169 - 176.
- [2] Herstein I. N. : A Note on Derivation II, Canad. Math. Bull., 22, 4, (1979) 509 511.
- [3] Kaya K. : (σ, τ) -Türevli Asal Halkalar Üzerine, Doğa-Tr. J. Mathematics, (1988) 42 45.
- [4] Oukhtite L., Salhi S.: On Commutativity of $\sigma\text{-Prime Rings},$ Glasnik Matematicki, vol. 41 no. 1 (2006) 57 64.
- [5] Oukhtite L., Salhi S.: Derivations and Commutativity of σ-Prime Rings, Int. J. Contemp. Sci., vol. 1 no. 9 (2006) 439 – 448.
- [6] Oukhtite L., Salhi S.: σ -Prime Rings with a special kind of automorphism, Int. J. Contemp. Math. Sci., vol. 2 no. 3 (2007) 127 133.
- [7] Posner E. : Derivations in Prime Rings, Proc. Amer. Math. Soc., 8, (1957).
- [8] Shuliang H.: Some Generalizations in Certain Classes of Rings with Involution, Bol. Soc. Paran. Mat., 29, 1, (2011) 9 – 16.