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Some results on σ-ideal of σ-prime ring

Selin Türkmen∗ and Neşet Aydın†

Abstract
Let R be a σ-prime ring with characteristic not 2, Z(R) be the center of
R, I be a nonzero σ-ideal of R, α, β : R→ R be two automorphisms, d
be a nonzero (α, β)-derivation of R and h be a nonzero derivation of R.
In the present paper, it is shown that (i) If d (I) ⊂ Cα,β and β commutes
with σ then R is commutative. (ii) Let α and β commute with σ. If
a ∈ I ∩ Sσ (R) and [d(I), a]α,β ⊂ Cα,β then a ∈ Z(R). (iii) Let α, β
and h commute with σ. If dh (I) ⊂ Cα,β and h (I) ⊂ I then R is
commutative.
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1. Introduction
LetR be an associative ring with center Z (R) . R is said to be 2-torsion free if whenever

2x = 0 with x ∈ R, then x = 0. Recall that a ring R is prime if aRb = 0 implies a = 0 or
b = 0. An involution σ of a ring R is an additive mapping satisfying σ (xy) = σ (y)σ (x)
and σ2 (x) = x for all x, y ∈ R. A ring R equipped with an involution σ is said to be σ-
prime if aRb = aRσ(b) = 0 implies a = 0 or b = 0. Note that every prime ring which has
an involution σ is a σ-prime but the converse is in generally not true. An example, due to
Shuliang [8], if R0 denotes the opposite ring of a prime ring R, then R×R0 equipped with
the exchange involution σex, defined by σex(x, y) = (y, x), is σex-prime but not prime.
An additive subgroup I of R is said to be an ideal of R if xr, rx ∈ I for all x ∈ I and
r ∈ R. An ideal I which satisfies σ (I) = I is called a σ- ideal of R. An example, due to

Rehman [8], Set R =

{(
a b
0 c

)
| a, b, c ∈ Z

}
. We define a map σ : R→ R as follows:

σ

(
a b
0 c

)
=

(
c −b
0 a

)
. It is easy to check that I =

{(
0 b
0 0

)
| b ∈ Z

}
is a
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σ-ideal of R. Note that an ideal I of a ring R may be not a σ-ideal. Let R = Z × Z.
Consider a map σ : R → R defined by σ((a, b)) = (b, a) for all (a, b) ∈ R. For an ideal
I = Z×{0} of R, I is not a σ-ideal of R since σ(I) = {0}×Z 6= I. Sσ (R) will denote the
set of symmetric and skew symmetric elements of R. i.e. Sσ (R) = {x ∈ R | σ (x) = ±x} .
As usual the commutator xy − yx will be denoted by [x, y] = xy − yx. An additive
mapping h : R → R is called a derivation if h (xy) = h (x) y + xh (y) holds for all
x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R is given by Ia (x) = [a, x] is a
derivation which is said to be an inner derivation which is determined by a. Let α and
β be two maps of R. Set Cα,β = {c ∈ R | cα (r) = β (r) c for all r ∈ R} and known as
(α, β)-center of R. In particular, C1,1 = Z (R) is the center of R, where 1 : R → R
is identity map. As usual the (α, β)-commutator aα (b) − β (b) a will be denoted by
[a, b]α,β = aα (b)− β (b) a. An additive mapping d : R→ R is called an (α, β)-derivation
if d (xy) = d (x)α (y) + β (x) d (y) holds for all x, y ∈ R. For a fixed a ∈ R, the mapping
Ia : R→ R is given by Ia (x) = [a, x]α,β is an (α, β)-inner derivation which is determined
by a.

Many studies have been objected the relationship between commutativity of a ring and
the act of derivations defined on this ring. These results have been generalized by many
authors in several ways. Herstein [2] proved that if R is a prime ring of characteristic
not 2, d is a nonzero derivation of R and a ∈ R such that [a, d (R)] = 0 then a ∈
Z (R) . N. Aydın and K. Kaya [1] proved that if R is a prime ring of characteristic not
2, I is a nonzero right ideal of R, σ and τ are two automorphisms of R, d : R → R
is a nonzero (σ, τ)-derivations of R and a ∈ R such that (i) d(I) ⊂ Z (R) then R is
commutative. (ii) [d (R) , a]σ,τ ⊂ Cα,β then a ∈ Z (R) . In [5], this result was extended
to on a σ-ideal of a σ-prime ring by L. Oukhtite and S. Salhi. On the other hand, Posner
[7] proved that if R is a prime ring of characteristic not 2 and d1, d2 are derivations of R
such that the composition d1d2 is also a derivation; then one at least of d1, d2 is zero. K.
Kaya [3] proved that if R is a prime ring of characteristic not 2, I is a nonzero ideal of
R, σ and τ are two automorphisms of R, d1 : R→ R is a nonzero (σ, τ)-derivations of R
and d2 is a nonzero derivation of R such that d1d2(I) ⊂ Cσ,τ then R is commutative. In
[4], Posner’s result was extended to a nonzero σ-ideal of a σ-prime ring by L. Oukhtite
and S. Salhi. Motivated by these results, we follow this line of investigation.

In this paper, our main goal is to extend these results on a σ-ideal of a σ-prime ring.
Throughout the present paper, R is a σ-prime ring, Z (R) is the center of R and α, β

are two automorphisms of R. We use the following basic commutator identities:

[x, yz] = y [x, z] + [x, y] z
[xy, z] = x [y, z] + [x, z] y
[xy, z]α,β = x [y, z]α,β + [x, β (z)] y = x [y, α (z)] + [x, z]α,β y

[x, yz]α,β = β (y) [x, z]α,β + [x, y]α,β α (z)[
[x, y]α,β , z

]
α,β

=
[
[x, z]α,β , y

]
α,β

+ [x, [y, z]]α,β

The material in this work is a part of first author’s PH. Dissertation which is supervised
by Prof. Dr. Neşet Aydın.

2. Results
For the proof of our theorems, we give the following known Lemmas.

2.1. Lemma. [6, Theorem 2.2] Let I be a nonzero σ-ideal of σ-prime ring R. If a, b in
R are such that aIb = 0 = aIσ (b) then a = 0 or b = 0.
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2.2. Lemma. [5, Lemma 4] Let R be a σ-prime ring with characteristic not two, d be a
derivation of R satisfying dσ = ±σd and I be a nonzero σ-ideal of R. If d2 (I) = 0 then
d = 0.

2.3. Lemma. Let I be a nonzero σ-ideal of R and a ∈ R. If Ia = 0 (or aI = 0) then
a = 0.

Proof. Since I is a σ-ideal, we know that IR ⊂ I. By hypothesis, we have IRa ⊂ Ia = 0.
Thus, we get IRa = 0. Moreover, since I is invariant under σ, we have σ (I)Ra = 0. It
follows that

IRa = σ (I)Ra = 0

Using σ-primeness of R, we get

a = 0

Similarly, using RI ⊂ I, one can show that if aI = 0 then a = 0. �

2.4. Lemma. Let a, b ∈ R.
i) If b, ab ∈ Cα,β and a (or b) ∈ Sσ (R) then a ∈ Z (R) or b = 0.
ii) If a, ab ∈ Cα,β and a (or b) ∈ Sσ (R) then a = 0 or b ∈ Z (R) .

Proof. i) By the hypothesis, we have [ab, r]α,β = 0 for all r ∈ R. Expanding this equation
by using b ∈ Cα,β , holding for all r ∈ R

0 = [ab, r]α,β = a [b, r]α,β + [a, β (r)] b

= [a, β (r)] b

Since b ∈ Cα,β , we get

(2.1) [a,R]Rb = 0

In the event of a ∈ Sσ (R) , we derive σ ([a,R])Rb = 0. Using the last obtained equation
together with (2.1) , we yield

[a,R]Rb = σ ([a,R])Rb = 0

Applying the σ-primeness of R, we have

a ∈ Z (R) or b = 0

In case of b ∈ Sσ (R) , from (2.1) , we get [a,R]Rσ (b) = 0. Using the last obtained
equation together with (2.1) , we find

[a,R]Rb = [a,R]Rσ (b) = 0

Applying the σ-primeness of R,

a ∈ Z (R) or b = 0

is obtained.
ii) Since ab ∈ Cα,β , we have [ab, r]α,β = 0 for all r ∈ R. Expanding this equation by

using a ∈ Cα,β , holding for all r ∈ R

0 = [ab, r]α,β = a [b, α (r)] + [a, r]α,β b

= a [b, α (r)]

Since a ∈ Cα,β ,

aR [b,R] = 0

is obtained. After here, it is similar as above. �
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2.5. Lemma. Let I be a nonzero σ-ideal of R and h be a nonzero derivation of R. If
h (I) ⊂ Z (R) then R is commutative.

Proof. For any x, y ∈ I and r ∈ R, using hypothesis,

0 = [r, h (xy)] = [r, h (x) y + xh (y)]

= h (x) [r, y] + [r, h (x)] y + x [r, h (y)] + [r, x]h (y)

= h (x) [r, y] + [r, x]h (y)

And so,

h (x) [r, y] + [r, x]h (y) = 0, ∀x, y ∈ I, r ∈ R
is obtained. In the last equality, x is taken instead of r and we obtain h (x) [x, y] = 0 for
all x, y ∈ I. Substituting y by zy where z ∈ I, it holds that
(2.2) h (x) I [x, y] = 0, ∀x, y ∈ I
It is supposed that x ∈ I∩Sσ (R) . In (2.2) , replacing y with σ (y) , we get h (x) Iσ ([x, y]) =
0 for all y ∈ I. According to Lemma 2.1, it is derived that

(2.3) h (x) = 0 or x ∈ Z (R) , ∀x ∈ I ∩ Sσ (R)
Assume that x ∈ I. In this case, x − σ (x) ∈ I ∩ Sσ (R) . So, from (2.3) , we have
h (x− σ (x)) = 0 or x−σ (x) ∈ Z (R) for all x ∈ I.We set A = {x ∈ I | h (x− σ (x)) = 0}
and B = {x ∈ I | x− σ (x) ∈ Z (R)} . It is clear that A and B are additive subgroups of
I such that I = A∪B. But, a group can not be an union of two of its proper subgroups.
Therefore, it is implied I = A or I = B. In the former case, h (x) = h (σ (x)) for all x ∈ I.
In (2.2) , replacing y by σ (y) and x by σ (x) , we have h (x) Iσ ([x, y]) = 0 for all x, y ∈ I.
And so,

h (x) I [x, y] = h (x) Iσ ([x, y]) = 0, ∀x, y ∈ I
is obtained. By Lemma 2.1, get h (x) = 0 or x ∈ Z (R) for all x ∈ I. In the latter case,
x−σ (x) ∈ Z (R) for all x ∈ I. This means [x, r] = [σ (x) , r] for all x ∈ I, r ∈ R. In (2.2) ,
taking σ (y) instead of y, we get h (x) Iσ ([x, y]) = 0 for all x, y ∈ I. And so,

h (x) I [x, y] = h (x) Iσ ([x, y]) = 0, ∀x, y ∈ I
is derived. According to Lemma 2.1, we have h (x) = 0 or x ∈ Z (R) for all x ∈ I. So,
both the cases yield either

h (x) = 0 or x ∈ Z (R) , ∀x ∈ I
Now, we set K = {x ∈ I | h (x) = 0} and L = {x ∈ I | x ∈ Z (R)} . Each of K and L is
an additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a
group can not be the set-theoretic union of two proper subgroups, hence I = K or I = L.
In the former case, h (I) = 0. So, we have h = 0. But, h is a nonzero derivation of R. So,
from the latter case, we get I ⊆ Z(R). Therefore, R is commutative. �

2.6. Lemma. Let I be a nonzero σ-ideal of R, d be a (α, β)-derivation of R and
a ∈ R. If ad (I) = σ (a) d (I) = 0 and β commutes with σ (or d (I) a = d (I)σ (a) =
0 and α commutes with σ) then a = 0 or d = 0.

Proof. For any x ∈ I and r ∈ R, using ad (I) = 0, we get

0 = ad (xr) = ad (x)α (r) + aβ (x) d (r)

= aβ (x) d (r)

It becomes

aβ (I) d (r) = 0, ∀r ∈ R



1151

Similarly, using σ (a) d (I) = 0, we derive

σ (a)β (I) d (r) = 0, ∀r ∈ R
And so,

aβ (I) d (r) = σ (a)β (I) d (r) = 0, ∀r ∈ R
is obtained. Since β commutes with σ, β (I) is a nonzero σ-ideal ofR. Therefore, according
to Lemma 2.1, we have

a = 0 or d = 0

Let us consider d (I) a = d (I)σ (a) = 0 and α commutes with σ. Since α (I) is a nonzero
σ-ideal of R, one can show that a = 0 or d = 0 similarly as above. �

2.7. Lemma. Let I be a nonzero σ-ideal of R and d be a (α, β)-derivation of R. If
d (I) = 0 and α (or β) commutes with σ then d = 0.

Proof. By hypothesis, it holds that for all x ∈ I and r ∈ R
0 = d (rx) = d (r)α (x) + β (r) d (x)

= d (r)α (x)

Thus, we get

d (r)α (I) = 0, ∀r ∈ R
Since α commutes with σ, α (I) is a nonzero σ-ideal of R. Therefore, by Lemma 2.3, we
have d = 0.

Suppose that β commutes with σ. For any x ∈ I and r ∈ R, from the hypothesis, we
get

0 = d (xr) = d (x)α (r) + β (x) d (r)

= β (x) d (r)

So, it yields that

β (I) d (r) = 0, ∀r ∈ R
Since β commutes with σ, β (I) is a nonzero σ-ideal of R. Therefore, by Lemma 2.3, we
have d = 0. �

2.8. Theorem. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-
ideal of R and d be a nonzero (α, β)-derivation of R such that β commutes with σ. If
d (I) ⊂ Cα,β then R is commutative.

Proof. By hypothesis, d
(
x2
)
= d (x)α (x)+β (x) d (x) ∈ Cα,β for all x ∈ I. Using d (x) ∈

Cα,β , we get 2β (x) d (x) ∈ Cα,β . Since charR 6= 2, we obtain β (x) d (x) ∈ Cα,β which
means [β (x) d (x) , r]α,β = 0 for all r ∈ R, x ∈ I. Expanding this equation by using
d (x) ∈ Cα,β , we arrive

0 = [β (x) d (x) , r]α,β = β (x) [d (x) , r]α,β + β ([x, r]) d (x)

= β ([x, r]) d (x)

Since d (x) ∈ Cα,β , it follows that
(2.4) β ([x, r])Rd (x) = 0, ∀x ∈ I, r ∈ R
Assume that x ∈ I ∩ Sσ (R) . In (2.4) taking σ (r) instead of r and using the fact that
β commutes with σ, we have σ (β ([x, r]))Rd (x) = 0 for all x ∈ I, r ∈ R. Since R is
σ-prime, we derive

x ∈ Z (R) or d (x) = 0, ∀x ∈ I ∩ Sσ (R)
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Assume that x ∈ I. In this case, x− σ (x) ∈ I ∩ Sσ (R) . Therefore, we have x− σ (x) ∈
Z (R) or d (x− σ (x)) = 0 for all x ∈ I. Set A = {x ∈ I | d (x− σ (x)) = 0} and B =
{x ∈ I | x− σ (x) ∈ Z (R)} . It is clear that A and B are additive subgroups of I such
that I = A ∪ B. But, a group can not be an union of two of its proper subgroups.
Therefore, we yield either I = A or I = B. In the former case, d (x) = d (σ (x)) for all
x ∈ I. In (2.4) substituting x by σ (x) and r by σ (r) and using the fact that β commutes
with σ, we have σ (β ([x, r]))Rd (x) = 0 for all x ∈ I, r ∈ R. Since R is σ-prime, we arrive
x ∈ Z (R) or d (x) = 0 for all x ∈ I. In the latter case, x − σ (x) ∈ Z (R) for all x ∈ I.
This means, [x, r] = [σ (x) , r] for all r ∈ R. In (2.4) , replacing r by σ (r) and using the
fact that β commutes with σ, we get σ (β ([x, r]))Rd (x) = 0 for all x ∈ I, r ∈ R. Since R
is σ-prime, we have x ∈ Z (R) or d (x) = 0 for all x ∈ I. As a result, both the cases yield
either

x ∈ Z (R) or d (x) = 0, ∀x ∈ I

Now, we set K = {x ∈ I | d (x) = 0} and L = {x ∈ I | x ∈ Z (R)} . Each of K and L is an
additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a group
can not be the set-theoretic union of two of its proper subgroups, hence I = K or I = L.
In the former case, d (I) = 0. Since β commutes with σ, by Lemma 2.7, we obtain d = 0.
But, d is a nonzero (α, β)-derivation of R, then I must be contained in Z (R) . So, R is
commutative. �

2.9. Lemma. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-ideal
of R, d be a (α, β)-derivation of R such that β commutes with σ and h be a derivation
of R satisfying hσ = ±σh. If dh (I) = 0 and h (I) ⊂ I then d = 0 or h = 0.

Proof. By hypothesis, it holds that for all x, y ∈ I

0 = dh (xy)

= dh (x)α (y) + β (h (x)) d (y) + d (x)α (h (y)) + β (x) dh (y)

= β (h (x)) d (y) + d (x)α (h (y))

And so,

β (h (x)) d (y) + d (x)α (h (y)) = 0, ∀x, y ∈ I

Since h (I) ⊂ I, we take h (x) instead of x. Using the hypothesis, we get

β
(
h2 (x)

)
d (I) = 0, ∀x ∈ I

Moreover, replacing x by σ (x) in the above obtained relation and using the fact that β
commute with σ and hσ = ±σh, we derive

σ
(
β
(
h2 (x)

))
d (I) = 0, ∀x ∈ I

And so,

β
(
h2 (x)

)
d (I) = σ

(
β
(
h2 (x)

))
d (I) = 0, ∀x ∈ I

Since β commutes with σ, by Lemma 2.6, we yield either h2 (I) = 0 or d = 0. Since
hσ = ±σh, by Lemma 2.2, we have h = 0 or d = 0. �

2.10. Lemma. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-ideal
of R, d be a nonzero (α, β)-derivation of R such that β commutes with σ. If a ∈ I∩Sσ (R)
and [d(I), a]α,β = 0 then a ∈ Z (R) .
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Proof. For any x, y ∈ I, from the hypothesis, we have [d([x, y]), a]α,β = 0. Since d([x, y]) =
[d(x), y]α,β − [d (y) , x]α,β , we get[

[d (y) , x]α,β , a
]
α,β

=
[
[d(x), y]α,β , a

]
α,β

, ∀x, y ∈ I

In the above obtained relation, applying
[
[a, b]α,β , c

]
α,β

=
[
[a, c]α,β , b

]
α,β

+ [a, [b, c]]α,β

for all a, b, c ∈ R and using the hypothesis, it becomes[
[d (y) , x]α,β , a

]
α,β

=
[
[d(x), y]α,β , a

]
α,β

=
[
[d(x), a]α,β , y

]
α,β

+ [d (x) , [y, a]]α,β

= [d (x) , [y, a]]α,β

And so, [
[d (y) , x]α,β , a

]
α,β

= [d (x) , [y, a]]α,β , ∀x, y ∈ I

is obtained. In the last equation, substituting x by a and using the hypothesis, we yield

[d(a), [y, a]]α,β = 0, ∀y ∈ I

The mapping Id(a) : R→ R is given by Id(a) (r) = [d(a), r]α,β is a (α, β)-derivation which
is determinated by d (a) and Ia : R → R is given by Ia (r) = [r, a] is a derivation which
is determinated by a. So, we derive(

Id(a)Ia
)
(I) = 0

Since a ∈ I ∩ Sσ (R) , we have Iaσ = ±σIa. Therefore, by Lemma 2.9, we have

d (a) ∈ Cα,β or a ∈ Z (R)

Assume that a 6∈ Z (R) which means that d (a) ∈ Cα,β . From the hypothesis, we get
d ([x, a]) = [d (x) , a]α,β − [d (a) , x]α,β = 0 for all x ∈ I. That is,

(2.5) d ([I, a]) = 0

On the other hand, by hypothesis, we have [d(xy), a]α,β = 0 for x, y ∈ I. Expanding
this equation, it becomes d (x)α ([y, a]) + β ([x, a]) d (y) = 0 for all x, y ∈ I. Taking [x, a]
instead of x and using (2.5) , we derive β ([[x, a] , a]) d (I) = 0 for all x ∈ I. In this
equation, replacing x by σ (x) and using the fact that β commutes with σ, we obtain
σ (β [[x, a] , a]) d (I) = 0 for all x ∈ I. And so, we yield

β ([[x, a] , a]) d (I) = σ (β ([[x, a] , a])) d (I) = 0, ∀x ∈ I
Since β commutes with σ, by Lemma 2.6, it implies that d = 0 or [[x, a] , a] = 0 for all
x ∈ I. That is, d = 0 or I2a (I) = 0. Since a ∈ I ∩ Sσ (R) , we have Iaσ = ±σIa. So, by
Lemma 2.9, we have d = 0. This is a contradiction which completes the proof. �

2.11. Theorem. Let R be a σ-prime ring with characteristic not 2, I be a nonzero
σ-ideal of R, d be a nonzero (α, β)-derivation of R such that α, β commute with σ. If
a ∈ I ∩ Sσ (R) and [d(I), a]α,β ⊂ Cα,β then a ∈ Z (R) .

Proof. By hypothesis,
[
d(a2), a

]
α,β
∈ Cα,β . Expanding this, it becomes[

d(a2), a
]
α,β

= [d(a)α (a) + β (a) d (a) , a]α,β

= d (a)α [a, a] + [d(a), a]α,β α (a) + β (a) [d (a) , a]α,β

+ β ([a, a]) d (a)

= [d(a), a]α,β α (a) + β (a) [d (a) , a]α,β ∈ Cα,β
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And so,

[d(a), a]α,β α (a) + β (a) [d (a) , a]α,β ∈ Cα,β
is obtained. In the above obtained relation, using [d(a), a]α,β ∈ Cα,β , we have 2β (a) [d (a) , a]α,β ∈
Cα,β . Since charR 6= 2, we get

(2.6) β (a) [d (a) , a]α,β ∈ Cα,β
Since a ∈ I ∩ Sσ (R) , it is clear that β (a) ∈ Sσ (R) . Using the hypothesis together with
(2.6), according to Lemma 2.4 (i) , we yield either

a ∈ Z (R) or [d (a) , a]α,β = 0

Assume that a 6∈ Z (R) which means [d (a) , a]α,β = 0. On the other hand, by hypothesis,
it holds that [d ([a, x]) , a]α,β ∈ Cα,β . So,

[d ([a, x]) , a]α,β =
[
[d (a) , x]α,β , a

]
α,β
−
[
[d (x) , a]

α,β
, a
]
α,β
∈ Cα,β

is obtained. Using the hypothesis, we have[
[d (a) , x]α,β , a

]
α,β
∈ Cα,β , ∀x ∈ I

Replacing x by ax and using [d (a) , a]α,β = 0, it becomes

β (a)
[
[d (a) , x]α,β , a

]
α,β
∈ Cα,β , ∀x ∈ I

We know that β (a) ∈ Sσ (R) and
[
[d (a) , x]α,β , a

]
α,β
∈ Cα,β . Therefore, by Lemma 2.4

(i) , we derive
[
[d (a) , x]α,β , a

]
α,β

= 0 for all x ∈ I.Applying the identity
[
[a, b]α,β , c

]
α,β

=[
[a, c]α,β , b

]
α,β

+ [a, [b, c]]α,β for all a, b, c ∈ R and using the assumption, we arrive

[d (a) , [x, a]]α,β = 0, ∀x ∈ I

The mapping Id(a) : R→ R is given by Id(a) (r) = [d(a), r]α,β is a (α, β)-derivation which
is determinated by d (a) and Ia : R → R is given by Ia (r) = [r, a] is a derivation which
is determinated by a. So,(

Id(a)Ia
)
(I) = 0

is obtained. Since a ∈ I ∩ Sσ (R) , we have Iaσ = ±σIa. According to Lemma 2.9, we
yield either

Id(a) = 0 or Ia = 0

which means d (a) ∈ Cα,β . On the other hand, by hypothesis, we have [d(ax), a]α,β ∈ Cα,β
for all x ∈ I. So, we get

(2.7) d (a)α ([x, a]) + β (a) [d (x) , a]α,β ∈ Cα,β , ∀x ∈ I

Commuting (2.7) with a, it follows that

0 =
[
d (a)α ([x, a]) + β (a) [d (x) , a]α,β , a

]
α,β

= [d (a)α ([x, a]) , a]α,β +
[
β (a) [d (x) , a]α,β , a

]
α,β

= d (a)α ([[x, a] , a]) + [d (a) , a]α,β α ([x, a])

+ β (a)
[
[d (x) , a]α,β , a

]
α,β

+ β ([a, a]) [d (x) , a]α,β

= d (a)α ([[x, a] , a]) + β (a)
[
[d (x) , a]α,β , a

]
α,β
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And so, it becomes

d (a)α ([[x, a] , a]) + β (a)
[
[d (x) , a]α,β , a

]
α,β

= 0, ∀x ∈ I

Using [d (x) , a]α,β ∈ Cα,β , we have d (a)α ([[x, a] , a]) = 0 for all x ∈ I. Since d (a) ∈ Cα,β ,

d (a)Rα ([[x, a] , a]) = 0, ∀x ∈ I
is obtained. In the above obtained relation, taking σ (x) instead of x and using the fact
that α commutes with σ, we derive

d (a)Rσ (α ([[x, a] , a])) = 0, ∀x ∈ I
And so, we yield

d (a)Rα ([[x, a] , a]) = d (a)Rσ (α ([[x, a] , a])) = 0, ∀x ∈ I
Since R is σ-prime, we get d (a) = 0 or [[x, a] , a] = 0 for all x ∈ I. That is, d (a) =
0 or I2a(I) = 0. Since Iaσ = ±σIa, by Lemma 2.9, we have d (a) = 0. In (2.7), using
d (a) = 0, it becomes

β (a) [d (x) , a]α,β ∈ Cα,β , ∀x ∈ I

We know that β (a) ∈ Sσ (R) and [d(x), a]α,β ∈ Cα,β from the hypothesis. Therefore,
according to Lemma 2.4 (i) , we have [d (x) , a]α,β = 0 for all x ∈ I. Since a ∈ I ∩ Sσ (R)
and β commutes with σ, by Lemma 2.10, we derive a ∈ Z (R) . This is a contradiction
which completes the proof. �

2.12. Theorem. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-
ideal of R, d be a nonzero (α, β)-derivation of R such that α and β commute with σ and
h be a nonzero derivation of R which commutes with σ. If dh (I) ⊂ Cα,β and h (I) ⊂ I
then R is commutative.

Proof. For any x, y ∈ I, from the hypothesis, we have dh ([x, y]) ∈ Cα,β . Expanding this
identity, it follows that

dh ([x, y]) = d ([h (x) , y] + [x, h (y)])

= [(dh) (x) , y]α,β − [d (y) , h (x)]α,β + [d (x) , h (y)]α,β

− [(dh) (y) , x]α,β

= [d (x) , h (y)]α,β − [d (y) , h (x)]α,β ∈ Cα,β
And it becomes

[d (x) , h (y)]α,β − [d (y) , h (x)]α,β ∈ Cα,β , ∀x, y ∈ I

Since h (I) ⊂ I, we replace y by h (y) . So, we arrive
[
d (x) , h2 (y)

]
α,β
∈ Cα,β for all

x, y ∈ I. That is,[
d (I) , h2 (I)

]
α,β
⊂ Cα,β

Using the fact that h (I) ⊂ I and h commutes with σ, we assure h2 (I) ⊂ I ∩ Sσ (R) .
In additional, we know that from the hypothesis α and β commute with σ. Thereby,
according to Theorem 2.11, it yields h2 (I) ⊂ Z (R) . So, for all x, y ∈ I

h2 ([x, y]) = h ([h (x) , y] + [x, h (y)])

=
[
h2 (x) , y

]
+ 2 [h (x) , h (y)] +

[
x, h2 (y)

]
= 2 [h (x) , h (y)] ∈ Z (R)

is obtained. Since charR 6= 2, we have [h (x) , h (y)] ∈ Z (R) for all x, y ∈ I. Thus,
[h (I) , h (I)] ⊂ Z (R)



1156

Using h (I) ⊂ I∩Sσ (R) , by Theorem 2.11, we derive h (I) ⊂ Z (R) . According to Lemma
2.5, it implies that R is commutative. �
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