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Intersection local time of subfractional
Ornstein-Uhlenbeck processes

Xiuwei Yin ∗ , Guangjun Shen † and Dongjin Zhu ‡

Abstract
In this paper, we consider Ornstein-Uhlenbeck process

dXH
t = −XH

t dt+ vdSHt , XH
0 = x,

driven by a subfractional Brownian motion SH . We prove that the
subfractional Ornstein-Uhlenbeck process XH is local nondeterministic
and give some properties of this process. As an application, assume
d ≥ 2, we prove that the intersection local time of two independent,
d−dimensional subfractional Ornstein-Uhlenbeck process,XH and X̃H ,
exists in L2 if and only if Hd < 2.
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1. Introduction
The classical Ornstein-Uhlenbeck process (see Revuz and Yor[23]) has a remarkable

history in physics. It was introduced to model the velocity of the particle diffusion
process and later it has been heavily used in finance, and thus in econophysics. It can
be constructed as the unique strong solution of Itô stochastic differential equation

(1.1) dXt = −Xtdt+ vdBt, X0 = x,

where B is a standard Brownian motion starting at 0.
On the other hand, extensions of the classical Ornstein-Uhlenbeck process have been

suggested mainly on demand of applications. The fractional Ornstein-Uhlenbeck process
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was an extension of the classical Ornstein-Uhlenbeck process, where fractional Brownian
motion BH was used as integrator

(1.2) dXH
t = −XH

t dt+ vdBHt , X0 = x.

The equation (1.2) has a unique solution XH
t = {XH

t , 0 ≤ t ≤ T}, which can be expressed
as

(1.3) XH
t = e−t(x+ v

∫ t

0

esdBHs ),

and the solution was called the fractional Ornstein-Uhlenbeck process. Recall that frac-
tional Brownian motion BH with Hurst index H ∈ (0, 1) is a central Gaussian process
with BH0 = 0 and the covariance function

(1.4) E[BHt B
H
s ] =

1

2
[t2H + s2H − |t− s|2H ],

for all t, s > 0. This process was first introduced by Kolmogorov and studied by Mandel-
brot and Van Ness [19]. Clearly, when H = 1

2
the fractional Ornstein-Uhlenbeck process

is the classical Ornstein-Uhlenbeck process X with parameter v starting at x ∈ R. A
class of superpositions of Ornstein-Uhlenbeck type processes is constructed in terms of
integrals with respect to independently scattered random measures in Barndorff-Nielsen
[3]. Barndorff-Nielsen and Shephard [4] construct continuous time stochastic volatility
models for financial assets where the volatility processes are superpositions of positive
Ornstein-Uhlenbeck processes, and they study these models in relation to financial data
and theory. Recently, Habtemicael and SenGupta [12] shown that the Gamma-Ornstein-
Uhlenbeck process is a possible candidate for earthquake data modeling. SenGupta
[25] uses Ornstein-Uhlenbeck process in forming a partial integro differential equations
in finance. More works for the fractional Ornstein-Uhlenbeck process can be found in
Cheridito et al. [9], Hu and Nualart [15], Es-Sebaiy [11], Yan et al. [32, 33].

The intersection properties of Brownian motion paths have been investigated since the
forties (see lévy [17]), and since then a large number of results on intersection local times
of Brownian motion have been accumulated (see Albeverio et al. [1] and the references
therein). The intersection local time of independent fractional Brownian motions has
been studied by Chen and Yan [8], Jiang and Wang [16], Nualart and Ortiz-Latorre [22],
Rosen [24], Wu-Xiao [30] and the references therein.

Motivated by all these results, in this paper, we will study the Ornstein-Uhlenbeck
process

dXH
t = −XH

t dt+ vdSHt , XH
0 = x,

driven by a subfractional Brownian motion SH(see section 2 for a precise definition).
The solution

(1.5) XH
t = e−t(x+ v

∫ t

0

esdSHs ),

is called the subfractional Ornstein-Uhlenbeck process (see Mendy [20]).
The rest of this paper is organized as follows. In section 2 we briefly recall the

subfractional Brownian motion and the related Wiener-Itô integral. In section 3 we
show that the subfractional Ornstein-Uhlenbeck process XH is local nondeterministic
and establish some estimates for the increments of the process, that is, there exist two
constant cH,T , CH,T > 0 depending on H,T only which may not be the same in each
occurrence such that the estimates

cH,T v
2(t− s)2H ≤ E(XH

t −XH
s )2 ≤ CH,T v2(t− s)2H ,

and
cH,T v

2G(t, s) ≤ E(XH
t X

H
s ) ≤ CH,T v2G(t, s),
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hold for all 0 < s < t < T, where G(t, s) = t2H + s2H − 1
2
[(t + s)2H + (t − s)2H ].

In section 4 we consider the intersection local time of two independent subfractional
Ornstein-Uhlenbeck process XH = {XH

t , 0 ≤ t ≤ T} and X̃H = {X̃H
t , 0 ≤ t ≤ T} on

Rd, d ≥ 2 with the same indices H ∈ (0, 1). The intersection local time is formally defined
as

(1.6) `T =

∫ T

0

∫ T

0

δ(XH
t − X̃H

s )dsdt,

where δ denotes the Dirac delta function. It is a measure of the amount of time that the
trajectories of the two processes, XH and X̃H , intersect on the time interval [0, T ]. In
order to give a rigorous meaning to `T we approximate the Dirac function by the heat
kernel

pε(x) = (2πε)−
d
2 e−

|x|2
2ε , x ∈ Rd.

Then, we can consider the following family of random variables indexed by ε > 0

(1.7) `ε,T =

∫ T

0

∫ T

0

pε(X
H
t − X̃H

s )dsdt.

We get the convergence of `ε,T as ε tends to zero in the L2(Ω).

2. Preliminaries
In this section, we briefly recall the definition and properties of the Wiener-Itô integer

with respect to the subfractional Brownian motion. As an extension of Brownian motion,
Bojdecki et al. [6] introduced and studied a rather special class of self-similar Gaussian
processes which preserves many properties of the fractional Brownian motion, which is
called the subfractional Brownian motion. This process arised from occupation time
fluctuations of branching particle systems with Poisson initial condition, and it also
appeared independently in a different context in Dzhaparidze and Van Zanten[10]. The
so-called subfractional Brownian motion (subfBm in short) with index H ∈ (0, 1) is a
mean zero Gaussian process SH = {SHt , t ≥ 0} with SH0 = 0 and

(2.1) E
[
SHt S

H
s

]
= s2H + t2H − 1

2

[
(s+ t)2H + |t− s|2H

]
for all s, t ≥ 0. For H = 1/2, SH coincides with the standard Brownian motion B. SH is
neither a semimartingale nor a Markov process unless H = 1/2, so many of the powerful
techniques from stochastic analysis are not available when dealing with SH . The subfBm
has properties analogous to those of fractional Brownian motion (self-similarity, long-
range dependence, Hölder paths). However, in comparison with fractional Brownian mo-
tion, the subfBm has non-stationary increments and the increments over non-overlapping
intervals are more weakly correlated and their covariance decays polynomially as a higher
rate in comparison with fractional Brownian motion (for this reason in Bojdecki et al. [6]
it is called subfBm). The properties mentioned above make the subfBm a possible candi-
date for models which involve long-range dependence, self-similarity and non-stationary
increment. More studies on the subfBm can be found in Bardina and Bascompte [2],
Bojdecki et al. [7], Liu and Yan [18], Shen et al. [26, 27, 28], Yan and Shen [31] and the
references therein.

Consider the integral representation of the subfBm SHt of the form

(2.2) SHt =

∫ t

0

KH(t, u)dBu, 0 ≤ t ≤ T,
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where KH(t, u) is the kernel

(2.3) KH(t, s) =
cH
√
π

2HΓ(H + 1
2
)
s3/2−H

(
(t2 − s2)H−

1
2

t
+

∫ t

s

(u2 − s2)H−
1
2

u2
du

)
1(0,t)(s).

In particular, when 1
2
< H < 1, the kernel KH(t, s) can be written in a less complicated

form:

(2.4) KH(t, s) =
cH
√
π

2H−1Γ(H − 1
2
)
s3/2−H

∫ t

s

(u2 − s2)H−
3
2 du1(0,t)(s),

where c2H = Γ(1+2H)sinπH
π

. Using the idea in Hu [14], the kernel KH(t, s) defines an
operator ΓH,T in L2([0, T ]) given by

ΓH,Th(t) =

∫ t

0

KH(t, u)h(u)du, h ∈ L2([0, T ]),

and the function ΓH,Th(t) is continuous and vanishes at zero. The transpose Γ∗H,t of
ΓH,T restricted to the interval [0, t](0 ≤ t ≤ T ) is

Γ∗H,tg(s) = CHs
3/2−H [(t2 − s2)H−

1
2 t−1g(t)−

∫ t

s

(u2 − s2)H−
1
2 u−1g′(u)du

+

∫ t

s

(u2 − s2)H−
1
2 u−2g(u)du],

for g ∈ S, the set of all smooth functions on [0, T ] with bounded derivatives, where
CH = cH

√
π

2H−1Γ(H− 1
2

)
.

In particular, for 1
2
< H < 1, we have

Γ∗H,tg(s) = CHs
3
2
−H
∫ t

s

(u2 − s2)H−
3
2 g(u)du.

Now, we recall the definition of the Wiener-Itô integral with respect to the subfBm,
more work can be found in Nualart[21], Tudor[29].

2.1. Definition. Let

ΘH = {f ∈ S : ||f || =
∫ T

0

[Γ∗H,T f(t)]2dt <∞}.

For f ∈ ΘH , we define∫ t

0

f(u)dSH =

∫ t

0

Γ∗H,tf(u)dBu, 0 ≤ t ≤ T,

where B = {Bt, 0 ≤ t ≤ T} is a standard Brownian motion with B0 = 0.

By applying the operator Γ∗H,t, we can write the subfractional Ornstein-Uhlenbeck
process XH = {XH

t , t ≥ 0} starting from zero as

XH
t = v

∫ t

0

F (t, u)dBu, 0 ≤ t ≤ T.

For 0 < u < t,

(2.5) F (t, u) = CH,T e
−tu

3
2
−H
∫ t

u

(m2 − u2)H−
3
2 emdm,
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with 1
2
< H < 1, and

(2.6)
F (t, u) = CH,Tu

3
2
−H [−e−t

∫ t

u

(m2 − u2)H−
1
2m−1emdm

+ (t2 − u2)H−
1
2 t−1 + e−t

∫ t

u

(m2 − u2)H−
1
2m−2emdm],

with 0 < H < 1
2
.

3. Some properties of subfractional Ornstein-Uhlenbeck process
In this section, we show that the subfractional Ornstein-Uhlenbeck process XH is local

nondeterministic and establish some estimates for the increments of the process.
The concept of local nondeterminism was first introduced by Berman[5] to unify and

extend his methods for studying local times of real-valued Gaussion process. Define the
relative prediction error:

Vn =
Var(X(tn)−X(tn−1))|X(t1), ..., X(tn−1))

Var(X(tn)−X(tn−1))

which is the ratio of the conditional to the unconditional variance. We consider this to
be a measure of the relative predictability of the increment X(tn) − X(tn−1) based on
the knowledge of the finite set of data X(t1), ..., X(tn−1). It follows from the elemen-
tary property of conditional variance that 0 ≤ Vn ≤ 1. If Vn = 1, then the increment
is relatively completely unpredictable because the variance is not reduced by the infor-
mation about X(t1), ..., X(tn−1). On the other extreme, if Vn = 0, then the increment
is relatively predictable. The process X is called locally nondeterministic on an interval
J ⊂ R+ if for every integer n ≥ 2,

(3.1) lim
ε→0

inf
tn−t1≤ε

Vn > 0,

where the infimum in Eq. (3.1) is taken over all ordered points t1 < t2 < ... < tn in J
with tn − t1 ≤ ε. This condition means that a small increment of the process X is not
almost relatively predictable based on a finite number of observations from the immediate
past.

It is well known that Eq.(3.1) is equivalent to the following property which says that
X has locally approximately independent increments: for any positive integer n ≥ 2,
there exist positive constants Cn and δ (both may depend on n) such that

(3.2) Var

(
n∑
j=1

uj [X(tj)−X(tj−1)]

)
≥ Cn

n∑
j=1

u2
jVar [X(tj)−X(tj−1)]

for all ordered points 0 = t0 < t1 < t2 < ... < tn in J with tn − t1 < δ and all
uj ∈ R(1 ≤ j ≤ n). Xiao [34] give the properties of local nondeterminism of Gaussion
and stable random fields.

By Berman[5], a process Xt =
∫ t

0
K(t, u)dBu, t ∈ J is local nondeterministic if and

only if

(3.3) lim
c↓0

inf
0<t−s<c:s,t∈J

∫ t
s
K2(t, u)du∫ s

0
[K(t, u)−K(s, u)]2du

> 0,

where K is a measurable function of (t, u) such that
∫ t

0
K2(t, u)du <∞ for all t ∈ J.

In order to prove that the subfractional Ornstein-Uhlenbeck process XH is local non-
deterministic, we firstly give the following Lemma.
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3.1. Lemma. Let F (·, ·) be given by (2.5)and (2.6). Then we have∫ s

0

[F (t, u)− F (s, u)]2du ≤ CH,T (t− s)2H , 0 ≤ s ≤ t,

for all 0 < H < 1.

Proof. Firstly, for 1
2
< H < 1 and 0 < s < t < T , we have

|F (t, u)− F (s, u)| ≤ CH,T |e−t − e−s|u
3
2
−H
∫ s

u

(m2 − u2)H−
3
2 emdm

+ CH,T e
−tu

3
2
−H
∫ t

s

(m2 − u2)H−
3
2 emdm

:= CH,Tu
3
2
−H(I1 + I2).

It is obvious that I2 ≤
∫ t
s

(m2 − u2)H−
3
2 dm, and

I1 ≤ (t− s)
∫ s

u

(m2 − u2)H−
3
2 dm ≤ CH(t− s)uH−

3
2 (s− u)H−

1
2 .

So, we have∫ s

0

[F (t, u)− F (s, u)]2du ≤ CH
∫ s

0

u3−2HI2
1du+ CH

∫ s

0

u3−2HI2
2du

≤ CH(t− s)2

∫ s

0

(s− u)2H−1du

+ CH

∫ t

s

∫ t

s

∫ s

0

u3−2H(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 dmdndu

≤ CHs2H(t− s)2 + CH,T

∫ t

s

∫ t

s

|m− n|2H−2dmdn

= CHs
2H(t− s)2 + CH,T (t− s)2H ≤ CH,T (t− s)2H .

In the following, we consider the case 0 < H < 1
2
, we have

F (t, u)− F (s, u) = CHu
3
2
−H(M1 +M2 +M3),

where
M1 := (t2 − u2)H−

1
2 t−1 − (s2 − u2)H−

1
2 s−1,

M2 := e−s
∫ s

u

(m2 − u2)H−
1
2m−1emdm− e−t

∫ t

u

(m2 − u2)H−
1
2m−1emdm,

M3 := e−t
∫ t

u

(m2 − u2)H−
1
2m−2emdm− e−s

∫ s

u

(m2 − u2)H−
1
2m−2emdm.

Elementary calculus can show that

(3.4)
∫ s

0

u3−2H |M1|2du ≤ CH,T (t− s)2H .

For the term M2, we have

|M2| ≤ (e−s − e−t)
∫ s

u

(m2 − u2)H−
1
2m−1emdm+ e−t

∫ t

s

(m2 − u2)H−
1
2m−1emdm

≤ CH,TuH−
3
2

[
(t− s)(s− u)H+ 1

2 + (t− s)H+ 1
2

]
.

Hence,

(3.5)
∫ s

0

u3−2H |M2|2du ≤ CH,T (t− s)2H .
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For the term M3. Noting that

|M3| ≤ (t− s)
∫ s

u

(m2 − u2)H−
1
2m−2dm+

∫ t

s

(m2 − u2)H−
1
2m−2dm

:= (t− s)M3,1 +M3,2

On the one hand,∫ s

0

u3−2H |M3,1|2du =

∫ s

0

u3−2Hdu
∫ s

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn

≤
∫ s

0

du
∫ s

u

∫ s

u

(m− u)H−
3
2 (n− u)H−

3
2 dmdn

≤ CH
∫ s

0

(s− u)2H−1du ≤ CHs2H .

On the other hand,∫ s

0

u3−2H |M3,2|2du

=

∫ s

0

u3−2Hdu
∫ t

s

∫ t

s

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn

≤
∫ t

s

∫ t

s

(mn)H−
1
2 dmdn

∫ m∧n

0

u1−2(H+ 1
2

)(m− u)(H+ 1
2

)− 3
2 (n− u)(H+ 1

2
)− 3

2 du

≤ CH,T
∫ t

s

∫ t

s

(mn)−
1
2 |m− n|2H−1dmdn ≤ CH,T (t− s)2H .

Hence,

(3.6)

∫ s

0

u3−2H |M3|2du ≤ CH,T (t− s)2H

∫ s

0

u3−2H |M3,1|2du+

∫ s

0

u3−2H |M3,2|2du

≤ CH,T (t− s)2H .

Combing with (3.4), (3.5) and (3.6), this completes the proof. �

3.2. Theorem. The subfractional Ornstein-Uhlenbeck process XH is local nondetermin-
istic.

Proof. Consider the integral representation of the subfractional Ornstein-Uhlenbeck pro-
cess XH

t = v
∫ t

0
F (t, u)dBu, 0 ≤ t ≤ T.

When 1
2
< H < 1, we get

F (t, u) ≥ CHe−t+uu
3
2
−H
∫ t

u

(m2 − u2)H−
3
2 dm

≥ CHe−t+uu
3
2
−H(t2 − u2)H−

3
2 (t− u)

≥ CH,T (t− u)H−
1
2 .

Hence,
∫ t
s
F 2(t, u)du ≥ CH,T

∫ t
s

(t− u)2H−1du ≥ CH,T (t− s)2H .

When 0 < H < 1
2
, without loss of generality, one may assume 0 < T < 1. By (2.6) we

get that
F (t, u) ≥ CH,T (t2 − u2)H−

1
2 t−1u

3
2
−H .

Hence, ∫ t

s

F 2(t, u)du ≥ CH,T
∫ t

s

u1−2H(t2 − u2)2H−1du ≥ CH,T (t− s)2H .

It follows from Lemma 3.1 and (3.3) that the Theorem3.2 holds. �
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Next, we will study the variance of increment of the subfractional Ornstein-Uhlenbeck
process. Let XH = {XH

t , 0 ≤ t ≤ T} be the subfractional Ornstein-Uhlenbeck process
starting from zero. Then we have

XH
t = v

∫ t

0

e−t+udSHu = v

∫ t

u

F (t, u)dBu.

Hence,

E[XH
t X

H
s ] = v2

∫ t∧s

0

F (t, u)F (s, u)du.

In particular, for 1
2
< H < 1 we have

EXH
t X

H
s = v2e−t−s

∫ t

0

∫ s

0

eu+vφ(u, v)dudv,

where φ(u, v) = H(2H − 1)(|u− v|2H−2 − |u+ v|2H−2).
First, we give the following Lemmas.

3.3. Lemma. Let 0 < H < 1/2. Then∫ s

0

F (t, u)F (s, u)du ≥ CH,TG(t, s).

Proof. Without loss of generacity, one can assume that 0 < s < t < 1. It follows from
(2.6) that

F (t, u) ≥ CH,Tu
3
2
−H
∫ t

u

(m2 − u2)H−
1
2m−2dm.

So, ∫ s

0

F (t, u)F (s, u)du

≥ CH,T
∫ s

0

∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2u3−2Hdmdndu

≥ CH,T
∫ s

0

∫ s

0

(mn)−2dmdn
∫ m∧n

0

(m2 − u2)H−
1
2 (n2 − u2)H−

1
2 u3−2Hdu

≥ CH,T
∫ s

0

m2H−4dm
∫ m

0

n2dn = CH,T s
2H .

Using the inequality s2H ≥ t2H − (t− s)2H , we get∫ s

0

F (t, u)F (s, u)du ≥ CH,T [s2H + t2H − (t− s)2H ]

≥ CH,T [s2H + t2H − 1

2
(t− s)2H − 1

2
(t+ s)2H ]

= CH,TG(t, s).

This completes the proof. �

3.4. Lemma. Let 0 < H < 1
2
. Then for all 0 < s ≤ t < T , we have∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdn ≤ CH,TG(t, s),∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1(s2 − u2)H−

1
2 s−1du ≤ CH,TG(t, s),∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1du

∫ s

u

(m2 − u2)H−
1
2m−1dm ≤ CH,TG(t, s),
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0

u3−2H(s2 − u2)H−
1
2 s−1du

∫ t

u

(m2 − u2)H−
1
2m−1dm ≤ CH,TG(t, s),∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn ≤ CH,TG(t, s).

Proof. We only prove the first and the third estimate, the other estimates can be proved
similarily. On the one hand∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdn

≤ CH,T
∫ s

0

du
∫ t

u

∫ s

u

(m− u)H−
1
2 (n− u)H−

1
2 dndm

≤ CH,T
∫ s

0

[(t+ u)2H+1 + (t− u)2H+1]du

≤ CH,T [(t+ s)2H − (t− s)2H ] ≤ CH,TG(t, s).

On the other hand∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1du

∫ s

u

(m2 − u2)H−
1
2m−1dm

≤
∫ s

0

(t− u)H−
1
2 du

∫ s

u

(m− u)H−
1
2 dm

≤ CH,T
∫ s

0

(t− u)2H−1du ≤ CH,TG(t, s).

This completes the proof. �

3.5. Proposition. Let 0 < H < 1. Then for all 0 < s < t < T , we have

(3.7) cH,T v
2G(t, s) ≤ E[XH

t X
H
s ] ≤ CH,T v2G(t, s).

Proof. For 0 < H < 1/2, the left inequality in (3.7) follows from Lemma 3.3. Next, we
prove the right estimate in (3.7) holds.

E[XH
t X

H
s ] = v2

∫ s

0

F (t, u)F (s, u)du

≤ v2

∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdn

+ v2

∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1(s2 − u2)H−

1
2 s−1du

+ v2

∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1du

∫ s

u

(m2 − u2)H−
1
2m−1dm

+ v2

∫ s

0

u3−2H(s2 − u2)H−
1
2 s−1du

∫ t

u

(m2 − u2)H−
1
2m−1dm

+ v2

∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn.

Thus, Lemma 3.4 yields the right estimate in (3.7).
For 1/2 < H < 1, by an elementary calculus we have

1

2
e−t−sv2G(t, s) ≤ EXH

t X
H
s ≤

1

2
v2G(t, s).

This completes the proof. �
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3.6. Lemma. Let 0 < H < 1, then∫ t

s

F 2(t, u)du ≤ CH,T (t− s)2H , 0 ≤ s ≤ t.

Proof. Let 1
2
< H < 1, then∫ t

s

F 2(t, u)du = CH,T e
−2t

∫ t

s

u3−2Hdu
∫ t

u

∫ t

u

(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 em+ndmdn

≤ CH,T
∫ t

s

∫ t

s

∫ m∧n

s

u3−2H(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 dudmdn

≤ CH,T
∫ t

s

∫ t

s

∫ m∧n

0

u3−2H(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 dudmdn

≤ CH,T (t− s)2H .

Let 0 < H < 1
2
, we have

|F (t, u)| ≤ CH,Tu
3
2
−H
(∫ t

u

(m2 − u2)H−
1
2m−1dm+ (t2 − u2)H−

1
2 t−1

+

∫ t

u

(m2 − u2)H−
1
2m−2dm

)
:= CH,Tu

3
2
−H(I + II + III).

Since, ∫ t

s

u3−2HI2du =

∫ t

s

u3−2H

∫ t

u

∫ t

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdndu

≤
∫ t

s

du
[∫ t

u

(m− u)H−
1
2 dm

]2

= CH(t− s)2H+2.

∫ t

s

u3−2H(t2 − u2)2H−1t−2du ≤
∫ t

s

(t− u)2H−1du = CH(t− s)2H .

and ∫ t

s

u3−2HIII2du =

∫ t

s

u3−2H

∫ t

u

∫ t

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdndu

≤
∫ t

s

u3−2H

∫ t

u

∫ t

u

(m− u)H−
3
2 (n− u)H−

3
2 u2H−3dmdndu

=

∫ t

s

[∫ t

u

(m− u)H−
3
2 dm

]2

du = CH

∫ t

s

(t− u)2H−1du = CH(t− s)2H .

Hence,
∫ t
s
F 2(t, u)du ≤ CH,T (t− s)2H . This completes the proof. �

3.7. Theorem. For all 0 ≤ s < t < T . Let

(3.8) σ2
t,s = E[(XH

t −XH
s )2].

Then,

(3.9) v2cH,T (t− s)2H ≤ σ2
t,s ≤ v2CH,T (t− s)2H .
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Proof. By Theorem 3.2, we have

σ2
t,s = v2

∫ t

0

[F (t, u)− F (s, u)1[0,s](u)]2du

= v2

∫ s

0

[F (t, u)− F (s, u)]2du+ v2

∫ t

s

F 2(t, u)du

≥ v2

∫ t

s

F 2(t, u)du ≥ cH,T v2(t− s)2H .

The right inequality follows from Lemma 3.1 and Lemma 3.6. This completes the proof.
�

The following result show the subfractional Ornstein-Uhlenbeck process is not of long
range dependence.

3.8. Proposition. Let 0 < H < 1, and let

ρH(n) = E[XH
1 (XH

n+1 −XH
n )],

for every positive integer n. Then
∑∞
n=1 |ρH(n)| <∞.

Proof. Let first consider 1
2
< H < 1. Clearly, we have

e−1

∫ n+1

u

(m2 − u2)H−
3
2 emdm−

∫ n

u

(m2 − u2)H−
3
2 emdm ∼ enn2H−3, n→∞.

It follows that

|ρH(n)| = v2

∣∣∣∣∫ n+1

0

F (1, u)[F (n+ 1, u)− F (n, u)]dBu

∣∣∣∣ ∼ n2H−3.

Thus,
∞∑
n=1

|ρH(n)| <∞.

On the other hand, if 0 < H < 1/2, we have

e−1

∫ n+1

u

(m2−u2)H−
1
2m−1emdm−

∫ n

u

(m2−u2)H−
1
2m−1emdm ∼ enn2H−2, n→∞,

[(n+ 1)2 − u2]H−
1
2 (n+ 1)−1 − (n2 − u2)H−

1
2 n−1 ∼ n2H−2, n→∞,

e−1

∫ n+1

u

(m2−u2)H−
1
2m−2emdm−

∫ n

u

(m2−u2)H−
1
2m−2emdm ∼ enn2H−2, n→∞.

So,

|ρH(n)| = E[XH
1 (XH

n+1 −XH
n )]

= v2

∣∣∣∣∫ n+1

0

F (1, u)[F (n+ 1, u)− F (n, u)]dBu

∣∣∣∣ ≤ CHv2n2H−2.

which leads to
∑∞
n=1 |ρH(n)| <∞. �
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4. Existence of the intersection local time
The aim of this section is to prove the existence of the intersection local time of two in-

dependent subfractional Ornstein-Uhlenbeck processXH = {XH
t = (XH,1

t , ···, XH,d
t ), 0 ≤

t ≤ T} and X̃H = {X̃H
t = (X̃H,1

t , · · ·, X̃H,d
t ), 0 ≤ t ≤ T} on Rd, d ≥ 2 with the same

index H ∈ (0, 1). The intersection local time is formally defined as : for every T > 0

(4.1) `T =

∫ T

0

∫ T

0

δ(XH
t − X̃H

s )dsdt,

where δ denotes the Dirac delta function. As we pointed out, this definition is only formal.
In order to give a rigorous meaning to `T , we approximate the Dirac delta function by
the heat kernel

pε(x) = (2πε)−
d
2 e−

|x|2
2ε , x ∈ Rd.

Then, we consider the following family of random variables indexed by ε > 0

(4.2) `ε,T =

∫ T

0

∫ T

0

pε(X
H
t − X̃H

s )dsdt.

Using the following classical equality

pε(x) =
1

(2πε)d/2
e−
|x|2
2ε =

1

(2π)d

∫
Rd
ei〈ξ,x〉e−

|ξ|2
2
εdξ,

we have

`ε,T =

∫ T

0

∫ T

0

pε(X
H
t − X̃H

s )dsdt =
1

(2π)d

∫ T

0

∫ T

0

∫
Rd
ei〈ξ,X

H
t −X̃

H
s 〉e−

|ξ|2
2
εdξdsdt.

Let σ̄2
t,s := E(XH,i

t − X̃H,i
s )2, σ2

t := E(XH,i
t )2, i = 1, 2. We have

E(`ε,T ) =
1

(2π)d

∫ T

0

∫ T

0

∫
Rd
E(ei〈ξ,X

H
t −X̃

H
s 〉)e−

|ξ|2
2
εdξdsdt

=
1

(2π)d

∫ T

0

∫ T

0

∫
Rd
e−

1
2

(ε+σ̄2
t,s)|ξ|2dξdsdt

=
1

(2π)d/2

∫ T

0

∫ T

0

(ε+ σ̄2
t,s)
− d

2 dsdt,

where we have used the fact that∫
Rd
e−

1
2

(ε+σ̄2
t,s)|ξ|2dξ =

(
2π

ε+ σ̄2
t,s

)d/2
.

We also have

(4.3)

E(`2ε,T ) =
1

(2π)2d

∫
R2d

E[ei〈ξ,X
H
t −X̃

H
s 〉+i〈η,X

H
u −X̃

H
v 〉]× e−

ε(|ξ|2+|η|2)
2 dξdηdsdtdudv.

Let we introduce some notations that will be used throughout this paper

λ = V ar(XH,1
t − X̃H,2

s ), ρ = V ar(XH,1
t′ − X̃

H,2
s′ ),

and

µ = Cov(XH,1
t − X̃H,2

s , XH,1
t′ − X̃

H,2
s′ ).
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Using the above notation, we can rewrite (4.3) as followings:

(4.4)

E(`2ε,T ) =
1

(2π)2d

∫
[0,T ]4

∫
R2d

exp{−1

2
[(λ+ ε)|ξ|2 + (ρ+ ε)|η|2

+ 2µ〈ξ, η〉]}dξdηdsdtds′dt′

=
1

(2π)d

∫
[0,T ]4

[(λ+ ε)(ρ+ ε)− µ2]−
d
2 dsdtds′dt′.

Using the local nondeterminism of subfractional Ornstein-Uhlenbeck process, we have
the follows Lemmas (see also Hu [13]).

4.1. Lemma. (1) For 0 < s < s′ < t < t′ < T , we have

λρ− µ2 ≥ kv2[t2H + s2H ][(t′ − t)2H + (s′ − s)2H ],

(2) For 0 < s′ < s < t < t′ < T , we have

λρ− µ2 ≥ kv2[(t2H + s2H)(t′ − t)2H + (t′2H + s′2H)(s− s′)2H ],

(3) For 0 < s < t < s′ < t′ < T , we have

λρ− µ2 ≥ kv2[(t2H + s2H)(t′ − t)2H + (t′2H + s′2H)(s− s′)2H ].

where k > 0 is an enough small constant.

4.2. Lemma. Let

AT :=

∫
[0,T ]4

(λρ− µ2)−
d
2 dsdtds′dt′.

Then AT <∞ if and only if Hd < 2.

Proof. First, we give the proof of sufficient condition. Let Hd < 2. We have

AT = 2

(∫
I1

+

∫
I2

+

∫
I3

)
(λρ− µ2)−

d
2 dsdtds′dt′,

where
I1 = {(s, t, s′, t′) : 0 < s < s′ < t < t′ < T},
I2 = {(s, t, s′, t′) : 0 < s′ < s < t < t′ < T},
I3 = {(s, t, s′, t′) : 0 < s < t < s′ < t′ < T}.

For (s, t, s′, t′) ∈ I1, we have∫
I1

(λρ− µ2)−
d
2 dsdtds′dt′

≤ CH,T kv2

∫ T

0

∫ T

s

∫ T

s′

∫ T

t

t−
Hd
2 s−

Hd
2 (t′ − t)−

Hd
2 (s′ − s)−

Hd
2 dt′dtds′ds

≤ CH,T kv2

∫ T

0

∫ T

s

∫ T

s′
t−

Hd
2 s−

Hd
2 (s′ − s)−

Hd
2 dtds′ds

≤ CH,T kv2

∫ T

0

∫ s′

0

s−
Hd
2 (s′ − s)−

Hd
2 dsds′ ≤ CH,T kv2

∫ T

0

s1−Hdds <∞.

By a similar way, we can prove that∫
I2

(λρ− µ2)−
d
2 dsdtds′dt′ <∞,

∫
I3

(λρ− µ2)−
d
2 dsdtds′dt′ <∞.

Now, we turn to the proof of the necessary condition. By Proposition 3.5 one can get

λ ≤ CH,T v2(t2H + s2H), ρ ≤ CH,T v2(t′2H + s′2H),
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and

µ2 ≥ cH,T v2[t2H + s2H + t′2H + s′2H

− 1

2
((t+ s)2H + (t′ + s′)2H + |t− s|2H + |t′ − s′|2H)].

So,

λρ− µ2 ≤ CH,T v2{(t2H + s2H)(t′2H + s′2H)− [t2H + s2H + t′2H + s′2H

− 1

2
((t+ s)2H + (t′ + s′)2H + |t− s|2H + |t′ − s′|2H)]}.

Hence, making a change to spherical coordinates, as the integrand is always positive, we
have

AT =

∫
[0,T ]4

(λρ− µ2)−
d
2 dsdtds′dt′ ≥

∫
DT

(λρ− µ2)−
d
2 dsdtds′dt′

≥
∫ T

0

r3−2Hd

∫
Θ

φ(θ)dθ,

where DT := {(s + t + s′ + t′) ∈ R4
+ : s2 + t2 + s′2 + t′2 ≤ ε2}. Note that the angular

integral is different from zero thanks to the positivity of the integrand. It follows that if
AT <∞, then Hd < 2. Thus completes the proof. �

From Lemma 4.2, we get the following Theorem.

4.3. Theorem. Let H ∈ (0, 1). Then `ε,T converges in L2(Ω) as ε → 0 if and only if
Hd < 2. Morever, if the limits denoted by `T , then `T ∈ L2(Ω).

Proof. A slight extension of (4.4) yields

E(`ε,T `η,T ) =
1

(2π)d

∫
[0,T ]4

[(λ+ ε)(ρ+ ε)− µ2]−
d
2 dsdtds′dt′.

Consequently, a necessary and sufficient condition for the convergence in L2(Ω) of `ε,T
is that

AT :=

∫
[0,T ]4

(λρ− µ2)−
d
2 dsdtds′dt′ <∞.

Thus, it is sufficient to prove that AT < ∞ if and only if Hd < 2. By Lemma 4.2, this
complete the proof. �

Conclusions. In this paper, we discuss and analyze the subfractional Ornstein-
Uhlenbeck process and show that this process is local nondeterministic. At the same time,
we establish several estimates for the increments of the process, and give the sufficient and
necessary conditions for the existence of the intersection local time of two independent
subfractional Ornstein-Uhlenbeck process. In a sequel of this paper we will study the
Ornstein-Uhlenbeck process driven by general Gaussian process.
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