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Asymptotic properties of risks ratios of shrinkage
estimators
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Abstract

We study the estimation of the mean θ of a multivariate normal dis-
tribution Np

(
θ, σ2Ip

)
in Rp, σ2is unknown and estimated by the chi-

square variable S2 ∼ σ2χ2
n. In this work we are interested in studying

bounds and limits of risk ratios of shrinkage estimators to the max-
imum likelihood estimator, when n and p tend to infinity provided

that limp→∞
‖θ‖2

pσ2
= c.The risk ratio for this class of estimators has a

lower bound Bm =
c

1 + c
, when n and p tend to infinity provided that

limp→∞
‖θ‖2

pσ2
= c.We give simple conditions for shrinkage minimax es-

timators, to attain the limiting lower bound Bm. We also show that
the risk ratio of James-Stein estimator and those that dominate it, at-
tain this lower bound Bm (in particularly its positive-part version).We
graph the corresponding risk ratios for estimators of James-Stein δJS ,
its positive part δ+JS , that of a minimax estimator, and an estimator
dominating the James-Stein estimator in the sense of the quadratic risk
( polynomial estimators proposed by Tze Fen Li and Hou Wen Kuo [13])
for some values of n and p.
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1. Introduction
Since the papers of Stein [10],[11] and James and Stein [6], many studies were car-

ried out in the direction of shrinkage estimators, of the mean θ of a multivariate normal
distribution X ∼ Np

(
θ, σ2Ip

)
in Rp. In these works one estimates the mean θ of a multi-

variate normal distribution Np
(
θ, σ2Ip

)
in Rp by shrinkage estimators deduced from the

empirical mean estimator, which are better in quadratic loss than the empirical mean
estimator. A summary of these proceedings is made by Hoffmann [5] who presents an
expository development of Stein estimation in several distribution families. He consid-
ered both the point estimation and confidence interval cases. Emphasis is laid on the
chronological development. In our work we are interested only in the case where the
observation X is Gaussian.

More precisely, if X represents an observation or a sample of multivariate normal
distribution Np

(
θ, σ2Ip

)
, the aim is to estimate θ by an estimator δ relatively at the

quadratic loss function :

(1.1) L (δ, θ) = ‖δ − θ‖2p
where‖.‖p is the usual norm in Rp. To this loss we associate its risk function:

R (δ, θ) = Eθ (L (δ, θ)) .

James and Stein [6] introduced a class of estimators improving δ0 = X, when the dimen-
sion of the space of the observations p is > 3, denoted by

(1.2) δJS =

(
1− (p− 2)S2

(n+ 2) ‖X‖2

)
X ,

in the case where σ2 is unknown where S2 ∼ σ2χ2
n is an estimate of σ2, independent of

X.
Baranchik [1] proposed the positive-part version of the James-Stein estimator, an

estimator dominating the James-Stein estimator when p > 3:

(1.3) δ+
JS

= max

(
0, 1− (p− 2)S2

(n+ 2) ‖X‖2

)
X.

Robert [9] gives an explicit formula of its quadratic risk. We give a simple demonstration
of this domination in Section 4.

Casella and Hwang [4] studied the case where σ2 is known
(
σ2 = 1

)
and showed that

if the limit of the ratio ‖θ‖
2

p
, when p tends to infinity, is a constant c > 0, then

lim
p→+∞

R(δJS (X) , θ)

R(X, θ)
= lim
p→+∞

R(δ+JS (X) , θ)

R(X, θ)
=

c

1 + c
, c > 0.

Li Sun [7] has considered the following ANOVA1 model :
(Xij | θj , σ2) ∼ N( θj , σ

2) i = 1, ..., n, j = 1, ...,m where E(Xij) = θj for
the group j and var(Xij) = σ2 is unknown. In this case it is clear that the maximum

likelihood estimator, denoted by δ0, has risk R(δ0, θ) =
mσ2

n
.

The James-Stein estimators are written in this case

δJS = (δ1JS , δ
2
JS , ..., δ

m
JS)t

with

δjJS =

(
1− (m− 3)S2

(N + 2)T 2

)
(Xij −X) +X, j = 1, ...,m
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and

S2 =

n∑
i=1

m∑
j=1

(Xij −Xj)
2 , T 2 = n

m∑
j=1

(Xj −X)2 ,

Xj =

∑n
i=1Xij

n
, X =

∑m
j=1 Xj

m
, N = (n− 1)m .

He shows that for any estimator of the form

δ = (δ1, ..., δm)t where δj =
[
1− ψ

(
S2, T 2)] (Xj −X) + X, j = 1, ...,m ,

if lim
m→+∞

1
m

(
m∑
j=1

(
θj − θ

)2)
= c exists, then lim

m→+∞

R(δ, θ)

R (δ0, θ)
>

c

c+ σ2

n

and also lim
m→+∞

R(δJS , θ)

R(δ0, θ)
=

c

c+ σ2

n

. On the other hand
c

c+ σ2

n

constitutes a lower bound for the ratio lim
m→+∞

R(δ, θ)

R (δ0, θ)

and is equal to lim
m→+∞

R(δJS , θ)

R(δ0, θ)
.

Li Sun [7] also shows that this bound is attained for a class of estimators defined by

δ = (δ1, ..., δm)t where δj =

[
1− ψ

(
S2, T 2) S2

T 2

]
(Xj −X) + X, j = 1, ...,m

and ψ satisfies certain conditions.
This bound is also attained for any estimator dominating the James-Stein estimator,

in particular the positive-part version of the James-Stein estimator.
Finally, we note that if n tends to infinity then the ratio

c

c+ σ2

n

tends to 1, and thus

the risk of the James-Stein estimator is that of δ0 ( when m and n tend to infinity).
Maruyama [8] considered the following model : Z ∼ Nd (θ, Id) and the so-called lp-

norm given by: ‖z‖p =
{∑i=d

i=1 |zi|
p
} 1
p , p > 0.

He also notes:‖z‖mp =
{∑i=d

i=1 |zi|
p
}m
p
. He defined a new class of James-Stein estima-

tors with ‘lp-norm based shrinkage factor, defined as follows :
θ̂φ = (θ̂1φ, θ̂2φ, ..., θ̂dφ) with: θ̂iφ =

(
1− φ(‖z‖p)/ ‖z‖

2−α
p |zi|α

)
zi where 0 ≤ α <

(d− 2)/d− 1), p > 0. (Since some components of the estimator can be exactly zero, the
choice between a full model and reduced models is possible).

When d ≥ 3, he establishes minimaxity and sparsity simultaneously, of this class of
estimators with ‘lp-norm based shrinkage factor, under conditions on θ̂φ, and any positive
p.

Note that the risk functions of these estimators are calculated relatively to the usual
quadratic loss function (1.1).

The calculation of risk ratios in this case, and the conditions on the report of the
lp-norm of θ to the dimension of its space, change completely. Extension of our work to
this type of estimators presents technical difficulties.

In our work we consider a different model and we obtain for several classes of shrink-
age estimators ( in particular the James-Stein estimator and its positive-part) that if

lim
p→+∞

‖θ‖2

σ2p
= c then the risk ratios tend to

c

1 + c
< 1, when n and p tend to infinity.

In the following we denote the general form of a shrinkage estimator as follows:

(1.4) δ =
(
1− ψ

(
S2, ‖X‖2

))
X.
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We adopt the model X ∼ Np
(
θ, σ2Ip

)
and independently of the observations X, we

observe S2 ∼ σ2χ2
n an estimator of σ2. Note that R(X, θ) = pσ2 is the risk of the

maximum likelihood estimator.
In Section 2, we recall two results obtained in the paper of Benmansour and Ham-

daoui [2]. The authors showed, that if limp→∞
‖θ‖2

pσ2
= c (> 0) , then the risk ratio of

James-Stein estimator δJS to the maximum likelihood estimator X, tends to the value
2

n+2
+ c

1 + c
when p tends to infinity and n is fixed. The second result indicates that un-

der the condition limp→∞
‖θ‖2

pσ2
= c (> 0) , the risk ratio of James-Stein estimator δJS

to the maximum likelihood estimator X, tends to the value
c

1 + c
when n and p tend

simultaneously to infinity. We also get the same results with James-Stein positive-part
estimator.

In the first part of Section 3 we show that under condition lim
p→+∞

‖θ‖2

σ2p
= c, lim

n,p→+∞

R(δ, θ)

R(X, θ)
≥

c

1 + c
and we prove by an argument which is different from the one in Benmansour and

Hamdaoui [2], that under the same condition lim
p→+∞

‖θ‖2

σ2p
= c , lim

n,p→+∞

R(δJS , θ)

R(X, θ)
=

c

1 + c
.

We deduce that any shrinkage estimator defined in (1.4) dominating the James-Stein es-
timator also satisfies this property. In the second part of this section, we show that

if lim
p→+∞

‖θ‖2

σ2p
= c, then lim

n,p→+∞

R(δ, θ)

R(X, θ)
≥ c

1 + c
on the one hand, and for certain forms

of ψ, we show that lim
n,p→+∞

R(δ, θ)

R(X, θ)
=

c

1 + c
.

In Section 4 we consider conditions of minimaxity of an estimator, and show that for
certain forms of minimax δ, we have the same result as above.

By taking a class of estimators proposed by Benmansour and Mourid [3] (Proposition
4.4), estimators dominating the James-Stein estimator in the case σ2 is known, we propose
a simple proof of the domination of the James Stein estimator by its positive-part in the
case σ2 is unknown.

Finally, we graph the corresponding risks ratios for estimators of James-Stein δJS , its
positive-part δ+JS , that of a minimax estimator, and an estimator dominating the James-
Stein estimator in the sense of the quadratic risk ( polynomial estimators proposed by
Tze Fen Li and Hou Wen Kuo [13] ) for various values of n and p.

2. Preliminaries
We recall that if X is a multivariate Gaussian random Np

(
θ, σ2Ip

)
in Rp, then U =

‖X‖2

σ2
∼ χ2

p (λ) where χ2
p (λ) denotes the non-central chi-square distribution with p

degrees of freedom and non-centrality parameter λ =
‖θ‖2

2σ2
.

In this case, for σ2 = 1, Casella and Hwang [4] have shown the inequalities

1(
p− 2 + ‖θ‖2

) ≤ E(
1

‖X‖2
) ≤ p

(p− 2)
(
p+ ‖θ‖2

) , p ≥ 3

that we generalize in the following lemma, in the case σ2 is unknown.

2.1. Lemma. Let X ∼ Np(θ, σ2Ip); if p ≥ 3 then



1185

(2.1)
1

σ2
(
p− 2 + ‖θ‖2

σ2

) ≤ E(
1

‖X‖2
) ≤ p

σ2 (p− 2)
(
p+ ‖θ‖2

σ2

)

Proof. It follows immediately from the inequalities of Casella and Hwang [4], since
X

σ
∼

Np
(
θ
σ
, Ip
)

�

From Robert [9], it is clear that the risk of the James-Stein estimator given in (1.2) is

R(δJS , θ) = σ2

{
p− n

n+ 2
(p− 2)2E

(
1

p− 2 + 2K

)}

with K ∼ P
(
‖θ‖2

2σ2

)
being the Poisson distribution of parameter

‖θ‖2

2σ2
.

2.2. Theorem. If lim
p→+∞

‖θ‖2

pσ2
= c(> 0) , we have

(2.2) lim
p→+∞

R(δJS , θ)

R (X, θ)
=
c+ 2

n+2

c+ 1
.

Proof. See Benmansour and Hamdaoui [2]. �

2.3. Corollary. If lim
p→+∞

‖θ‖2

pσ2
= c (> 0) , we have

(2.3) lim
n,p→+∞

R(δJS , θ)

R (X, θ)
=

c

c+ 1
.

Proof. See Benmansour and Hamdaoui [2]. �

3. Lower bound of shrinkage estimators
To calculate the risk function, we recall a lemma similar to Lemma 2.1 of Li Sun [7].

3.1. Lemma. Let K ∼ P
(
‖θ‖2

2σ2

)
. Then

(a) E
{
f
(
S2, ‖X‖2

)}
= E

{
f
(
σ2χ2

n, σ
2χ2

p+2K

)}

(b) E

{
g
(
S2, ‖X‖2

) p∑
j=1

θjXj

}
= 2σ2 E

{
K g

(
σ2χ2

n, σ
2χ2

p+2K

)}
for any functions of two variables such that all expectations of (a) and (b) exist.

Proof. Analogous to the proof of Lemma 2.1 of Li Sun [7]. �

In the case of our model, Theorem 2.1 of Li Sun [7] is written as follows:
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3.2. Theorem. The risk of the estimator given in (1.4) is

R (δ , θ) = σ2E
{
ψ2
K χ2

p+2K − 2ψK
(
χ2
p+2K − 2K

)
+ p
}

where ψK = ψ
(
σ2χ2

n, σ
2χ2

p+2K

)
and K ∼ P

(
‖θ‖2

2σ2

)
.

Furthermore R (δ , θ) ≥ Bp (θ) with

Bp (θ) = σ2

{
p− 2− E

{
(p− 2)2

p− 2 + 2K

}}
.

Proof. Analogous to the proof of Theorem 2.1 of Li Sun [7], using Lemma 2.1. �

We set bp (θ) =
Bp (θ)

R(θ,X)
, then using Lemma 3.1 of Li Sun [7] and the fact that

R(θ,X) = pσ2, we have

p− 2

p
− (p− 2)2

p2
1

p−4
p

+ ‖θ‖2
pσ2

≤ bp (θ) ≤ p− 2

p
− (p− 2)2

p2
1

p−2
p

+ ‖θ‖2
pσ2

.

It is clear that if limp→∞
‖θ‖2

pσ2
= c, then

(3.1) lim
p→∞

bp (θ) =
c

1 + c

In the case where ψ(S2, ‖X‖2) = d
S2

‖X‖2
, we have δd =

(
1− d S2

‖X‖2

)
X hence

(3.2) R(δd, θ) = σ2

{
p+ n

[
d2(n+ 2)− 2d(p− 2)

]
E

(
1

p− 2 + 2K

)}
.

For d =
(p− 2)

(n+ 2)
we obtain the James-Stein estimator ( defined in (1.2)) which minimizes

the risk of δd whose quadratic risk is

(3.3) R(δJS , θ) = σ2

{
p− n

n+ 2
(p− 2)2E

(
1

p− 2 + 2K

)}
.

Next we are interested in the ratios
R(δ, θ)

R(X, θ)
in particular when n and p tend to in-

finity. Casella and Hwang [4], showed in the case σ2 = 1 that if limp→∞
‖θ‖2

p
=

c(c > 0) then limp→+∞
R(δJS (X) , θ)

R(X, θ)
=

c

1 + c
. Li Sun [7] in his case showed that

if lim
p→+∞

∑p
j=1 (θj−θ)2

p
= c(c > 0), then limp→+∞

R(δ, θ)

R(δ0, θ)
≥ c

σ2

n
+ c

and also limp→∞
R(δJS , θ)

R(δ0, θ)
=

c
σ2

n
+ c

and therefore limn,p→∞
R(δJS , θ)

R(δ0, θ)
= 1.

We show in our work that if limp→∞
‖θ‖2

σ2p
= c, then limn,p→∞

R(δ, θ)

R(X, θ)
≥ c

1 + c
on

the one hand, and for some forms of δ, we show that limn,p→∞
R(δ, θ)

R(X, θ)
=

c

1 + c
.

Thus we ameliorate the result of Li Sun [7], obtaining a limit strictly less than 1.
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3.3. Proposition. If limp→∞
‖θ‖2

σ2p
= c, then

(3.4) lim
n,p→∞

R(δ, θ)

R(X, θ)
≥ c

1 + c
,

(3.5) lim
n,p→∞

R(δJS , θ)

R(X, θ)
=

c

1 + c
.

Proof. Formula (3.4) follows immediately from Theorem 3.2 and Formula (3.1). For-
mula (3.5) follows immediately from Corollary 2.3. Indeed Theorem 3.2 implies that
R(δJS , θ)

R(X, θ)
≥ Bp(θ)

R(X, θ)
= bp(θ), and from (3.3), Lemma (2.1) and (3.1) we have

2
n+2

+ c

1 + c
≥ lim
p→∞

R(δJS , θ)

R(X, θ)
≥ c

1 + c

thus

lim
n→∞

2
n+2

+ c

1 + c
≥ lim
n,p→∞

R(δJS , θ)

R(X, θ)
≥ c

1 + c

hence

(3.6) lim
n,p→∞

R(δJS , θ)

R(X, θ)
=

c

1 + c
.

Thus we find exactly the same limit ratio Casella and Hwang [4], in the case where σ2 is
unknown. �

In the following we study the families of estimators written as follows

(3.7) δψ = δJS + lψ
(
S2, ‖X‖2

) S2

‖X‖2
X , l > 0

and we give simple conditions on ψ so that the limiting ratio limn,p→∞
R(δψ, θ)

R(X, θ)
equals

c

1 + c
, when limp→∞

‖θ‖2

σ2p
= c, where ψ is a measurable function such that E

[
ψ2
(
σ2χ2

n, σ
2χ2

p (λ)
)]
<

∞.
In this case, the difference of risks denoted by ∆ψ

JS
= R(δψ, θ)−R(δJS , θ) is:

∆ψ
JS

= E

[
l2
(
σ2χ2

n

)2
ψ2
(
σ2χ2

n, σ
2χ2

p(λ
)
)

σ2χ2
p(λ)

+ 2lσ2χ2
nψ
(
σ2χ2

n, σ
2χ2

p(λ
)]

(3.8) −2ldE

[(
σ2χ2

n

)2
ψ
(
σ2χ2

n, σ
2χ2

p(λ
)

σ2χ2
p(λ

]
− 4lλE

[
σ2χ2

n(ψ(σ2χ2
n, σ

2χ2
p+2(λ))

χ2
p+2(λ)

]
,

where λ =
‖θ‖2

2σ2
and d =

p− 2

n+ 2
, see ( Benmansour and Mourid [3]).

For estimators of the form (3.7), which are not necessarily minimax we give the fol-
lowing two results which are analogous to Theorem 3.2 of Li Sun [7] , with different
conditions on ψ and whose risks ratios attain the lower bound Bm.
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3.4. Theorem. Assume that δψ is given in (3.7) and that ψ
(
S2, ‖X‖2

)
satisfies

a)
∣∣ψ (S2, ‖X‖2

)∣∣ ≤ g (S2
)
a.s; where E

{(
g2
(
S2
))1+γ} ≤ (M (n))1+γ for someγ > 0.

If limp→∞
‖θ‖2

pσ2
= c (> 0) then

(3.9) lim
n,p→+∞

R (δψ, θ)

R (X, θ)
=

c

1 + c

for all l such that l (M(n))1/2 = O

(
1

n

)
in the neighborhood of +∞. Note that l

may depend on n .

Proof. Relation (3.8) and condition a) give

∆ψ
JS

≤ E

[
l2
(
S2
)2
g2(S2)

‖X‖2
+ 2lS2g(S2) +

2ld
(
S2
)2
g(S2)

‖X‖2

]

+4lλE(S2g(S2))E

(
1

χ2
p+2(λ)

)
thus

∆ψ
JS

≤ l2

σ2(p− 2)

(
E
[(
σ2χ2

n

)2(1+γ)/γ])γ/(1+γ)
M(n)

+2l
[
E
((
σ2χ2

n

)2)]1/2
(M(n))1/2

+
2l

σ2(n+ 2)

[
E
((
σ2χ2

n

)4)]1/2
(M(n))1/2

+4lλ

[
E
((
σ2χ2

n

)2)]1/2
(M(n))1/2

p
.

The last inequality follows from Holder inequality, Schwarz inequality, the independence

of ‖X‖2 and S2 and that E
(

1

χ2(p, λ)

)
≤ 1

p− 2
. Thus, for n close to infinity we have

∆ψ
JS

≤ 4σ2l2M(n)

p− 2

Γ
(
n
2

+ 2
γ

+ 2
)

Γ
(
n
2

)
γ/(1+γ)

+ 2lσ2(M(n))1/2[n(n+ 2)]1/2

+
2σ2l(M(n))1/2[(n+ 6)(n+ 4)(n+ 2)n]1/2

(n+ 2)

+
4lλσ2(M(n))1/2[n(n+ 2)]1/2

p
.

Now from Stirling’s formula which expresses that in the neighborhood of +∞, we have:
Γ (y + 1) '

√
2πyy+

1
2 e−y and the fact that ey = limn→+∞

(
1 + y

n

)n , we have

(3.10)

Γ
(
n
2

+ 2
γ

+ 2
)

Γ
(
n
2

)
γ/(1+γ)

'
(
n

2
+

2

γ
+ 1

)2
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thus

lim
n,p→+∞

∆ψ
JS

R (X, θ)
≤ 4l2M(n)

p(p− 2)

(
n

2
+

2

γ
+ 1

)2

+
2l(M(n))1/2[n(n+ 2)]1/2

p

+
2l(M(n))1/2[(n+ 6)(n+ 4)(n+ 2)n]1/2

p(n+ 2)

+
4lλ(M(n))1/2[n(n+ 2)]1/2

p2

Since limp→∞
2λ

p
= c and l(M(n))1/2 = O

(
1

n

)
we finally obtain

lim
n,p→+∞

∆ψ
JS

R (X, θ)
= lim
n,p→∞

R(δψ, θ)

R(X, θ)
− lim
n,p→∞

R(δJS , θ)

R(X, θ)
≤ 0

and thus from (3.4) and (3.5)

lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c
,

hence the result. �

3.5. Example. Let ψ1

(
S2, ‖X‖2

)
=

‖X‖2

S2
(
‖X‖2 + 1

) . In this case it suffices to take

g
(
S2
)

= 1
S2 and to choose l = 1 .

The following proposition gives the same result as Theorem 3.4 for a particular class
of the shrinkage function ψ

(
S2, ‖X‖2

)
. Indeed, we will choose g in L2 and not in L2(1+γ)

but with the constraint that g(S2) is monotone non-increasing.

3.6. Proposition. Assume that δψ is given in (3.7) and that ψ satisfies:
a)
∣∣ψ (S2, ‖X‖2

)∣∣ ≤ g(S2) a.s where g(S2) is monotone non-increasing such that
E
[
g2(S2)

]
≤ M (n).

If limp→∞
‖θ‖2

σ2p
= c, then

(3.11) lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c

for all l such that l (M(n))1/2 = O

(
1

n

)
in the neighborhood of +∞ ( l may depend

on n).

Proof. Analogous to the proof of Theorem 3.4, so we give a brief idea.(3.8) and condition
a) give

∆ψ
JS

≤ l2

σ2

E
[(
σ2χ2

n

)2]
E
[
g2(σ2χ2

n)
]

p− 2
+ 2lE

[
σ2χ2

n

]
E
[
g(σ2χ2

n)
]

+
2l

σ2(n+ 2)
E
[(
σ2χ2

n

)2]
E
[
g(σ2χ2

n)
]

+ 4lλ
E(σ2χ2

n)E
[
g(σ2χ2

n)
]

p
.

The last inequality comes from the fact that E
(

1

χ2(p, λ)

)
≤ 1

p− 2
and that the covari-

ance of two functions, one increasing and the other decreasing, is negative. Thus,

lim
n,p→∞

∆ψ
JS

R(X, θ)
≤ lim

n,p→∞

nl(M(n))1/2

p

(
l
(n+ 2)(M(n))1/2

(p− 2)
+ 4 +

4λ

p

)
≤ 0
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because limp→∞
2λ

p
= c , and l(M(n))1/2 = O

(
1

n

)
. We finally obtain

lim
n,p→∞

∆ψ
JS

R(X, θ)
= lim
n,p→∞

R(δψ, θ)

R(X, θ)
− lim
n,p→∞

R(δJS , θ)

R(X, θ)
≤ 0

and from (3.4) and (3.5)

lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c
,

hence the result. �

3.7. Example. Let ψ1

(
S2, ‖X‖2

)
=

‖X‖2

S2
(
‖X‖2 + 1

) , and therefore

(3.12) δψ1 = δJS +
1

‖X‖2 + 1
X.

In this case we simply take g
(
S2
)

= 1
S2 and choose l = 1.

4. Minimaxity
Now, we recall a result of Strawderman [12] about the minimaxity of the following

class of estimators. Let:

(4.1) δφ =

(
1− lφ

(
S2, ‖X‖2

) S2

‖X‖2

)
X , l > 0

4.1. Theorem. If :
a) φ

(
S2, ‖X‖2

)
is monotone non-increasing in S2 and non-decreasing in ‖X‖2 ,

b) 0 ≤ φ
(
S2, ‖X‖2

)
≤ 2(p− 2)

l(n+ 2)
, then δφ is minimax.

Proof. A simple proof of this result is as follows: For U = ‖X‖2
σ2 , we have

R(δφ, θ) = pσ2 + σ2lE

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

−σ2E

[
4l
S2∂φ

(
S2, σ2U

)
∂U

]
,

by using the equality of Stein [11]. Since φ
(
S2, ‖X‖2

)
is non-decreasing in U it suffices

to have

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]
≤ 0 .

Setting C0 =
2(p− 2)

l(n+ 2)
, we have

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

= E

[
φ
(
S2, σ2U

)
U

S2 [lS2φ
(
S2, σ2U

)
− 2(p− 2)

]]
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≤ E

[
φ
(
S2, σ2U

)
U

S2 [lS2C0 − 2(p− 2)
]]
.

Because φ
(
S2, ‖X‖2

)
is non-increasing in S2, therefore in both cases where φ

(
S2, ‖X‖2

)
>

C0 and φ
(
S2, ‖X‖2

)
≤ C0, we have

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

≤ E

[
φ
(
C0, σ

2U
)

U
S2 [lS2C0 − 2(p− 2)

]]
.

As S2 and U are independent we obtain

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

≤ E

[
φ
(
C0, σ

2U
)

U

]
E
[
l
(
S2)2 C0 − 2(p− 2)S2

]
≤ 0

hence the result. �

Note that this class of minimax estimators admits as lower bound Bm =
c

1 + c
(Propo-

sition 3.3) but does not attain it.
Then we have the following proposition which gives a class of minimax estimators

whose risks ratios attains the lower bound.

4.2. Proposition. Assume that δψ is as given in (3.7), i.e.,

(4.2) δψ = δJS + lψ
(
S2, ‖X‖2

) S2

‖X‖2
X

=

(
1−

[
S2

‖X‖2

(
p− 2

n+ 2
− lψ

(
S2, ‖X‖2

))])
X, l > 0.

If ψ satisfies the following conditions:
1) ψ

(
S2, ‖X‖2

)
is monotone non-decreasing in S2 and non-increasing in ‖X‖2 .

2)
∣∣lψ (S2, ‖X‖2

)∣∣ ≤ p− 2

n+ 2
,

then limp→∞
‖θ‖2

σ2p
= c implies

lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c

for all l such that limn→∞ l (p− 2) = 0 ( l depends on n).

Proof. It follows immediately from Theorems 3.4 and 4.1. 2 �

4.3. Example. Let the estimator

(4.3) δψ2 = δJS + lψ2

(
S2, ‖X‖2

) S2

‖X‖2
X

such that lψ2

(
S2, ‖X‖2

)
=
p− 2

n+ 2

S2

S2 + 1
exp

(
−‖X‖2

)
.
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Note that the function ψ2 satisfies the conditions of Proposition 4.2.
We note that the estimators of the form (4.1) are minimax but do not necessarily

dominate the James-Stein estimator under the usual quadratic risk.
A class of estimators dominating the James Stein estimator is given as follows:
Let:

(4.4) δφ = δJS +mφ
(
S2, ‖X‖2

)
X m > 0

where φ is a measurable positive function, such that E
[
φ2
(
S2, ‖X‖2

)]
< ∞. In this

case, the difference of risks denoted by ∆φ
JS

= R(δφ, θ)−R(δJS , θ) is:

∆φ
JS

= E
[
m2 (‖X‖2)φ2 (S2, ‖X‖2

)
+ 2m

(
‖X‖2

)
φ
(
S2, ‖X‖2

)]
−E

[
2mdS2φ

(
S2, ‖X‖2

)
+ 4mλ(φ(S2, σ2χ2

p+2(λ))
]

thus

(4.5) ∆φ
JS
≤ E

[
mφ

(
S2, ‖X‖2

) [
m ‖X‖2 φ

(
S2, ‖X‖2

)
+ 2 ‖X‖2 − 2dS2]] ,

where d =
p− 2

n+ 2
.

Then we have the following proposition.

4.4. Proposition. Estimators given in (4.2) dominate the James-Stein estimator if

1) 0 ≤ φ
(
S2, ‖X‖2

)
≤ 2

m

(
d
S2

‖X‖2
− 1

)
I(

p−2
n+2

s2

‖X‖2
−1≥0

).
2) If in addition, limp→∞

‖θ‖2

σ2p
= c, then limn,p→∞

R(δφ, θ)

R(X, θ)
=

c

1 + c
.

Proof. 1) It follows from inequality (4.5). 2) Immediate from (3.4) and (3.5). �

We observe that any estimator dominating the James-Stein estimator satisfies the
property 2 of Proposition 4.3. Thus the class of estimators:

δm = δJS + mφ
(
S2, ‖X‖2

)
= δJS + m

(
p− 2

n+ 2

S2

‖X‖2
− 1

)
I(

p−2
n+2

s2

‖X‖2
−1≥0

) = δJS +

mδ−
JS

(S2, ‖X‖2)X, dominates the James Stein estimator. And for m = 1 we have
δφ = δJS + δ−

JS
(S2, ‖X‖2)X , hence δφ = δ+

JS

(
S2, ‖X‖2

)
X dominates δJS

(
S2, ‖X‖2

)
according to Proposition 4.3.

Moreover, its risk is minimal at λ = 0, relative to the whole family of the class of
estimators δm = δJS +mδ−

JS
(S2, ‖X‖2)X.

5. Simulation
We recall the form of the estimator introduced by Tze Fen Li and Wen Hou Kuo [13].

Let X ∼ Np
(
θ, σ2Ip

)
, Y =

X

σ
∼ Np

(
θ

σ
, Ip

)
.

For all r
(

2 < r <
p+ 2

2

)
, we consider the family of polynomial estimators:

(5.1) δTZ = δJS + α(S2)
r
2X ‖X‖−r

where

α =
(r − 2)

2

(n+ p)

(n+ 2)

Γ
(
n+r
2

)
Γ
(
n+2r

2

) Γ
(
p−r
2

)
Γ
(
p−2r+2

2

) .
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It is known by Tze Fen Li and Wen Hou Kuo [13], that the risk of the estimator δTZ
is

R (δTZ , θ) = R (δJS , θ) +σ2 2α2
r
2 Γ
(
n+r
2

)
Γ
(
n
2

) [
(p− r)− (p− 2)(n+ r)

n+ 2

]
E
(
‖Y ‖−r

)
(5.2) +σ2α22r

Γ
(
n+2r

2

)
Γ
(
n
2

) E
(
‖Y ‖−2r+2) .

We recall the form of the estimators given in Example 3.7 (3.12), i.e., δψ1 = δJS +

‖X‖2

S2
(
‖X‖2 + 1

) S2

‖X‖2
X = δJS +

X

‖X‖2 + 1
, as well as in Example 4.3 (4.3), i.e., δψ2 =

δJS +
p− 2

n+ 2

S4

(S2 + 1) ‖X‖2
exp

(
−‖X‖2

)
X, of which we graph their risks ratios as well

as those of Tze Fen Li, James-Stein and the positive part- of James-Stein denoted re-
spectively:

R(δψ1 , θ)

R(X, θ)
,
R(δψ2 , θ)

R(X, θ)
,
R (δTZ , θ)

R(X, θ)
,
R(δJS , θ)

R(X, θ)
,
R(δ+

JS
, θ)

R(X, θ)
,for various values of n and p.

Fig. 1 Graph of risk ratios
R(δψ1

,θ)

R(X,θ)
,
R(δψ2

,θ)

R(X,θ)
, R(δTZ ,θ)
R(X,θ)

,
R(δ

JS
,θ)

R(X,θ)
,
R(δ+

JS
,θ)

R(X,θ)
as functions

of λ = ‖θ‖2
2σ2 for n = 10 and p = 4.
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Fig. 2 Graph of risk ratios
R(δψ1

,θ)

R(X,θ)
,
R(δψ2

,θ)

R(X,θ)
, R(δTZ ,θ)
R(X,θ)

,
R(δ

JS
,θ)

R(X,θ)
,
R(δ+

JS
,θ)

R(X,θ)
as functions

of λ = ‖θ‖2
2σ2 for n = 30 and p = 8.

We note that in both graphs, the risk ratios tend to the same limit less than 1 where
λ increases as well as n and p.

6. Conclusion
In the case of the estimate of the mean θ of a multivariate gaussian random Np (θ, Ip)

in Rp, Casella and Hwang [4] showed that if lim
p→+∞

‖θ‖2

p
= c > 0 then the ratio

R(δJS , θ)

R(X, θ)

and
R(δ+JS , θ)

R(X, θ)
tend to

c

1 + c
. In our work by taking the same model, namely X ∼

Np
(
θ, σ2Ip

)
with σ2 unknown, and estimated by the statistic S2 ∼ σ2χ2

n independent of
X, we have showed that for the shrinkage estimators of the form δ =

(
1− ψ

(
S2, ‖X‖2

))
X,

we obtain a similar ratio dependent of the sample size n, as soon as lim
p→+∞

‖θ‖2

pσ2
= c > 0.

Moreover, we obtain a ratio constant less than 1, when n and p tend simultaneously to
+∞, without assuming any order relation or functional relation between n and p. We
obtained the same result for particular forms of δ, which are not necessarily minimax,
and for other forms of δ which are minimax. Finally we concluded that any shrinkage
estimator dominating the James-Stein estimator has a risk ratio tending to

c

1 + c
when

n and p tend to infinity.
Li Sun [7] was also interested in the case where σ2 is unknown, but he studied the

behaviour of the ratio
R(δ, θ)

R(X, θ)
,
R(δJS , θ)

R(X, θ)
and

R(δ+JS , θ)

R(X, θ)
, when only p tends to infinity.

The simulations in the case of selected examples, show that the asymptotic behaviour
of risk ratios are identical and converge to the same limit that is strictly less than 1.
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An idea would be to see whether one can obtain similar ratios in the general case of the
symmetrical spherical models. Expanding our work to minimax estimators proposed by
Maruyama [8] is also an idea that we currently explore.
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