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Abstract
In this article, a testing procedure based on computational approach
testis proposed for the equality of coefficients of variation in k normal
populations. We compare this procedure to some of the existing tests;
the likelihood ratio, modified Bennett’s, score, generalized p-value tests
in terms of the estimated type I error rates and powers by using Monte
Carlo simulation. Furthermore, applications of these tests are given on
a real dataset.

Keywords: Computational approach test, Generalized p-value test, Likelihood
ratio test, Modified Bennett’s test, Score test

2000 AMS Classification: 62F03, 65C05, 65C60, 62E17.

Received 09/06/2014 : Accepted 09/09/2014 Doi : 10.15672/HJMS.2014317482

1. Introduction
The ratio of population standard deviation to the population mean is called coefficient

of variation (CV) of a population which is free from the unit of measurement. CV
has a wide range of applications in many physical, biological, medical sciences, etc.
For example, in haematology and serology, CV values of the measurement of the blood
sample taken from the different laboratories are compared to determine performances
of these laboratories [19]. Also the usage of CV includes other applications such as the
determination of instrumental precision and the homogeneity of test samples.

A very common problem in applied statistics is to test equality of coefficients of vari-
ation. Many methods are developed for this problem. Miller and Karson [14] proposed a
test for the equality of coefficients of variation in two normal populations. Doornbos and
Dijkstra [6] presented two tests which are called likelihood ratio test and non-central t
test for testing equality of coefficients of variation in k normal populations. Likelihood
ratio test involves estimators of parameters which can be only obtained from iteration
method. Gupta and Ma [11] used a better iteration method called bisection method to
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obtain these estimators of parameters. Bennet [1] proposed a test for k normal popula-
tions using transformed sample CV’s. Afterwards, this test was modified by Shafer and
Sullivan [17]. Gupta and Ma [11] developed score test for the case of k normal popula-
tions and compared their test to some of the existing tests. Fung and Tsang [8] compared
parametric and nonparametric tests by using simulation studies for the equality of coef-
ficients of variation in k normal populations. All of the test statistics mentioned above
have asymptotic chi-squared distributions with k -1 degrees of freedom. Thus, there is
no exact statistical test for the equality of coefficients of variation in k normal popu-
lations. Approximate methods have been applied to solve a number of problems when
conventional methods are difficult to apply or fail to provide exact solutions. Exact dis-
tributions of approximate methods are not known and the p-values can be only found
by simulation. One of these methods is introduced by Tsui and Weerahandi [21], which
is called the generalized p-value approach. Many researchers developed test procedures
based on the generalized p-value for hypothesis testing [22, 12, 18, 24, 13]. Liu et al.
[13] applied the generalized p-value approach for the equality of coefficients of variation
in k normal populations and compared this approach to some of the existing tests; the
likelihood ratio, modified Bennett’s, score tests.

In this paper, a computational approach test (CAT) which is one of the most popular
approximate methods is proposed for the equality of coefficients of variation in k normal
populations. The CAT method based on simulation and numerical computations uses
the maximum likelihood estimates (MLEs), and does not require the knowledge of any
sampling distribution. This approach provides an algorithmic framework based on the
Monte-Carlo simulation and numerical computations when a suitable parametric model
is assumed for a given dataset [16]. Some papers related to CAT can be given as fol-
lows. Chang et al. [3, 5] showed how the CAT can be applied to Poisson and Gamma
models for hypothesis testing. Chang and Pal [2] applied CAT to test the equality of
two population means when the variances are unknown and arbitrary. Also Chang et
al. [4] demonstrated that the CAT is as powerful as the classical F test for one-way
ANOVA under homoscedasticity. Gokpinar and Gokpinar [9] modified CAT to test the
equality of k population means when the variances are unequal. Also Gokpinar et al.
[10] proposed a test based on CAT for the equality of several inverse Gaussian means
under heterogeneity.

This article is organized as follows. In Section 2, the likelihood ratio, modified Ben-
nett’s, score tests used for the equality of coefficients of variation in k normal populations,
are presented. In Section 3, the general CAT procedure and its algorithm are given in
detail. Also in the third section the application of the CAT procedure for equality of coef-
ficients of variation in k normal populations is presented. In Section 4, simulation results
of estimated type I error rates and powers are obtained by using Monte Carlo studies.
In section 5, CAT procedure is applied to a real life dataset. Concluding remarks are
summarized in Section 6.

2. Tests for equality of coefficients of variation

In this section, the likelihood ratio, modified Bennett’s, score, generalized p-value tests
for testing equality of coefficients of variation in k normal populations, are presented.
Initially, we need to give some notations and assumptions.

Let Xi1,Xi2, · · · ,Xini be a random sample with size ni fromN
(
µi, σ

2
i

)
, i = 1, · · · , k

where µi and σ2
i are the mean and variance of ith population, respectively and the

coefficients of variation for ith population are defined as Ri = σi/µi, i = 1, ..., k. The
problem of interest involves testing:

(2.1) H0 : R1 = R2 = . . . = Rk = R against HA : ∃Ri 6= Rj i = 1, . . . , k .
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Let X̄i =
∑ni
j=1 Xij/ni, S

2
i =

∑ni
j=1

(
Xij − X̄i

)2/
ni and ri = Si

/
X̄i denote the ith

sample mean, variance and coefficients of variation for i = 1, · · · , k, respectively. Let x̄i
and s2

i denote the ith observed sample mean and variance for i = 1, · · · , k, respectively.
Similar to Liu et. al. [13], we assume,

(1) µi > 0;
(2) P

(
X̄i < 0

)
,for each of i = 1, · · · , k is very small.

2.1. Likelihood ratio test
Likelihood ratio test is proposed by Doornbos and Dijkstra [6]. The likelihood function

under H 0 is given as follows:

(2.2) L0 =
∏k
i=1

(
1√

2πµiR

)ni
exp

(
−
∑k
i=1

∑ni
j=1

(Xij−µi)
2

2µ2
iR

2

)
Differentiating the Equation (2.2) with respect to µi and R yields the following results:

(2.3) ∂ lnL0
∂R

= −
∑k
i=1

ni
R

+
∑k
i=1

∑ni
j=1

(Xij−µi)
2

µ2
iR

3 = 0,

(2.4) ∂ lnL0
∂µi

= −ni
µi

+
∑ni
j=1

Xij(Xij−µi)
µ3
iR

2 = 0, i = 1, · · · , k .

The Equation (2.3) and Equation (2.4) are simplified as follows:

(2.5)
∑k
i=1

ni

(
1+
√

1+4(1+r2i )R2

)
2(1+r2i )

−
∑k
i=1 ni = 0

(2.6) µi =
2(1+r2i )X̄i

1+
√

1+4(1+r2i )R2
, i = 1, ..., k.

As seen from Equation (2.5) and Equation (2.6), the restricted MLEs (RMLEs) of
the R and µi have no closed forms. Therefore, the numerical method called bisection
method, which is proposed by Gupta and Ma [11], could be used for the RMLEs of these
parameters. Hence, the likelihood ratio test statistic is given as follows:

(2.7) − 2 lnλ =
∑k
i=1 ni ln

(
µ̂2
i(RML)R̂

2
RML

S2
i

)
∼ χ2

k−1,

where µ̂i(RML) and R̂RML are the RMLEs of µi and R. For a given level α, this test
rejects the H 0 in Equation (2.1) if −2 lnλ > χ2

k−1,α.

2.2. Modified Bennett’s test
Shafer and Sullivan [17] modified Bennett’s test given as

(2.8) − 2 lnλ = (N − k) ln
∑k
i=1

(
di
N−k

)
−
∑k
i=1 (ni − 1) ln

(
di

ni−k

)
∼ χ2

k−1.

Here N =
∑k
i=1 ni and di = nir

2
i

/ (
r2
i + 1

)
. For a given level α, this test rejects the null

hypothesis in Equation (2.1) if −2 lnλ > χ2
k−1,α.

2.3. Score test
To test the null hypothesis in Equation (2.1), the explicit value of test statistic is given

by

(2.9) S =

[
R̂2
RML(2R̂2

RML+1)
2

]∑k
i=1

a2i
ni
∼ χ2

k−1,
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where ai =
∑ni
j=1

(
Xij − µ̂i(RML)

)2
/
µ̂2
i(RML)R̂

3
RML − ni

/
R̂RML (see [11] for details).

For a given level α, this test rejects the null hypothesis in Equation (2.1) if −2 lnλ >
χ2
k−1,α.

2.4. Generalized p-value test
Tsui and Weerahandi [21] presented the concept of generalized p-value for some

statistical testing problems. A parallel test for the equality of coefficients of variation in
k normal populations is developed as follows [13]. The null hypothesis in Equation (2.1)
can be rewritten as follows:

(2.10) H10: µ1/σ1= µ2/σ2= . . . = µk/σk .

Put C = (µ1/σ1, µ2/σ2,..., µk/σk)′ and

A =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−1
−1
...
−1


(k−1)×k

.

Thus, the null hypothesis in Equation (2.7) is equivalent to H20 : AC = 0. The
generalized pivotal quantities for µi and σi are given as follows:

Rµi = x̄i − si
Si

(Xi − µi) and Rσi = Si
si
σi

[23]. The generalized pivotal quantity for AC could be written as follows.

RAC = ARc = A

(
Rµ1

Rσ1

, ...,
Rµk
Rσk

)′
.

Here Rµi
Rσi

=
x̄i−si/Si(X̄i−µi)

si/Siσi
= x̄i√

nisi
Ui − Zi√

ni
and U2

i ∼ χ2
(ni−1), Zi ∼ N (0, 1) , i =

1, ..., k.

The conditional expectation and covariance matrix of RAC for given (x̄, s) can be written

as:

µR = A

(
E

(
Rµ1

Rσ1

(x̄, s)

)
, ..., E

(
Rµk
Rσk

(x̄, s)

))′
,

ΣR = Adiag

(
V ar

(
Rµ1

Rσ1

(x̄, s)

)
, ..., V ar

(
Rµk
Rσk

(x̄, s)

))
A′,

where

E

(
Rµ1

Rσ1

(x̄, s)

)
=

x̄i√
nisi

E (Ui) ,

V ar

(
Rµ1

Rσ1

(x̄, s)

)
=

x̄2
i

nis2
i

V ar (Ui) +
1

ni
,

and

E (Ui) =

{ √
2
π

(ni−2)!!
(ni−3)!!

, ni ≥ 3 and ni is odd√
π
2

(ni−2)!!
(ni−3)!!

, ni ≥ 4 and ni is even
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V ar (Ui) = ni − 1− (E(Ui))
2 .

The standardized expression of RAC is D = (ΣR)−1/2 (RAC − µR)and d is the observed
value of D for

(
X̄, S

)
= (x̄, s). Then ‖D‖2 = (RAC − µR)

′
Σ−1
R (RAC − µR) and the

observed value ‖d‖2under H20 : AC = 0 is equal to µ′RΣ−1
R µR. The generalized p-value

based on ‖D‖2could be given as follows:

p = P
(
‖D‖2 ≥ ‖d‖2 /H20

)
= P

(
(RAC − µR)

′
Σ−1
R (RAC − µR) ≥ µ′RΣ−1

R µR

)
= P

(∑k
i=1

[x̄i(Ui−E(Ui))−siZi]2

x̄2iV ar(Ui)+s
2
i

− 1∑k
j=1 njs

2
j/(x̄2iV ar(Ui)+s2i )

×
(∑k

i=1

[x̄i(Ui−E(Ui))−siZi]
√
nisi

x̄2iV ar(Ui)+s
2
i

)2

(2.11) ≥
∑k
i=1

(x̄iE(Ui))
2

x̄2iV ar(Ui)+s
2
i
− 1∑k

j=1 njs
2
j/(x̄2iV ar(Ui)+s2i )

(∑k
i=1

x̄iE(Ui)
√
nisi

x̄2iV ar(Ui)+s
2
i

)2
)
.

H 10 in Equation (2.10) is rejected if p< α.

3. The computational approach test
In this section, initially we introduce the general framework of CAT procedure. By

using this procedure, we give an algorithm for testing equality of coefficients of variation
in k normal populations. The algorithm of CAT based on the paper of Pal et al. [16]
can be given as follows:
Let X 1, X 2,...,X nbe random sample having a probability density function f (x/θ), where
the functional form of f is assumed to be known and θ=(θ(1),θ(2) ) is an unknown vector
in parameter space Θ. θ(1) is the parameter of interest and θ(2) is the nuisance parameter.
The problem of interest is to testH ′0 : θ(1) = θ

(1)
0 against a suitable alternativeH ′1∗. To do

this, initially we express H ′0 as H ′0∗ : η
(
θ(1), θ

(1)
0

)
= 0 where η is a scalar valued function.

The general methodology of the proposed CAT for testing H ′0∗ : η
(
θ(1), θ

(1)
0

)
= 0 against

H ′1
∗ at a desired level α is given through the following steps.

1. Calculate θ̂ML =
(
θ̂

(1)

ML, θ̂
(2)

ML

)
, where θ̂MLis maximum likelihood estimation

(MLE) of θ. Thus,η̂ML = η
(
θ̂

(1)

ML, θ
(1)
0

)
is estimated.

2. Find the MLE of θ(2) under H ′0 or H ′0∗ from the data which is called the restricted
MLE (RMLE) of θ(2) and denoted by θ̂

(2)

RML.

3. Generate artificial sample X 1, X 2,...,X n from f
(
x/θ

(1)
0 , θ̂

(2)

RML

)
a large number

of times (say m times). For each of these data, recalculate the MLE of θ(1) , i.e.,
θ̃

(1)

1 , θ̃
(1)

2 , ..., θ̃
(1)

m and η̃(j)
ML = η

(
θ̃

(1)

j , θ
(1)
0

)
, j = 1, ...,m.

4. For testing H ′0∗ : η
(
θ(1), θ

(1)
0

)
= 0 versus H ′1∗ : η

(
θ(1), θ

(1)
0

)
> 0, calculate the

p-value as p = #
(
η̃

(j)
ML > η̂ML

)/
m. In the case of p<α, H 0 is rejected.

Remark 3.1: The success of CAT depends heavily on the selection of η. For this pur-
pose, the choice of η needs a little clarification. According to Chang et. al.[5], CAT
works best (in terms of maintaining the desired level and attaining a high power) for
two different situations as follows. When we have location parameters which can take
values over the real line, we can use the standard quadratic expression for η as it is
done in classical one-way ANOVA under normality assumption. When our parameters
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are nonnegative, and so are the observations, the logarithmic transformation makes the
parameters behave like location parameters as it is done in gamma model [5]. Thus, inter-
ested parameters take nonnegative values, as we have here, firstly we use the logarithmic
transformation of parameters, and after that standard quadratic (or squared) expression

of these transformed parameters is used for η, i.e. η =
∑k
i=1 ni

(
log θ

(1)
i − log θ(1)

)2

,

where θ(1) =
∑k
i=1 θ

(1)
i

/
k.

Remark 3.2:The CAT procedure borrows ideas from the classical likelihood ratio test
as well as parametric bootstrap [2]. It is well known that the classical likelihood ratio
test is based on MLE under H0, that is, RMLE. Score test is also based on RMLE. Both
the classical likelihood ratio test and Score test use test statistics which are asymptot-
ically distributed as Chi-square under H0. However, the CAT method uses the idea of
replicating data from f

(
x/θ

(1)
0 , θ̂

(2)

RML

)
.

In the rest of this section, a test procedure based on CAT is given for testing equality
of coefficients of variation in k normal populations based on algorithm given above.

Initially, the null hypothesis given in Equation (2.1) should be expressed in terms of
suitable scalar η based on the criteria given in Remark. Thus, η is defined as shown in
Equation (3.1):

(3.1) η = η (R1, R2..., Rk) =
∑k
i=1 ni

(
log Ri − log R̄

)2
,

where R̄ =
∑k
i=1 Ri/k. It is clear that testing H 0 against H 1 is equivalent to testing

H ∗0 : η = 0against H ∗1 : η > 0. With the general idea of CAT which is given above, its
application for testing equality of coefficients of variation in k normal populations can
be given as below:

1.The sample coefficient of variation for the ith group is ri = Si
/
X̄i. Therefore,

the η̂ML is obtained η̂ML =
∑k
i=1 ni (log ri − log r̄)2 by using these sample coefficient of

variation. Here r̄ =
∑k
i=1 ri/k. The observed value of η̂ML is η̂∗ML.

2.Under H 0or H ∗0 , the restricted MLEs
(
µ̂i(RML), R̂RML

)
of (µi, R) are obtained

iteratively from Equation (2.5) and Equation (2.6) by using bisection method given in
Gupta and Ma [11].

3.Generate artificial sample Xi1, Xi2, . . . , Xini , 1 ≤ i ≤ k i.i.d. from
N
(
µ̂i(RML), µ̂

2
i(RML) × R̂2

RML

)
a large of number of times (say m times). For each

of these replicated samples, recalculate the values of η̃(j)
ML (j = 1, ...,m).

4. Calculate the p-value as p = #
(
η̃

(j)
ML > η̂∗ML

)/
m. In the case of p<α, H 0 is

rejected.

Remark 3.3: By generating artificial sample we are trying to mimic the null distribution
of η̂ML. Thus the cut-off point η̃C = η̃ML((1−α)m) is an approximation of the true critical
value based on the null model. η̂ML acts as an automatic test statistic, and helps us make
a decision based on the value of η̃C [3].

4. A simulation study
In this section for testing equality of coefficients of variation in k normal populations,

the likelihood ratio test (LRT), modified Bennett’s test (MBT), score test (SCT), gener-
alized p-value test (GPT) and CAT are compared according to type I errors and powers
for different combinations of parameters (µi, σi) and sample sizes. For this purpose, we
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consider some cases from smaller to larger sample sizes with different number of groups
as k=3, 4, 5, 6, 7. For specified nominal level of α=0.05, 5000 replications are used to
calculate the estimated type I error rates and powers of each tests. Also 5000 replications
are used to obtain the p values of GPT and CAT.

Firstly, we calculate the type I error rates of tests under null hypothesis for (µi = 3, σi = 1, i = 1, 2, . . . , k) .The
numerical results for estimated type I error rates are given as in Table 1 to Table 5.

Table 1. Estimated type I error rates of tests for k=3
n CAT GPT LRT MBT SCT

6,6,6 0.058 0.026 0.109 0.070 0.053
6,8,10 0.049 0.032 0.086 0.055 0.044

10,10,10 0.048 0.039 0.073 0.055 0.047
15,15,20 0.050 0.041 0.066 0.051 0.046
20,20,20 0.050 0.042 0.061 0.053 0.050
10,15,20 0.049 0.041 0.068 0.054 0.047
10,20,30 0.046 0.038 0.063 0.051 0.047
30,30,30 0.051 0.048 0.057 0.051 0.050

Table 2. Estimated type I error rates of tests for k=4
n CAT GPT LRT MBT SCT

6,6,6,6 0.051 0.019 0.103 0.060 0.056
6,8,10,12 0.054 0.035 0.095 0.063 0.056

10,15,20,25 0.055 0.042 0.073 0.056 0.051
10,10,10,10 0.052 0.035 0.081 0.058 0.054
10,10,15,15 0.053 0.038 0.079 0.057 0.055
20,20,20,20 0.050 0.042 0.061 0.052 0.051
15,15,20,20 0.053 0.045 0.069 0.053 0.057
10,20,20,30 0.051 0.044 0.071 0.057 0.057
30,30,30,30 0.047 0.041 0.055 0.046 0.048

Table 3. Estimated type I error rates of tests for k=5
n CAT GPT LRT MBT SCT

6,6,6,6,6 0.051 0.020 0.122 0.065 0.068
6,8,10,12,14 0.051 0.033 0.091 0.058 0.059

10,15,20,25,30 0.049 0.038 0.070 0.051 0.051
10,10,10,10,10 0.050 0.031 0.092 0.058 0.065
20,20,20,20,20 0.052 0.043 0.068 0.053 0.053
15,15,15,20,20 0.053 0.043 0.067 0.054 0.056
10,10,10,15,15 0.052 0.033 0.082 0.056 0.058
10,10,20,30,30 0.053 0.042 0.075 0.055 0.057
30,30,30,30,30 0.055 0.050 0.064 0.056 0.058

Table 4. Estimated type I error rates of tests for k=6
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n CAT GPT LRT MBT SCT
6,6,6,6,6,6 0.053 0.017 0.127 0.064 0.075

6,8,10,10,12,14 0.052 0.028 0.094 0.057 0.060
10,15,20,20,25,30 0.055 0.041 0.075 0.057 0.055
10,10,10,10,10,10 0.050 0.028 0.091 0.057 0.064
20,20,20,20,20,20 0.055 0.043 0.069 0.055 0.057
15,15,15,20,20,20 0.054 0.042 0.071 0.054 0.059
10,10,10,15,15,15 0.056 0.035 0.087 0.061 0.060
10,10,20,20,30,30 0.049 0.038 0.070 0.050 0.054
30,30,30,30,30,30 0.052 0.046 0.062 0.053 0.053

Table 5. Estimated type I error rates of tests for k=7
n CAT GPT LRT MBT SCT

6,6,6,6,6,6 0.052 0.016 0.136 0.066 0.079
6,8,10,10,10,12,14 0.053 0.029 0.099 0.063 0.073

10,15,20,20,20,25,30 0.051 0.041 0.071 0.054 0.064
10,10,10,10,10,10,10 0.052 0.030 0.095 0.058 0.073
20,20,20,20,20,20,20 0.055 0.044 0.074 0.057 0.061
15,15,15,20,20,20,20 0.052 0.038 0.067 0.052 0.056
10,10,10,15,15,15,15 0.053 0.033 0.082 0.058 0.066
10,10,20,20,20,30,30 0.049 0.036 0.069 0.054 0.058
30,30,30,30,30,30,30 0.048 0.044 0.058 0.048 0.055

As seen from Table 1-Table 5, the GPT seems to have lower the estimated type I error
rates than nominal level, especially for small sample size. Contrary to GPT, LRT has
estimated type I error rates greater than the nominal level. In the case of small sample
size, the estimated type I error rates of MBT exceed the nominal level for all k. In the
case of small sample size, the estimated type I error rates of SCT get larger than nominal
level, especially when k is large. Also, it is observed that the MBT and SCT have the
estimated type I error rates close to the nominal level for other cases. However, the CAT
seems to have the estimated type I error rates close to nominal level in all cases.

After calculating the type I error rates of five methods, we calculate the estimated
powers of the tests for different combinations of parameters and sample sizes.

Table 6. Estimated powers of tests for µi=3 (i=1,2,3)
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n R1, R2, R3 CAT GPT LRT MBT SCT
1/9,1/6,1/6 0.109 0.057 0.207 0.138 0.102

6,6,6 1/9,2/9,2/9 0.246 0.133 0.387 0.287 0.179
1/9,1/3,1/3 0.592 0.346 0.718 0.612 0.290
1/4,1/2,1/2 0.215 0.122 0.336 0.235 0.150
1/9,1/6,1/6 0.144 0.054 0.196 0.124 0.073

6,8,10 1/9,2/9,2/9 0.326 0.122 0.396 0.275 0.117
1/9,1/3,1/3 0.718 0.314 0.765 0.625 0.188
1/4,1/2,1/2 0.267 0.118 0.366 0.252 0.116
1/9,1/6,1/6 0.175 0.132 0.231 0.185 0.137

10,10,10 1/9,2/9,2/9 0.477 0.359 0.545 0.477 0.290
1/9,1/3,1/3 0.885 0.797 0.913 0.880 0.617
1/4,1/2,1/2 0.403 0.319 0.478 0.406 0.265
1/9,1/6,1/6 0.312 0.237 0.341 0.299 0.208

15,15,20 1/9,2/9,2/9 0.748 0.646 0.764 0.728 0.536
1/9,1/3,1/3 0.990 0.977 0.990 0.988 0.938
1/4,1/2,1/2 0.652 0.576 0.685 0.636 0.478
1/9,1/6,1/6 0.382 0.334 0.410 0.382 0.309

20,20,20 1/9,2/9,2/9 0.848 0.798 0.855 0.838 0.742
1/9,1/3,1/3 0.999 0.998 0.999 0.999 0.994
1/4,1/2,1/2 0.781 0.736 0.796 0.767 0.676
1/9,1/6,1/6 0.557 0.514 0.571 0.552 0.484

30,30,30 1/9,2/9,2/9 0.975 0.963 0.974 0.971 0.948
1/9,1/3,1/3 1.000 1.000 1.000 1.000 1.000
1/4,1/2,1/2 0.940 0.925 0.945 0.936 0.900

Table 7. Estimated powers of tests for µi=3 (i=1,2,3,4)
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n R1, R2, R3, R4 CAT GPT LRT MBT SCT
1/9,1/6,1/6,1/6 0.095 0.044 0.197 0.122 0.105

6,6,6,6 1/9,2/9,2/9,2/9 0.220 0.093 0.360 0.250 0.160
1/9,1/3,1/3,1/3 0.543 0.215 0.682 0.545 0.247
1/4,1/2,1/2,1/2 0.195 0.092 0.330 0.213 0.159
1/9,1/6,1/6,1/6 0.147 0.054 0.204 0.125 0.082

6,8,10,12 1/9,2/9,2/9,2/9 0.324 0.096 0.377 0.249 0.111
1/9,1/3,1/3,1/3 0.708 0.218 0.727 0.564 0.159
1/4,1/2,1/2,1/2 0.253 0.093 0.345 0.214 0.115
1/9,1/6,1/6,1/6 0.169 0.118 0.230 0.184 0.139

10,10,10,10 1/9,2/9,2/9,2/9 0.450 0.299 0.521 0.444 0.255
1/9,1/3,1/3,1/3 0.886 0.701 0.906 0.862 0.431
1/4,1/2,1/2,1/2 0.391 0.272 0.469 0.380 0.238
1/9,1/6,1/6,1/6 0.305 0.207 0.323 0.279 0.175

15,15,20,20 1/9,2/9,2/9,2/9 0.743 0.576 0.743 0.689 0.394
1/9,1/3,1/3,1/3 0.994 0.967 0.992 0.990 0.769
1/4,1/2,1/2,1/2 0.635 0.494 0.666 0.596 0.341
1/9,1/6,1/6,1/6 0.365 0.294 0.385 0.355 0.252

20,20,20,20 1/9,2/9,2/9,2/9 0.477 0.359 0.545 0.477 0.290
1/9,1/3,1/3,1/3 1.000 0.999 1.000 1.000 0.981
1/4,1/2,1/2,1/2 0.769 0.694 0.783 0.747 0.562
1/9,1/6,1/6,1/6 0.551 0.476 0.552 0.528 0.412

30,30,30,30 1/9,2/9,2/9,2/9 0.977 0.958 0.976 0.973 0.914
1/9,1/3,1/3,1/3 1.000 1.000 1.000 1.000 1.000
1/4,1/2,1/2,1/2 0.941 0.917 0.942 0.931 0.850
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Table 8. Estimated powers of tests for µi=3 (i=1,2,...,5)
n R1, R2, R3, R4, R5 CAT GPT LRT MBT SCT

1/9,1/6,1/6,1/6,1/6 0.093 0.040 0.194 0.121 0.108
6,6,6,6,6 1/9,2/9,2/9,2/9,2/9 0.190 0.076 0.338 0.221 0.161

1/9,1/3,1/3,1/3,1/3 0.491 0.165 0.639 0.481 0.227
1/4,1/2,1/2,1/2,1/2 0.186 0.073 0.333 0.205 0.167
1/9,1/6,1/6,1/6,1/6 0.143 0.047 0.184 0.114 0.075

6,8,10,12,14 1/9,2/9,2/9,2/9,2/9 0.323 0.088 0.361 0.233 0.109
1/9,1/3,1/3,1/3,1/3 0.695 0.180 0.686 0.509 0.147
1/4,1/2,1/2,1/2,1/2 0.234 0.083 0.316 0.190 0.101
1/9,1/6,1/6,1/6,1/6 0.150 0.094 0.225 0.166 0.136

10,10,10,10,10 1/9,2/9,2/9,2/9,2/9 0.416 0.234 0.482 0.401 0.222
1/9,1/3,1/3,1/3,1/3 0.879 0.609 0.897 0.845 0.358
1/4,1/2,1/2,1/2,1/2 0.345 0.220 0.425 0.328 0.216
1/9,1/6,1/6,1/6,1/6 0.256 0.168 0.282 0.235 0.155

15,15,15,20,20 1/9,2/9,2/9,2/9,2/9 0.709 0.495 0.705 0.645 0.330
1/9,1/3,1/3,1/3,1/3 0.993 0.948 0.991 0.984 0.606
1/4,1/2,1/2,1/2,1/2 0.588 0.435 0.618 0.540 0.293
1/9,1/6,1/6,1/6,1/6 0.346 0.261 0.369 0.339 0.234

20,20,20,20,20 1/9,2/9,2/9,2/9,2/9 0.844 0.729 0.840 0.814 0.541
1/9,1/3,1/3,1/3,1/3 1.000 0.995 0.999 0.999 0.918
1/4,1/2,1/2,1/2,1/2 0.748 0.644 0.758 0.714 0.481
1/9,1/6,1/6,1/6,1/6 0.531 0.449 0.535 0.506 0.377

30,30,30,30,30 1/9,2/9,2/9,2/9,2/9 0.974 0.944 0.970 0.965 0.858
1/9,1/3,1/3,1/3,1/3 1.000 1.000 1.000 1.000 0.999
1/4,1/2,1/2,1/2,1/2 0.928 0.891 0.930 0.913 0.777
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Table 9. Estimated powers of tests for µi=3 (i=1,2,...,6)
n R1, R2, R3, R4, R5, R6 CAT GPT LRT MBT SCT

1/9,1/6,1/6,1/6,1/6,1/6 0.083 0.036 0.195 0.112 0.118
6,6,6,6,6,6 1/9,2/9,2/9,2/9,2/9,2/9 0.196 0.067 0.359 0.226 0.176

1/9,1/3,1/3,1/3,1/3,1/3 0.465 0.139 0.637 0.448 0.237
1/4,1/2,1/2,1/2,1/2,1/2 0.165 0.058 0.320 0.176 0.156
1/9,1/6,1/6,1/6,1/6,1/6 0.132 0.051 0.196 0.114 0.092

6,8,10,10,12,14 1/9,2/9,2/9,2/9,2/9,2/9 0.273 0.075 0.331 0.207 0.107
1/9,1/3,1/3,1/3,1/3,1/3 0.620 0.150 0.641 0.454 0.145
1/4,1/2,1/2,1/2,1/2,1/2 0.222 0.076 0.305 0.177 0.110
1/9,1/6,1/6,1/6,1/6,1/6 0.147 0.089 0.209 0.159 0.129

10,10,10,10,10,10 1/9,2/9,2/9,2/9,2/9,2/9 0.402 0.214 0.476 0.384 0.230
1/9,1/3,1/3,1/3,1/3,1/3 0.863 0.534 0.876 0.810 0.338
1/4,1/2,1/2,1/2,1/2,1/2 0.329 0.182 0.418 0.310 0.206
1/9,1/6,1/6,1/6,1/6,1/6 0.246 0.153 0.278 0.224 0.151

15,15,15,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9 0.682 0.449 0.678 0.612 0.305
1/9,1/3,1/3,1/3,1/3,1/3 0.991 0.923 0.987 0.979 0.513
1/4,1/2,1/2,1/2,1/2,1/2 0.559 0.395 0.586 0.506 0.271
1/9,1/6,1/6,1/6,1/6,1/6 0.306 0.218 0.330 0.292 0.203

20,20,20,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9 0.680 0.439 0.671 0.605 0.290
1/9,1/3,1/3,1/3,1/3,1/3 0.999 0.991 0.998 0.997 0.818
1/4,1/2,1/2,1/2,1/2,1/2 0.718 0.590 0.727 0.673 0.418
1/9,1/6,1/6,1/6,1/6,1/6 0.507 0.407 0.499 0.471 0.331

30,30,30,30,30,30 1/9,2/9,2/9,2/9,2/9,2/9 0.971 0.919 0.964 0.955 0.776
1/9,1/3,1/3,1/3,1/3,1/3 1.000 1.000 1.000 1.000 0.999
1/4,1/2,1/2,1/2,1/2,1/2 0.922 0.863 0.919 0.894 0.695



1209

Table 10. Estimated powers of tests for µi=3 (i=1,2,...,7)
n R1, R2, R3, R4, R5, R6,R7 CAT GPT LRT MBT SCT

1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.084 0.035 0.203 0.113 0.124
6,6,6,6,6,6,6 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.168 0.059 0.339 0.203 0.173

1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.439 0.120 0.607 0.422 0.226
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.157 0.060 0.309 0.172 0.167
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.119 0.044 0.182 0.109 0.084

6,8,10,10,10,12,14 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.265 0.071 0.323 0.192 0.111
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.584 0.134 0.597 0.407 0.141
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.200 0.067 0.281 0.151 0.106
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.134 0.077 0.212 0.151 0.137

10,10,10,10,10,10,10 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.364 0.183 0.440 0.341 0.201
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.835 0.462 0.849 0.774 0.312
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.302 0.163 0.388 0.283 0.189
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.239 0.145 0.267 0.214 0.154

15,15,15,20,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.665 0.409 0.645 0.577 0.273
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.987 0.877 0.981 0.969 0.455
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.539 0.357 0.566 0.470 0.246
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.303 0.217 0.323 0.284 0.202

20,20,20,20,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.818 0.624 0.799 0.760 0.420
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.999 0.986 0.998 0.997 0.713
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.705 0.550 0.715 0.648 0.372
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.493 0.383 0.489 0.458 0.301

30,30,30,30,30,30,30 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.963 0.905 0.954 0.948 0.714
1/9,1/3,1/3,1/3,1/3,1/3,1/3 1.000 1.000 1.000 1.000 0.993
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.904 0.827 0.898 0.875 0.631

The numerical results for estimated powers of the tests are presented as above in Table
6 to Table 10. In most cases, the LRT can be disregarded because of its estimated type
I error rates exceeding the nominal level. Although the estimated type I error rates of
MBT and SCT are close to each other, the MBT performs better than the SCT in terms
of their powers.

MBT performs slightly better than the CAT in terms of powers for small sample size.
However the estimated type I error rates of MBT exceed the estimated type I error rates
of CAT for in this case. If both of the MBT and CAT are compared for other all cases,
the CAT appears to be more powerful than MBT does.

5. An application with real life dataset

In this section, the LRT, MBT, SCT, GPT and CAT are applied for two real life datasets
given as follows.

Example 5.1.The first analysis uses data collected by Nairy and Rao [15]. The data
related to survival times of patients collected from 4 hospitals, which was a part of
the data by given Fleming and Harrington [7]. The data containing failure time of the
patients and their summary statistics are presented in Table 11. 5000 replications are
used to obtain the p values of GPT and CAT. The obtained test statistics are given in
Table 12.
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Table 11. Survival time of patients from 4 hospitals and their means, standard devia-
tions and coefficient of variations
Hospitals Survival time of patients x̄i s2

i ri = si/x̄i
1 176, 105, 266, 227, 66 168 74.19 0.051
2 24, 5, 155, 54 59.5 57.84 0.128
3 58, 64, 15 45.7 21.82 0.102
4 147, 42, 305, 92, 30, 82, 265, 237, 208, 147 155.5 90.53 0.062

Table 12. The results of tests statistics
Tests Values of test statistics p
LRT 1.753 0.625
MBT 1.396 0.707
SCT 2.064 0.559
GPT - 0.699
CAT 1.621 0.754

The values in Table 12 indicate that the tests do not reject the H 0 given in Equation
(2.1) at nominal level 0.05.

Example 5.2. The second analysis uses data collected by Tsou [20]. Table 13 gives
the respective numbers of birth in 1978 on Monday, Thursday, and Saturday in the
United Kingdom and their means, standard deviations and coefficient of variations. 5000
replications are used to obtain the p values of GPT and CAT. 5000 replications are used
to obtain the p values of GPT and CAT.The obtained test statistics are given in Table
14.
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Table 13. Numbers of birth in 1978 on Monday, Thursday, and Saturday in the United
Kingdom and their means, standard deviations and coefficient of variations

Number of birth on Monday Number of birth on Thursday Number of birth on Saturday
7527 9172 9458 9252 9043 9259 9226 9387 8084 8299 7954 7946
9184 9225 8966 9021 9218 9247 9103 9268 8065 8144 8167 8313
9262 9294 9022 9135 9304 9218 9327 9159 8008 8144 7965 7874
9100 9114 8870 8702 8902 8696 8724 8582 8069 7890 7527 7787
9017 8900 8987 9195 8839 8672 8903 9044 7750 7718 7762 8064
9089 7780 9127 9201 9180 9435 9075 9175 8005 7971 8040 8233
9543 9348 9284 9877 9405 9630 10184 9984 8122 8209 8773 8859
10026 9960 9890 10206 10386 10192 10128 10284 9062 8677 8738 8951
10127 9967 9998 8481 10377 10152 9489 10292 9023 9170 8735 8648
9927 9765 9531 9425 9949 9824 9502 9501 8605 8554 8411 8415
9457 9507 9606 9592 9245 9609 9568 7915 8246 8352 8432 8275
9825 8676 9686 10196 9396 9480 9524 9398 8528 8335 8507 7939
10154 10304 10414 7846 10265 10499 10175 10177 8904 8782 8580 8474

x̄1 =9350.3 x̄2 =9471.5 x̄3 =8309.3
s2

1 =376030 s2
2 =307890 s2

3 =152300
r1 = s1

/
x̄1 =0.066 r2 = s2

/
x̄2 =0.056 r3 = s3

/
x̄3 =0.047

Table 14. The results of tests statistics
Tests Values of test statistics p
LRT 5.708 0.058
MBT 5.598 0.061
SCT 5.220 0.074
GPT - 0.064
CAT 3.014 0.057

The Table 14 shows that all of tests lead to the same conclusion, that is, all of tests
do not reject the H 0 given in Equation (2.1) at nominal level 0.05.

6. Conclusion

In this article, we propose the CAT for testing the equality of coefficients of variation
in k normal populations. We compare the CAT to some of the existing tests; the LRT,
MBT, SCT, GPT. For a different sample sizes and number of groups, we investigate the
performance of these tests using Monte Carlo simulation.

It could be observed from the simulation results that for small sample size the LRT
approach seems to have the estimated type I error rates exceeding the nominal level
and the GPT performs contrary to the LRT that its estimated type I error rates are
lower than the nominal level. However, the estimated type I error rates of CAT are
generally more conservative than other tests for all the sample size. Therefore, we could
mention that the CAT is not affected from the changes in the sample size. Furthermore,
according to power comparison results, the CAT appears to be more powerful than the
other tests when the differences between coefficients of variation in k normal populations
are increased.

Consequently, in respect to our simulation study, even when comparing different num-
ber of groups (as k=3, 4, 5, 6, 7), CAT could be suggested as a good alternative for testing
the equality of coefficients of variation in k normal populations.
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