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Mean square error comparisons of the alternative
estimators for the distributed lag models
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Abstract
The finite distributed lag models include highly correlated variables
as well as lagged and unlagged values of the same variables. Some
problems are faced for this model when applying the ordinary least
squares (OLS) method or econometric models such as Almon and Koyck
models. The primary aim of this study is to compare the performances
of alternative estimators to the OLS estimator defined by combining
the Almon estimator with some other estimators according to the mean
square error (MSE) criterion. We use Almon [2] data to illustrate our
theoretical results.
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1. Introduction
Consider the finite distributed lag model,

yt = β0xt + β1xt−1 + · · · + βpxt−p + ut, t = p+ 1, · · ·, T

(1.1) =

p∑
i=0

βixt−i + ut

where ut are IN
(
0, σ2

u

)
. The coeffients βi are called lag weights. The model in Eq.(1.1)

can be written in the matrix notation as

(1.2) y = Xβ + u
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where

y =


yp+1

yp+2

...
yT

 , β =


β0
β1
...
βp

 , X =


xp+1

xp+2

...
xT

xp
xp+1

...
xT−1

. . .

. . .

. . .

. . .

x1
x2
...

xT−p

 , u =


up+1

up+2

...
uT

 .
In case of estimating the model (1.1) by OLS, the following problems are encountered:

a) Multicollinearity problem among the explanatory variables may be occured. Be-
cause there are p lags of the same variables in the model.

b) The length of the lag, p, isn’t known. Even if p is known, if this number is large
and amount of the sample is small, it is unable to estimate the parameters.

To overcome these problems, some kind of distributed lag models have been suggested
such as Koyck and Almon models (Yurdakul [21]). The most of these estimators require
some prior information about the behavior of the β’s in (1.1). In general, the two sources
of prior information can be classified as nonstochastic and stochastic smoothness prior
(Vinod and Ullah, [19]; Gujarati, [5]).

Irving Fisher [4] initially introduced nonstochastic smoothness prior information of
the following type:

(1.3) βi = (p+ 1 − i)α 0 ≤ i ≤ p

= 0 i > p

where α is any unknown parameter. Substituting (1.3) in (1.1) gives,

yt =

[
p∑
i=0

(p+ 1 − i)xt−i

]
α+ ut

(1.4) = ztα+ ut

Thus the OLS estimate of α can be obtained from (1.4) and then using (1.3), the estimate

of βi can be obtained. A generalization of the linear nonstochastic prior on βi can be

written as

(1.5) βi = α0 + α1i+ α2i
2 + . . .+ αri

r p ≥ r ≥ 0

which is a polynomial of the rth degree. This structure on lag weights βi was proposed

by Almon [2] and is known as the Almon polynomial lag. Again, substituting (1.5) in

(1.1) we can get estimates of the α’s and then using (1.5) we can obtain the estimates of

βi . Eq. (1.5) can be written in the matrix notation as

(1.6) β = Aα

where β is given before, and

A =


1 0 0 . . . 0
1 1 1 . . . 1
...

...
...

. . .
...

1 p p2
... pr

 , α =

 α0

...
αr
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are A : (p+ 1) × (r + 1) matrix and α : (r + 1) × 1 vector. The ranks of matrices X and

A are assume to be (p+ 1) < (T − p) and (r + 1) < (p+ 1), respectively. If r < p, then

the rank of A is r+ 1. We estimate β in (1.2), under the nonstochastic prior information

on β is given by (1.6), using Almon estimation method. By substituting (1.6) in (1.2),

y = XAα+ u

(1.7) = Zα+ u, u ∼ N
(
0, σ2

u

)
is obtained. This model can be called a linear Almon distributed lag model. Then, OLS

estimator of α in model (1.7) is

(1.8) α̂A =
(
Z′Z

)−1
Z′y =

(
A′X ′XA

)−1
A′X ′y .

In this case,

(1.9) β̂A = Aα̂A

is the Almon estimator of β. β̂A is the best linear unbiased estimator (BLUE).

2. Alternative methods

In this section some alternative biased estimators to the Almon estimator are defined

for the distributed lag model.

2.1. The Almon-modified ridge estimator. Hoerl and Kennard’s ridge regression

estimator has been discussed as an alternative approach to resolve problems encountered

in due to some disadvantages of Almon estimator (Maddala [14], Vinod and Ullah [19],

Chanda and Maddala [3]). Distributed lag estimation seems tractable only when prior in-

formation on the lag coefficients is incorporated. Ridge regression introduces yet another

representation of such prior information and hence is a possible estimation procedure

(Yeo and Trivedi [20]).

The Almon-ridge estimator of α in model (1.7) is

(2.1) α̂k =
(
Z′Z + kI

)−1
Z′y

=
(
A′SA+ kI

)−1
A′X ′y k > 0

where S = X ′X. Thus

(2.2) β̂k = Aα̂k

is the Almon-ridge estimator for the model (1.2). However, the ridge estimator and the

extension given by Lindley and Smith [12] are not as promising for the distributed lag

models (Maddala, [14]). They tried various values of the k. But they are not satisfied the
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results of some empirical examples with this method. Because the selection of k reveals

several problems. Therefore, alternative estimation methods must be considered.

Swindel [16] introduced a modified ridge estimator based on prior information b0.

Almon-modified ridge estimator of α in model (1.7) is defined,

(2.3) α̂ (k, b0) =
(
Z′Z + kI

)−1 (
Z′y + kb0

)
.

As pointed out by Swindel [16], it seems more useful and reasonable in the applications

to consider the prior information. To overcome multicollinearity problem, if we take

b0 = α̂k, (2.3) is reduced to

α̂m (k) =
(
Z′Z + kI

)−1 (
Z′y + kα̂k

)
= Tkα̂A + k

(
Z′Z + kI

)−1
α̂k

(2.4) = Tkα̂A + (I − Tk) α̂k

where Tk = (Z′Z + kI)
−1
Z′Z. Substituting α̂k for b0, it is expected that α̂m (k) has

advantage according to the Almon-ridge and Almon estimators. Thus, Almon-modified

ridge estimator of β in model (1.2) is β̂m (k) = Aα̂m (k). In application b0 might well be

chosen to reflect as well as possible the prior information or restricted on β.

2.2. The Almon-modified Liu estimator. In order to overcome the multicollinearity

problem, ridge estimator that we have discussed before is widely used in practice, but

selection of k poses some problems. To overcome this problem an estimator is defined

by combining Ridge and Stein type estimators in Liu [13]. This estimator was called

Liu estimator in Akdeniz and Kaçıranlar [1]. The advantage of Liu estimator over ridge

estimator is a linear function of d and therefore selection of d is easier. Liu estimator of

β in (1.2) is

β̂d =
(
X ′X + I

)−1 (
X ′y + db

)
(2.5) =

(
X ′X + I

)−1 (
X ′X + dI

)
b, 0 < d < 1

where b is the OLS estimator for model (1.2). To overcome multicollinearity problem, if

we take α̂A instead of b, Almon-Liu estimator of α in model (1.7) is

α̂d =
(
Z′Z + I

)−1 (
Z′y + dα̂A

)
(2.6) =

(
A′SA+ I

)−1 (
A′X ′y + dα̂A

)
obtained. This estimator can be given,

α̂d =
(
Z′Z + I

)−1 (
Z′Z + dI

)
α̂A

=
(
A′SA+ I

)−1 (
A′SA+ dI

)
α̂A
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(2.7) = Fdα̂A

where Fd = (Z′Z + I)
−1

(Z′Z + dI). Thus, the Almon-Liu estimator of β is

β̂d = Aα̂d. Comparison of α̂A with α̂d and selection of d are given in Kaçıranlar [9].

Li and Yang [11] introduced a modified Liu estimator based on prior information

similar to (2.3). Almon-modified Liu estimator of α in model (1.7) is defined,

(2.8) α̂ (d, b0) =
(
Z′Z + I

)−1 (
Z′Z + dI

)
α̂A + (1 − d)

(
Z′Z + I

)−1
b0.

To overcome multicollinearity problem, if we take b0 = α̂d, (2.8) is reduced to

(2.9) α̂m (d) = Fdα̂A + (I − Fd) α̂d.

Substituting α̂d for b0, it is expected that Almon-modified Liu estimator has advantage

according to the Almon-Liu and the Almon estimators.

3. Matrix mean square error comparisons

Bias and variance of an estimator β̃ are measured simultaneously by the MSE matrix,

MSE
(
β̃
)

= E
[(
β̃ − β

)(
β̃ − β

)′]
= V

(
β̃
)

+Bias(β̃)Bias(β̃)
′

where

V
(
β̃
)

= E
[(

(β̃ − E(β̃)
)(

(β̃ − E(β̃)
)′]

and

Bias
(
β̃
)

= E
(
β̃
)
− β.

For a given value of β, β̃2 is preferred to an alternative estimator, β̃1, whenMSE
(
β̃1
)
−

MSE
(
β̃2
)
is a nonnegative definite (n.n.d) matrix. Another criterion measure of good-

ness of an estimator is

smse
(
β̃
)

= tr
(
V
(
β̃
))

+
[
Bias(β̃)

]′ [
Bias(β̃)

]
,

which is called as the scalar mean squared error (smse) value of β̃.

IfMSE
(
β̃1
)
−MSE

(
β̃2
)
is a n.n.d., then smse

(
β̃1
)
−smse

(
β̃2
)
≥ 0. The converse

is not generally true (Theobald, [17]).

4. Superiority of the biased estimators under the MSE criterion

Almon-modified ridge and Almon-modified Liu estimators are biased alternatives to

the Almon estimator in the presence of multicollinearity. In the following five subsections

we compare Almon-modified ridge estimator with the Almon-ridge and Almon estimators.

Also, Almon-modified Liu estimator is compared to the Almon-Liu and Almon estimators.

In addition to these, Almon-modified ridge and Almon-Liu estimators are compared under
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the MSE criterion. Canonical form of the estimators will be discussed in order to make

these comparisons.

Model (1.7) can be written in canonical form

(4.1) y = Wγ + u, u ∼ N
(
0, σ2

u

)
where W = ZQ, γ = Q′α and Q is the orthogonal matrix whose columns constitute the

eigenvectors of Z′Z. Then

(4.2) W ′W = Q′Z′ZQ = Λ = diag (λ1, λ2, . . . , λr+1)

where λ1 ≥ λ2 ≥ . . . ≥ λr+1 > 0 are ordered eigenvalues of Z′Z. For model (4.1), we get

the following representations.

Almon estimator is,

(4.3) γ̂A = Λ−1W ′y = C1y.

Almon-ridge estimator is,

(4.4) γ̂k = (Λ + kI)−1W ′y

= GkW
′y = C2y

where Gk = (Λ + kI)−1. Here Gk is the diagonal and symmetric matrix.

Almon-modified ridge estimator is,

(4.5) γ̂m (k) = (Λ + kI)−1 (W ′y + kγ̂k
)

= (Λ + kI)−1 Λγ̂A + k (Λ + kI)−1 γ̂k

=
[
(Λ + kI)−1 + k (Λ + kI)−2]W ′y

=
[
Gk + kG2

k

]
W ′y = C3y.

Almon-Liu estimator is,

(4.6) γ̂d = (Λ + I)−1 (Λ + dI) Λ−1W ′y

= LdΛ
−1W ′y = C4y

where Ld = (Λ + I)−1 (Λ + dI). Here Ld is diagonal and symmetric matrix.

Almon-modified Liu estimator is,

(4.7) γ̂m (d) =
[
(Λ + I)−1 (Λ + dI)

]
γ̂A +

[
I − (Λ + I)−1 (Λ + dI)

]
γ̂d

= Ldγ̂A + (I − Ld) γ̂d

=
(
2Ld − L2

d

)
γ̂A

=
(
2Ld − L2

d

)
Λ−1W ′y = C5y.
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It is evident that the above mentioned estimators are homogeneous linear. For the sake

of convenience, we have an important Lemma needed in the following comparisons.

Lemma.(Trenkler, [18]). Let β̃1 and β̃2 be two homogeneous linear estimators of β

such that D = V
(
β̃1
)
− V

(
β̃2
)
is positive definite (p.d.).

If Bias
(
β̃2
)′
D−1Bias

(
β̃2
)
< σ2 then MSE

(
β̃1
)
−MSE

(
β̃2
)
is p.d..

4.1. The comparison of Almon-modified ridge estimator and Almon estima-

tor. In this section, we will discuss the superiority of Almon-modified ridge estimator

over the Almon estimator by the MSE criterion. Also, we want to show that for any

k > 0, we can always find k so that Almon-modified ridge estimator has less MSE as

compared with Almon estimator.

As regards the performance by the variance-covariance matrix, we have the following

theorem.

4.1. Theorem. Let k be fixed and k > 0.

If b′1D−1
1 b1 < σ2

u, then MSE (γ̂A) −MSE (γ̂m (k)) is p.d.,

where D1 = C1C
′
1 − C3C

′
3, C1 = Λ−1W ′, C3 =

[
Gk + kG2

k

]
W ′ and

b1 = Bias (γ̂m (k)) = −k2G2
kγ.

Proof. Using the estimators γ̂A and γ̂m (k) in (4.3) and (4.5), the variance-covariance

matrix of unbiased γ̂A is

(4.8) V (γ̂A) = σ2
uΛ−1

and the variance-covariance matrix and bias of γ̂m (k) are respectively,

V (γ̂m (k)) = σ2
u

(
Gk + kG2

k

)
Λ
(
Gk + kG2

k

)
(4.9) = σ2

uGk (I − kGk) (I + kGk)2 ,

(4.10) Bias (γ̂m (k)) = −k2G2
kγ

obtained. Then using (4.9) and (4.10), MSE matrix of γ̂m (k) is,

(4.11) MSE (γ̂m (k)) = σ2
uGk (I − kGk) (I + kGk)2 + k4G2

kγγ
′G2

k.

Considering the following difference from (4.8) and (4.9), we obtain

∆1 = V (γ̂A) − V (γ̂m (k)) = σ2
u

(
C1C

′
1 − C3C

′
3

)
(4.12) = σ2

uk
2Gk

[
Gk + Λ−1 + kG2

k

]
Gk.

Since
[
Gk + Λ−1 + kG2

k

]
> 0, ∆1 > 0, namely D1 will be p.d. for k > 0. By the Lemma,

the proof is completed. �
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4.2. The comparison of Almon-modified ridge estimator and Almon-ridge

estimator. We have already seen in the previous section that Almon-modified ridge es-

timator is superior to the Almon estimator. Now, the aim is to compare the performance

of Almon-modified ridge to the Almon-ridge estimator according to the MSE criterion .

In the following theorem, we have obtained sufficient condition for the Almon-modified

ridge estimator to outperform the Almon-ridge estimator in terms of MSE criterion.

4.2. Theorem. Let k be fixed and k > 0.

If b′1D−1
2 b1 < σ2

u, then MSE (γ̂k) −MSE (γ̂m (k)) is p.d.,

where D2 = C2C
′
2 − C3C

′
3, C2 = GkW

′.

Proof. Using the estimator γ̂k in (4.4), the variance-covariance matrix of this estimator

is,

V (γ̂k) = σ2
uGkΛG′k

(4.13) = σ2
u (I − kGk)Gk

and bias is,

(4.14) Bias (γ̂k) = −kGkγ.

Then using (4.13) and (4.14), MSE matrix of γ̂k is,

(4.15) MSE (γ̂k) = σ2
u (I − kGk)Gk + k2Gkγγ

′G′k

obtained. Then considering the following difference from (4.13) and (4.9) we obtain

∆2 = V (γ̂k) − V (γ̂m (k)) = σ2
u

(
C2C

′
2 − C3C

′
3

)
(4.16) = σ2

uGkΛGk
(
2kGk + k2G2

k

)
.

Since
[
2kGk + k2G2

k

]
> 0, ∆2 > 0. Then D2 will be p.d. for k > 0. By the Lemma, the

proof is completed. �

4.3. The comparison of Almon-modified Liu estimator and Almon estimator.

Li and Yang [11] compared the modified Liu estimator with OLS, Liu, ridge and modified

ridge estimators according to the MSE criterion in linear regression model. Now, our goal

is to compare the Almon-modified Liu estimator that we have proposed here, with the

Almon estimator for the distributed lag model.

Here we show that Almon-modified Liu estimator outperform to the Almon estimator

in terms of MSE criterion by the following theorem.
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4.3. Theorem. Let d be fixed and 0 < d < 1.

If b′2D−1
3 b2 < σ2

u , then MSE (γ̂A) −MSE (γ̂m (d)) is p.d.

where D3 = C1C
′
1 − C5C

′
5, C5 =

(
2Ld − L2

d

)
Λ−1W ′ and

b2 = Bias (γ̂m (d)) = − (1 − d)2 (Λ + I)−2 γ.

Proof. Using the estimator γ̂m (d) in (4.7), the variance-covariance matrix of this esti-

mator is,

(4.17) V (γ̂m (d)) = σ2
u

[
2Ld − L2

d

]
Λ−1 [2Ld − L2

d

]
and bias is,

(4.18) Bias (γ̂m (d)) = − (1 − d)2 (Λ + I)−2 γ

Then using (4.17) and (4.18), MSE matrix of γ̂m (d) is,

(4.19) MSE (γ̂m (d)) = σ2
u

[
2Ld − L2

d

]
Λ−1 [2Ld − L2

d

]
+(1 − d)4 (Λ + I)−2 γγ′ (Λ + I)−2

The variance-covariance matrix of γ̂m (d) can be rewrite in the following:

(4.20) V (γ̂m (d)) =
[
2Ld − L2

d

]2
V (γ̂A) .

Here matrix
[
2Ld − L2

d

]
is the diagonal and symmetric matrix. Let B defined as

(4.21) B =
[
2Ld − L2

d

]2
= diag (b1, b2, . . . , bp) .

We can see that V (γ̂m (d)) is decreasing due to the factor B in equation (4.20). The

i− th element of matrix B in (4.21) is

(4.22) bi =

[
λ2
i + 2λi + 2d− d2

(λi + 1)2

]2
.

From (4.22), we have the conclusions that λ2
i + 2λi + 2d− d2 > 0 and

λ2
i+2λi+2d−d2

(λi+1)2
< 1 for 0 < d < 1. Therefore, 0 < bi < 1 is ensured for the i− th element

of matrix B. Consequently, we obtain V (γ̂A) − V (γ̂m (d)) > 0, namely, D3 is p.d. for

0 < d < 1. By the Lemma, the proof is completed. �

4.4. The comparison of Almon-modified Liu estimator and Almon-Liu esti-

mator. Modified Liu estimator has smaller estimated MSE values than Liu, ridge and

modified ridge estimators, respectively, in Liu and Yang [11]. In this section, we show

that Almon-Liu estimator is better than Almon-modified Liu estimator according to the

MSE criterion.

In the following theorem, we have obtained a sufficient condition for the Almon-Liu

estimator to be superior to the Almon-modified Liu estimator in terms of MSE criterion.
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4.4. Theorem. Let d be fixed and 0 < d < 1.

If b′3D−1
4 b3 < σ2

u, then MSE (γ̂m (d)) −MSE (γ̂d) is p.d.,

where D4 = C5C
′
5 − C4C

′
4, C4 = LdΛ

−1W ′, Ld = (Λ + I)−1 (Λ + dI) and

b3 = Bias (γ̂d) = − (1 − d) (Λ + I)−1 γ.

Proof. Using the estimator γ̂d in (4.6), the variance-covariance matrix and the bias of

this estimator are obtained respectively in the following:

(4.23) V (γ̂d) = σ2
uLdΛ

−1Ld

(4.24) Bias (γ̂d) = − (1 − d) (Λ + I)−1 γ.

Then using (4.23) and (4.24), MSE matrix of γ̂d is,

(4.25) MSE (γ̂d) = σ2
uLdΛ

−1Ld + (1 − d)2 (Λ + I)−1 γγ′ (Λ + I)−1 .

Considering the following difference from (4.17) and (4.23), we obtain

∆3 = V (γ̂m (d)) − V (γ̂d) = σ2
u

(
C5C

′
5 − C4C

′
4

)
= σ2

uLd
[(
I + (1 − d) (Λ + I)−1)Λ−1 (I + (1 − d) (Λ + I)−1)− Λ−1]Ld

(4.26) = σ2
uLd

[
2 (1 − d) Λ−1 (Λ + I)−1 + (1 − d)2 (Λ + I)−1 Λ−1 (Λ + I)−1]Ld.

Since the last equation in (4.26) is p.d. for 0 < d < 1, V (γ̂m (d))−V (γ̂d) > 0. Therefore,

D4 = C5C
′
5−C4C

′
4 will be p.d. for 0 < d < 1. By the Lemma, the proof is completed. �

4.5. The comparison of Almon-modified ridge estimator and Almon-Liu es-

timator. Now, we compare the second order moment matrices of Almon-modified ridge

and Almon-Liu estimators. Let now d be fixed for the moment, we may state the following

theorem.

4.5. Theorem. Let d be fixed and 0 < d < 1.

a.If b′3 (C3C
′
3 − C4C

′
4)
−1
b3 < σ2

u, then MSE (γ̂m (k)) −MSE (γ̂d) is p.d. for

0 < k < kj.

b.If b′1 (C4C
′
4 − C3C

′
3)
−1
b1 < σ2

u, then MSE (γ̂d) −MSE (γ̂m (k)) is p.d. for

0 < kj < k, where kj =
λj(1−d)
λj+d

, j = 1, 2, . . . , r + 1 b1 = Bias (γ̂m (k)) and

b3 = Bias (γ̂d).

Proof. Using (4.9) and (4.23), we obtain

∆3 = V (γ̂m (k)) − V (γ̂d) = σ2
u

(
C3C

′
3 − C4C

′
4

)
= σ2

u

[(
Gk + kG2

k

)
Λ
(
Gk + kG2

k

)
− LdΛ

−1Ld
]
.
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Evidently, C3C
′
3 −C4C

′
4 will be p.d. if and only if Ψj > 0, for all j = 1, 2, . . . , r+ 1 where

Ψj =
λj

(λj + k)2
− (λj + d)2

λj (λj + 1)2
+

2kλj

(λj + k)3
+

k2λj

(λj + k)4
.

For k > 0, since 2kλj

(λj+k)
3 and k2λj

(λj+k)
4 are positive, a sufficient condition for

C3C
′
3 − C4C

′
4 being p.d. is

(4.27)
λj

(λj + k)2
− (λj + d)2

λj (λj + 1)2

greater than zero. So, this inequality requires than C3C
′
3 − C4C

′
4 is p.d. for

0 < k < kj . Similarly, C4C
′
4 − C3C

′
3 will be p.d. for 0 < kj < k (see also Sakallioglu et

al. [15]). By the Lemma, the proof is completed. �

Let now k be fixed for the moment and let be 0 < k < 1. Thus we have the following

theorem.

4.6. Theorem. Let k be fixed and 0 < k < 1.

a.If b′3 (C3C
′
3 − C4C

′
4)
−1
b3 < σ2

u, then MSE (γ̂m (k)) −MSE (γ̂d) is p.d. for

0 < d < dj < 1.

b.If b′1 (C4C
′
4 − C3C

′
3)
−1
b1 < σ2

u, then MSE (γ̂d) −MSE (γ̂m (k)) is p.d. for

0 < dj < d < 1 where dj = 1 − k(λj+1)
λj+k

, j = 1, 2, . . . , r + 1.

Proof. From the above theorem’s proof, we know that C3C
′
3 − C4C

′
4 will be p.d. if and

only if Ψj > 0, for all j = 1, 2, . . . , r+1. For fixed k > 0, (4.27) requires that C3C
′
3−C4C

′
4

is p.d. for 0 < d < dj < 1 and C4C
′
4 − C3C

′
3 will be p.d. for 0 < dj < d < 1. By the

Lemma, the proof is completed. �

To illustrate our theoretical results, it is easy to use smse in practical applications.

Therefore, the smse formulas for the γ̂A, γ̂k, γ̂m (k) , γ̂d and γ̂m (d) are given respectively:

(4.28) smse (γ̂A) = σ2
u

r+1∑
i=1

1

λi

(4.29) smse (γ̂k) = σ2
u

r+1∑
i=1

λi

(λi + k)2
+ k2

r+1∑
i=1

γ2
i

(λi + k)2

(4.30) smse (γ̂m (k)) = σ2
u

r+1∑
i=1

λi (λi + 2k)2

(λi + k)4
+ k4

r+1∑
i=1

γ2
i

(λi + k)4

(4.31) smse (γ̂d) = σ2
u

r+1∑
i=1

(λi + d)2

λi (λi + 1)2
+ (1 − d)2

r+1∑
i=1

γ2
i

(λi + 1)2
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(4.32) smse (γ̂m (d)) = σ2
u

r+1∑
i=1

bi
λi

+ (1 − d)4
r+1∑
i=1

γ2
i

(λi + 1)4

where bi is defined in (4.22). A very important issue in the study of ridge regression is how

to find an appropriate biasing parameter k. Hoerl and Kennard [6], [7], Hoerl, Kennard

and Baldwin [8] and Lawless and Wang [10] suggested the following ridge parameters,

that we can estimate for the model (4.1) respectively;

(4.33) k̂HK =
σ̂2
u∑r+1

i=1 γ̂
2
i

(4.34) k̂HKB =
(r + 1) σ̂2

u∑r+1
i=1 γ̂

2
i

(4.35) k̂LW =
(r + 1) σ̂2

u∑r+1
i=1 λiγ̂

2
i

where γ̂ and σ̂2
u are the OLS estimates of γ and σ2

u. On the other hand Liu [13] gave the

some estimates of d by analogy with the estimate of k in ridge estimate. Two of these

estimates are defined as for the model (4.1):

(4.36) d̂mm = 1 − σ̂2
u

[
r+1∑
i=1

1

λi (λi + 1)

/r+1∑
i=1

γ̂2
i

(λi + 1)2

]

(4.37) d̂CL = 1 − σ̂2
u

[
r+1∑
i=1

1

λi + 1

/r+1∑
i=1

λiγ̂
2
i

(λi + 1)2

]
where γ̂ and σ̂2

u are the OLS estimates of γ and σ2
u.

5. A numeric example with Almon data

To illustrate our theoretical results we now consider a dataset due to Almon [2]. These

data was taken in the years 1953-1967 using quarterly data where independent variable is

appropriations and dependent variable is expenditures. Consideration of these data, the

following results were obtained. Firstly, the smallest value of SIC was obtained 12.75 if

the length of lag is p=8 using “Schwartz Information Criteria (SIC) ”. Starting from

the assumption that the prior information on βi is fifth degree (r = 5) polynomial in

(1.5), after testing the significance of the coefficient then, the optimal polynomial degree

(r = 2) is obtained. Here, in order to obtain the form (1.7), Z matrix is obtained by

means of X matrix produced by multiplying matrix A defined earlier. The condition

number of Z matrix is 63.5 which imply the existence of highly multicollinearity in the



1227

data set. In this case, the results of Almon method that based on the OLS will not be

appropriate.

Theoretical comparisons for the alternative estimators to the Almon estimator have

been made in terms of the MSE criterion. Also, smse formulas have been given for these

estimators. Using smse is generally the most convenient for applications or simulation

studies. Then, we decided that which one is the best estimator for distributed lag models.

For this data, we find the following results:

(a) The eigenvalues of Z′Z : (0.0007, 0.0634, 2.9359)

(b) The Almon estimates of

α : (α̂A)′ = (0.0962, 0.0320, −0.0052)

β̂A = (Aα̂A)′ = (0.096, 0.123, 0.140, 0.146, 0.142, 0.127, 0.102, 0.067, 0.021) .

(c) The estimate of σ2 : σ̂2
u = 0.0164

The 3×3 matrix Q is the matrix of normalized eigenvectors, Λ is a 3×3 diagonal matrix

of eigenvalues of Z′Z such that Z′Z = QΛQ′. Then, W = ZQ and γ = Q′α so that,

y = Zα+ u = Wγ + u, where

Q =

 −0.2478
0.7934

−0.5559

−0.7818
0.1751
0.5985

0.5722
0.5829
0.5769


and

W ′W = Λ =

 0.0007 0 0
0 0.0634 0
0 0 2.9359


In orthogonal coordinates the OLS estimator of the regression coefficients is

γ̂ = Λ−1W ′y = [1.2297, −1.0754, 0.5580]′

obtained. Using the equations in (4.33)-(4.35) estimators of k obtained for the evaluate

the estimated smse values of Almon-ridge and Almon-modified ridge estimators. Then,

for the practical purposes various values of k and the corresponding estimated smse

values of the estimators are shown in Table 1. In Figure 1, the graph of estimated

smse values of the Almon-ridge and Almon-modified ridge estimators is illustrated for

the range of k values that performance of Almon-modified ridge estimator is better than

Almon-ridge estimator.

Let us consider the Almon-Liu and Almon-modified Liu estimators various values of

d and the corresponding estimated smse values of the estimators are shown in Table 2.
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Also, the performances of Almon-Liu and Almon-modified Liu estimators are illustrated

for the various values of d in Figure 2.

In Table 3, we compared the Almon-modified ridge, Almon-modified Liu and also

Almon-Liu estimators and comparisons are shown on the graph for the common values

of k and d in Figure 3.

Table 1. Estimated smse values of Almon, Almon-ridge and Almon-
modified ridge estimators

ŝmse (γ̂A) ŝmse (γ̂k) ŝmse (γ̂m (k))

k = 0 23.6928 23.6928 23.6928
kHK=0.0055 23.6928 1.7206 2.2609
k = 0.01 23.6928 1.6411 1.7840
kHKB=0.0165 23.6928 1.6481 1.6743
k = 0.02 23.6928 1.6599 1.6605
k = 0.03 23.6928 1.7002 1.6524
kLW = 0.0498 23.6928 1.7855 1.6649
k = 0.1 23.6928 1.9700 1.7440
k = 0.2 23.6928 2.1898 1.9286
k = 0.3 23.6928 2.3086 2.0675
k = 0.4 23.6928 2.3823 2.1662
k = 0.5 23.6928 2.4328 2.2384
k = 0.6 23.6928 2.4699 2.2931
k = 0.7 23.6928 2.4985 2.3359
k = 0.8 23.6928 2.5215 2.3702
k = 0.9 23.6928 2.5406 2.3984
k = 1 23.6928 2.5569 2.3310
k = 2 23.6928 2.6510 2.4949

When we compare Almon, Almon-ridge and Almon-modified ridge estimators, we ob-

serve that as k increases, Almon-modified ridge estimator always gives better performance

than the other estimators. On the other hand, the performance of Almon-ridge estimator

is better than Almon estimator with in the wide range k values. The plot of ŝmse (γ̂k)

and ŝmse (γ̂m (k)) vs. k in the interval [0,1] has been presented in Fig.1. This figure

indicates that ŝmse (γ̂k) and ŝmse (γ̂m (k)) increase as k increases. The Almon-modified

ridge estimator dominates Almon-ridge estimator when k > 0.02. These findings have

supported the results in Section 4.1 and 4.2.

Considering the performance of the other alternative estimators we can see that

Almon-modified Liu estimator outperforms to the Almon-Liu and Almon estimator for

all values of d satisfying 0 < d < 1. The plot of ŝmse (γ̂d) and ŝmse (γ̂m (d)) has been

presented in Fig.2. This figure indicates that ŝmse (γ̂d) and ŝmse (γ̂m (d)) increase as
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Figure 1. Estimated smse of Almon-ridge and Almon-modified ridge
estimators versus k

Table 2. Estimated smse values of Almon, Almon-Liu and Almon-
modified Liu estimators

ŝmse (γ̂A) ŝmse (γ̂d) ŝmse (γ̂m (d))

d = 0 23.6928 0.1721 0.0161
d = 0.001 23.6928 0.1718 0.0160
d = 0.01 23.6928 0.1688 0.0156
d = 0.1 23.6928 0.1403 0.0119
d = 0.2 23.6928 0.1118 0.0089
d = 0.3 23.6928 0.0867 0.0069
d = 0.4 23.6928 0.0650 0.0056
d = 0.5 23.6928 0.0467 0.0049
d = 0.6 23.6928 0.0318 0.0045
dCL = 0.712 23.6928 0.0192 0.0043
d = 0.8 23.6928 0.0122 0.0042
d = 0.9 23.6928 0.0076 0.0042

d increases and large value of d Almon-modified Liu estimator dominates the Almon-

Liu estimator. On the other hand the increasing of ŝmse (γ̂m (d)) is slowly than the

ŝmse (γ̂d).

Finally, comparison of the three estimators is illustrated in Figure 3. It can be seen

that not only Almon-modified Liu estimator but also Almon-Liu estimator outperforms

Almon-modified ridge estimator in Figure 3.

From Table 3 and Figure 3, we can also obtain the following conclusions:
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Figure 2. Estimated smse of Almon-Liu and Almon-modified Liu es-
timators versus d

Table 3. Comparisons between Almon-modified ridge, Almon Liu and
Almon-modified Liu estimators in smse sense

k = d ŝmse (γ̂d) ŝmse (γ̂m (k)) ŝmse (γ̂m (d))

0.01 0.1688 1.7840 0.0156
0.1 0.1403 1.7440 0.0119
0.2 0.1118 1.9286 0.0089
0.3 0.0867 2.0675 0.0069
0.4 0.0650 2.1662 0.0056
0.5 0.0467 2.2384 0.0049
0.6 0.0318 2.2931 0.0045
0.7 0.0192 2.3359 0.0043
0.8 0.0122 2.3702 0.0042
0.9 0.0076 2.3984 0.0042

(i) Let d = 0.1 be fixed. We get values of kj by using Theorem 4.5.

kj : 0.8704, 0.3492, 0.0062.

Comparing ŝmse (γ̂d=0.1) = 0.1403 with ŝmse (γ̂m (k = 0.005)) = 2.4019 for 0 < k <

0.0062, we see that γ̂d has a smaller estimated smse value than γ̂m (k) (see also Figure

3). Comparing ŝmse (γ̂d=0.1) = 0.1403 with ŝmse (γ̂m (k = 0.9)) = 2.3984 is obtained for

0 < 0.8704 < k. Since the sufficient condition in Theorem 4.5.(b) is not satisfied, γ̂m (k)

does not have estimated smse value than γ̂d.
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Figure 3. Estimated smse of Almon-modified ridge, Almon-Liu,
Almon-modified Liu estimators versus k − d

(ii) Let d = 0.9 be fixed. By using Theorem 4.5 kj values are obtained as

kj : 0.00765, 0.00658, 0.000077.

Comparing ŝmse (γ̂d=0.9) = 0.0076 with ŝmse (γ̂m (k = 0.00007)) = 23.235 for 0 <

k < 0.000077, we see that γ̂d has a smaller estimated smse value than γ̂m (k) (see also

Figure 3). Comparing ŝmse (γ̂d=0.9) = 0.0076 with ŝmse (γ̂m (k = 0.008)) = 1.8979 is

obtained for 0 < 0.00765 < k. Since the sufficient condition in Theorem 4.5.(b) is not

satisfied, γ̂m (k) does not have smaller estimated smse value than γ̂d.

(iii) Let k = 0.2 be fixed. We get values of dj by using Theorem 4.6.

dj : 0.749, 0.1926, 0.0028.

Comparing ŝmse (γ̂m (k = 0.2)) = 1.9286 with ŝmse (γ̂d=0.002) = 0.1715 for 0 < d <

0.0028 < 1. So γ̂d has a smaller estimated smse value than γ̂m (k) as it is indicated

in (a) part of the Theorem 4.6 (see also Figure 3). On the other hand, comparing

ŝmse (γ̂m (k = 0.2)) = 1.9286 with ŝmse (γ̂d=0.8) = 0.0122 is obtained for 0 < 0.749 <

d < 1. Since the sufficient condition in Theorem 4.6.(b) is not satisfied, γ̂m (k) does not

have smaller estimated smse value than γ̂d.

(iv) Let k = 0.8 be fixed. By using Theorem 4.6 dj values are obtained as

dj : 0.1572, 0.0147, 0.0002.
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Comparing ŝmse (γ̂m (k = 0.8)) = 2.3702 with ŝmse (γ̂d=0.0001) = 0.1721 for 0 < d <

0.0002 < 1. So γ̂d has a smaller estimated smse value than γ̂m (k) as it is indicated in (a)

part of the Theorem 4.6 (see also Figure 3). Beside this, comparing ŝmse (γ̂m (k = 0.8)) =

2.3712 with ŝmse (γ̂d=0.2) = 0.1118 is obtained for 0 < 0.1572 < d < 1. Since the

sufficient condition in Theorem 4.6.(b) is not satisfied, γ̂m (k) does not have estimated

smse value than γ̂d.

6. Conclusions

In this study, we have compared theoretical performances of Almon-ridge (γ̂k), Almon-

modified ridge (γ̂m (k)), Almon-Liu (γ̂d), Almon-modified Liu (γ̂m (d)) estimators to the

Almon (γ̂A) estimator according to the MSE criterion with using some theorems. These

alternative estimators showed quite good performance to the Almon estimator. Also,

some of the alternative estimators compared with each other. The performances of the

estimators depends on biasing parameters k and d. To see more detailed results of the

comparisons we plotted estimated smse values of these estimators using k and d values

in Figure 1-3.

Liu and Yang [11] showed with the increasing of the levels of multicollinearity, the

smse values of ridge, Liu, modified ridge and modified Liu estimators are decreasing in

general for the linear regression model. Moreover, they showed that the smse values of

these estimators outperformed to the OLS estimator for all cases. Also, for most cases,

modified Liu estimator has smaller smse values than those of the Liu, ridge, and modified

ridge estimator, respectively. In this study, we find similar results for the distributed lag

models. Theoretical results suggested that, for an appropriate value of k and d Almon-

modified ridge and Almon-modified Liu estimator give better estimates than the other

alternative estimators in terms of MSE criterion for the distributed lag models.

The theoretical section is supported by a numerical example based on widely analyzed

Almon [2] dataset. Almon-modified Liu estimator has been showed as the best estimator

in distributed lag models.
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