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Likelihood and Bayesian estimations for step-stress
life test model under Type-I censoring

Ali. A. Ismail∗

Abstract
This paper discusses likelihood and Bayesian estimations for partially
accelerated step-stress life test model under Type-I censoring assum-
ing Pareto distribution of the second kind. The posterior means and
posterior variances are obtained under the squared error loss function
using Lindley’s approximation procedure. It has been observed that
Lindley’s method usually provides posterior variances and mean square
errors smaller than those of the maximum likelihood estimators. Fur-
thermore, the highest posterior density credible intervals of the model
parameters based on Gibbs sampling technique are computed. For il-
lustration, simulation studies and an illustrative example based on a
real data set are provided.
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1. Introduction
For most practical tests, it may be not easy to gather data on failure-time of a device

under use conditions when this device is a highly reliable. Consequently, such devices
should be tested under accelerated (i.e. harsher-than-use) conditions to obtain failures
quickly. According to Pathak et al. [33], "the model of acceleration is chosen so that
the relationship between the parameters of the failure distribution and the accelerated
stress conditions is known. Such relationship is used to extrapolate the accelerated
data to the design stress to estimate the life distribution. The tests performed under
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accelerated stress conditions are called fully accelerated life tests (FALT or simply ALT)".
Involved persons may refer to "Meeker and Escobar [30] and Nelson [31], which are two
comprehensible sources for ALT".

Sometimes, such relationship (the life-stress relationship) may not be known or can’t
be assumed. So, in this case, ALT can’t be applied to predict products’ reliability because
the cumulative exposure model in this case can’t be assumed. Instead, as proposed
by DeGroot and Goel [13], "another type of tests called partially accelerated life tests
(PALT) is used according to a tampered random variable model".

As Nelson [31] shows, "the stress can be applied in various ways, commonly used
method is step-stress. Under step-stress PALT, a test item is first run at use condition
and, if it does not fail for a specified time, then it is run at accelerated condition until
failure occurs or the test is terminated. Accelerated test stresses involve higher than
usual temperature, voltage, pressure, load, humidity, . . . , etc., or some combination of
them".

Most of literature performed on PALT discussed non-Bayesianl approaches to make
some statistical inferences, for example, see Goel [15], Bhattacharyya and Soejoeti [10],
Bai and Chung [6], Bai et al. [7], Attia et al. [5], Abdel-Ghaly et al. [2], Madi [28], Abdel-
Ghani [3], Aly and Ismail [4], Ismail and Sarhan [24], Ismail [22], Ismail and Abu-Youssef
[23], Ismail [20-21] and Abd-Elfattah et al. [1].

Few of Bayesian researches had been made on PALT. Goel [15] "used the Bayesian
approach for estimating the acceleration factor and the parameters in the case of step-
stress PALT (SSPALT) with complete sampling for items having exponential and uniform
distributions". DeGroot and Goel [13] "investigated the optimal Bayesian design of a
PALT in the case of the exponential distribution under complete sampling". Abdel-Ghani
[3] "considered the Bayesian approach to estimate the parameters of Weibull distribution
in SSPALT with censoring". Ismail [19] "considered the Bayesian approach to estimate
the parameters of Gompertz distribution with time-censoring".

In this paper, our objective is to apply a Bayesian analysis of SSPALT considering two-
parameter Pareto distribution with Type-I censoring assuming the squared error (SE)
loss function. The Bayes estimators (BEs) of the acceleration factor and the distribution
parameters are derived and compared with the maximum likelihood estimators (MLEs)
counterparts by Monte Carlo simulations.

The rest of this paper is organized as follows. In Section 2, the model and test method
are described. Approximate BEs of the parameters under consideration are derived in
Section 3. In Section 4, BEs derived in Section 3 are obtained numerically using Lindley’s
approximation and compared with the MLEs. Also, the highest posterior density credible
intervals of the model parameters based on Gibbs sampling technique are presented in
Section 3. In Section 4 Monte Carlo simulation study is made for investigating and
comparing the methods of ML and Bayes estimators. Section 5 considers an illustrative
example with real data set. Finally, a conclusion is presented in Section 6.

2. The model and test method
2.1. The Pareto distribution as a lifetime model. The lifetimes of the test items
are assumed to follow two-parameter Pareto distribution of the second kind. Pareto [32]"
introduced a distribution (Pareto distribution) as a model for the distribution of income".
Many authors, for example, Davis and Feldstein [12], Cohen and Whitten [11], Grimshaw
[17] among others "studied its models in several different forms". According to Johnson
et al. [25], "Pareto distribution of the second kind also know as Lomax or Pearson’s Type
VI distribution". Bain and Engelhardt [8] said that "it has been found as a good model
in biomedical problems, such as survival time following a heart transplant". Using the
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Pareto distribution, Dyer [14] "studied annual wage data of production line workers in
a large industrial firm". Lomax [27] "used this distribution in the analysis of business
failure data". In addition, Bain and Engelhardt [8] indicated that "the length of wire
between flaws also follows a Pareto distribution". Moreover, Howlader and Hossain [18]
showed that "since Pareto distribution has a decreasing hazard or failure rate, it has
often been used to model incomes and survival times".

The used PDF is expressed by

f(t; θ, α) =
αθα

(θ + t)α+1
, t ≥ 0, θ > 0, α > 0,(2.1)

Its reliability function is given by

R(t) =
θα

(θ + t)α
,(2.2)

and its failure-rate function is

h(t) =
α

θ + t
.(2.3)

McCune and McCune [29] indicated that "Pareto distribution has classically been used
in economic studies of income, size of cities and firms, service time in queuing systems
and so on". Also, according to Davis and Feldstein [12], "it has been used in connection
with reliability theory and survival analysis".

2.2. The Test Method. Fundamental Assumptions

(1) Two levels of stress x1 and x2 (normal and severe) are applied.
(2) The distribution is Pareto for each stress level.
(3) The total lifetime Y of an item is given by

Y =

{
T, if T ≤ t
τ + β−1(T − τ), if T > τ ,(2.4)

where T is the lifetime of an item under normal condition. According to the
litrature, "DeGroot Goel [13] proposed this model which is called a tampered
random variable (TRV) model". For the tampered random variable models, the
readers may also refer to Tang et al. [35].

(4) The failure times yi; i = 1, . . . , n are i.i.d. r.v.’s.

Test Process

(1) Each of the n test items is first operate under design stress.
(2) If it does not fail by a pre-specified time τ then it is put on severe condition and

run until it fails or the experiment is ended.
The PDF of total lifetime Y of an item under SSPALT is expressed by

Y =


0, if y ≤ 0

f1(y) ≡ fT (t; θ, α) = αθα

(θ+y)α+1 , if 0 < y ≤ τ

f2(y) = βαθα

(θ+τ+β(y−τ))α+1 , if y > τ ,
(2.5)

where θ > 0 and α > 0 .
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3. Bayesian estimation
3.1. Posterior means and posterior variances. In this section, the SE loss func-
tion is used. Under SE loss function, the Bayes estimator of a parameter is its posterior
expectation. The Bayes estimators can’t be given in explicit forms. Approximate Bayes
estimators will be discussed under the assumption of non-informative priors using Lind-
ley’s approximation. Basu et al. [9] showed that " in many practical situations, the
information about the parameters are available in an independent manner". Thus, here
it is assumed that the parameters are independent a priori and let the non-informative
prior (NIP) for each parameter be represented by the limiting form of the appropriate
natural conjugate prior.

Therefore, the joint NIP of the three parameters can be expressed by

π(β,θ,α)(βθα)−1, β > 1, θ > 0, α > 0. (3.1)

The observed values of the total lifetime Y are given by

y(1) ≤ . . . ≤ y(nu) ≤ τ ≤ y(nu+1) ≤ . . . ≤ y(nu+na) ≤ η

where nu is the number of items failed at use condition and na is the number of items
failed at accelerated condition.

Since the total lifetimes y1, . . . , yn of n items are independent and identically dis-
tributed random variables, then the total likelihood function for them is given by

L(y |β, θ, α ) =
nu∏
i=1

[ αθα

(θ+y{(i)})
α+1 ].

na∏
i=1

[ βαθα

(θ+τ+β(y{(i+nu)}−τ))α+1 ].
nc∏
i=1

[ θα

(θ+τ+β(η−τ))α
],(3.2)

where nc = n - nu - na.

Forming the product of (3.1) and (3.2), the joint posterior density function of β , θ
and α given the data can be written as

g(β, θ, α
∣∣y ) ∝ L(y |β, θ, α ).Π(β, θ, α)

∝ βna−1θαn−1αnu+na−1

(θ+τ+β(η−τ))αnc
[
nu∏
i=1

1
(θ+y{(i)})

α+1 ].[
nu+na∏
i=nu+1

1
(θ+τ+β(y{(i)}−τ))α+1 ].

(3.3)

According to Lindley [26], "an approximation via an asymptotic expansion of the ratio
of two non-tractable integrals is used to obtain approximate Bayes estimators".

Now, let Θ be a set of parameters {Θ1, Θ2, . . . , Θm }, where m is the number of
parameters, then the posterior expectation of an arbitrary function u(Θ) can be asymp-
totically estimated by

E(u(Θ)) =

∫
Θ
u(Θ)π(Θ)elnL(y|Θ)dΘ∫
Θ
π(Θ)elnL(y|Θ)dΘ

≈ [u+ (1/2)
∑
i,j

(u
(2)
ij + 2u

(1)
i ρ

(1)
j )σij + (1/2)

∑
i,j,k,s

L
(3)
ijkσijσksu

(1)
s ] ↓ Θ̂,

(3.4)
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which is the Bayes estimator of u(Θ) under a squared error loss function, where π(Θ)
is the prior distribution of Θ

,u ≡ u(Θ), L ≡ L(Θ) is the likelihood function, ρ ≡ ρ(Θ) = log π(Θ), σij are the
elements of the inverse of the asymptotic Fisher’s information matrix of β , θ and α ,
and

u(1)
i = ∂u

∂Θi
, u

(2)
ij = ∂2u

∂Θi∂Θj
,ρ

(1)
j = ∂logπ(Θ)

∂Θj
andL

(3)
ijk = ∂3lnL(y|Θ)

∂Θi∂Θj∂Θk

According to Green [16], "the linear Bayes estimator in (3.4) is a very good and
operational approximation for the ratio of multi-dimension integrals". Also, as pointed
out by Sinha [34], "it has led to many useful applications".

Bayesian interval estimators, called credible intervals, for the model parameters are
derived from their posterior distributions. We propose the following Markov Chain Monte
Carlo (MCMC) method to draw samples from the posterior density function and then to
compute the Bayes estimates and the highest posterior density (HPD) credible intervals.
We use the Gibbs sampling procedure to compute HPD credible intervals.

3.2. Credible intervals using Gibbs sampling. Assume that the priori are Gamma
distributions and that they are independent. Therefore, samples of β , θ and α can be
easily generated using any of the gamma generating routines. We use the Gibbs sampling
procedure to generate a sample from the posterior density function and then to compute
the Bayes estimates and HPD credible intervals. To run the Gibbs sampler algorithm,
it is appropriate to start with the approximate BEs. The following algorithm is used for
this purpose.

Step 1: Start with an(θ(0) = θ̃ and β(0) = β̃) and set I = 1.
Step 2: Generate α(I) from the conditional Gamma distribution (g(α

∣∣∣θ(I−1), β(I−1), y))

Step 3: Generate θ(I) from the conditional Gamma distribution (g(θ
∣∣∣α(I−1), β(I−1), y))

Step 4: Generate β(I) from the conditional Gamma distribution (g(β
∣∣∣θ(I−1), α(I−1), y))

Step 5: Set I = I +1.
Step 6: Repeat steps 2-4 M times and obtain αi, θi and βi for i=1,. . . , M.
Step 7: The Bayes MCMC point estimates of β , θ and α with respect to the squared

error function are then

β̃ = Ẽ(β |data ) = 1
M

M∑
k=1

βk, θ̃ = Ẽ(θ |data ) = 1
M

M∑
k=1

θk and α̃ = Ẽ(α |data ) =

1
M

M∑
k=1

αk.

Step 8: The posterior variances of β , θ and α are

Ṽ (β |data ) = 1
M

M∑
k=1

{βk − Ẽ(β |data )}2, Ṽ (θ |data ) = 1
M

M∑
k=1

{θk − Ẽ(θ |data )}2 and

Ṽ (α |data ) = 1
M

M∑
k=1

{αk − Ẽ(α |data )}2.

Step 9: To compute the credible intervals (CRIs) of φl (φ1 = α, φ2 = θandφ3 = β),
the quantiles of the sample is usually taken as the endpoints of the intervals. Order
φ

(1)
l , φ

(2)
l , ..., φ

(M)
l , as φl(1) , φl(2) ,..., φl(M) .

Then, the 100(1− 2γ)% CRIs for φl become (φl(γM) , φl((1−γ)M) ).
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4. Simulation results and discussion
Simulation results are made for comparing the methods of ML and Bayes estimators,

using a SE loss function. The posterior means and posterior variances of the model
parameters are obtained suggesting a NIP for each parameter under a SE loss function
with time-censored data. Since the BEs of the model parameters can’t be found in
closed form, approximate BEs are determined numerically using Lindley techniuqe. The
performance of the approximate BEs is assessed and compared with the MLEs in Tables
1 and 2 via their variances, MSEs and average confidence interval lengths (CIL) for
different settings of true parameter values and sample sizes.

95% confidence intervals of the model parameters are constructed with average CIL
presented in Tables 1 and 2. It is shown from the results presented in Tables 1 and 2 that
the CRIs obtained under Bayes method (via Gibbs sampling approach) are narrower than
those obtained using the ML approach. Also, we observed that the computed coverage
probabilities (CP) of the CRIs for each parameter are very close to the nominal level.
On the other hand, it was found that these CP using the ML approach are lower than
the nominal level in general.
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Table 1: Average values of MLEs, BEs, variances and MSEs, when β =2, θ = 0.2, α =
0.5, τ = 3 and η = 7

n parameter Method estimate MSE variance CIL CP

30 β
ML

Bayes
2.4633
2.2863

0.1569
0.1328

0.0843
0.0669

1.1382
0.9824

92
94.1

θ
ML

Bayes
0.5154
0.4289

0.0264
0.0185

0.0376
0.0115

0.7601
0.3214

92.3
94.3

α
ML

Bayes
0.7232
0.6821

0.0172
0.0093

0.0169
0.0081

0.5096
0.2972

93
94.4

50 β
ML

Bayes
2.3954
2.1627

0.1143
0.0881

0.0548
0.0333

0.9176
0.6302

93
94.3

θ
ML

Bayes
0.3653
0.3102

0.0784
0.0113

0.0218
0.0071

0.5788
0.2733

94
94.4

α
ML

Bayes
0.5563
0.5382

0.0132
0.0047

0.0074
0.0034

0.3372
0.1765

94.5
94.8

75 β
ML

Bayes
2.2233
2.0793

0.0911
0.0578

0.0273
0.0099

0.6477
0.3140

94.1
94.7

θ
ML

Bayes
0.2977
0.2286

0.0546
0.0078

0.0079
0.0052

0.3484
0.2261

94.3
94.8

α
ML

Bayes
0.4796
0.4836

0.0082
0.0023

0.0025
0.0015

0.1960
0.1103

94.6
95.1

100 β
ML

Bayes
2.1143
2.0371

0.0366
0.0206

0.0057
0.0046

0.2960
0.1874

94.3
94.9

θ
ML

Bayes
0.2384
0.2178

0.0281
0.0037

0.0047
0.0016

0.2687
0.1210

94.4
94.9

α
ML

Bayes
0.4885
0.4913

0.0026
0.0014

0.0011
0.0006

0.1300
0.0411

94.8
95.0



1242

Table 2: Average values of MLEs, BEs, variances and MSEs, when β =3 , θ = 1.5, α
= 2, τ = 3 and η = 7

n parameter Method estimate MSE variance CIL CP

30 β
ML

Bayes
3.4943
3.3511

0.0951
0.0722

0.0639
0.0403

0.9909
0.6820

92.5
94.4

θ
ML

Bayes
1.9411
1.7101

0.0689
0.0522

0.0289
0.0233

0.6664
0.5147

93
94.5

α
ML

Bayes
2.2677
2.2153

0.0645
0.0529

0.0119
0.0075

0.4276
0.2655

93.5
94.7

50 β
ML

Bayes
3.4461
3.3289

0.0552
0.0373

0.0519
0.0329

0.8930
0.5918

93.2
94.8

θ
ML

Bayes
1.6533
1.5790

0.0487
0.0307

0.0112
0.0074

0.4149
0.2413

93.6
94.8

α
ML

Bayes
2.1791
2.1342

0.0213
0.0128

0.0043
0.0031

0.2571
0.1643

94
94.8

75 β
ML

Bayes
3.1731
3.0944

0.0375
0.0187

0.0297
0.0163

0.6756
0.4101

94.2
94.9

θ
ML

Bayes
1.5832
1.5346

0.0215
0.0117

0.0038
0.0025

0.2416
0.1386

94.4
94.9

α
ML

Bayes
2.0773
2.0522

0.0085
0.0052

0.0020
0.0016

0.1753
0.0982

94.5
94.9

100 β
ML

Bayes
3.0891
3.0343

0.0156
0.0092

0.0112
0.0074

0.4149
0.2283

94.6
94.9

θ
ML

Bayes
1.5421
1.5117

0.0082
0.0064

0.0022
0.0014

0.1839
0.0922

94.7
94.9

α
ML

Bayes
2.0463
2.0144

0.0036
0.0028

0.0007
0.0004

0.1037
0.0415

94.6
95.0

5. Data analysis: A numerical example
To demonstrate the applicability of the methodology introduced in this paper, a nu-

merical example is provided. Pareto model is used to fit the data set. To verify the
power of the model, we calculate the Kolmogorov-Smirnov (K-S) distance between the
empirical distribution function and the fitted distribution function when the parameters
estimates are determined by the maximum likelihood method. The result of K-S test
is D=0.0764 with p-value = 0.542. This result obviously shows that the Pareto model
provides excellent fit to the data set. So, it can be served successfully for modeling this
data set. Assuming Pareto distribution with time-censoring we use n = 76, β =2, θ =
2.5, α = 1.5, τ = 3 and η = 7. The number of failures gained at use and accelerated
conditions are nu=13 and na=46, respectively, with censored items nc=17. The MLEs
of the model parameters β,θ and α are respectively 2.09, 2.57 and 1.54, while the BEs
are 2.04, 2.53 and 1.52. The MSEs associated with the MLEs of β,θ and α are 0.0241,
0.0207 and 0.0071, respectively, while those associated with the BEs are respectively
0.0156, 0.0111 and 0.0043. In addition, the 95% confidence intervals of β,θ and α using
the approaches ML and MCMC are (1.7650, 2.4150), (2.4402, 2.6198), (1.4570, 1.6232)
and (1.7976, 2.2824), (2.5040, 2.5760), (1.4467, 1.5933), respectively.

6. Conclusion
In this paper the ML and Bayes estimations of the SSPALT model parameters have

been considered. Bayes estimations have been found assuming squared error loss func-
tions and non-informative priors. Lindley approach has been applied to find BEs. It has
been seen that the approach acts very well even for small sample sizes. The approach
usually provides smaller posterior variances. That is, it gives improved estimates. In the
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MCMC approach, it has been noted that the CRIs are shorter than the ML intervals and
always include the population parameter values.
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