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Abstract

The purpose of this study is to suggest a new modi�cation of the usual
ranked set sampling (RSS) method, namely; neoteric ranked set sam-
pling (NRSS) for estimating the population mean and variance. The
performances of the empirical mean and variance estimators based on
NRSS are compared with their counterparts in ranked set sampling and
simple random sampling (SRS) via Monte Carlo simulation. Simula-
tion results indicate that the NRSS estimators perform much better
than their counterparts using RSS and SRS designs when the ranking
is perfect. When the ranking is imperfect, the NRSS estimators are
still superior to their counterparts in ranked set sampling and simple
random sampling methods. These �ndings show that the NRSS pro-
vides a uniform improvement over RSS without any additional costs.
Finally, an illustrative example of a real data is provided to show the
application of the new method in practice.
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1. Introduction

The ranked set sampling (RSS) was �rst proposed by McIntyre [15] as an e�cient
sampling scheme for estimating the population mean of pasture and forage yields. This
sampling scheme is suitable in situations where the ranking of observations can be easily
done based on an auxiliary variable correlated with the variable of interest or any inex-
pensive method. The RSS has wide applications in many scienti�c problems, especially in
environmental and ecological studies where the main focus is on economical and e�cient
sampling strategies. For example, assume that the Environmental Protection Agency
wants to assure that the gasoline stations in metropolitan areas are distributing gasoline
which complies with air clean regulations. However, the chemical parameters of gasoline
can be easily ranked right after the collection at the gasoline pump by some crude �eld
techniques which are cheap and easy. While bringing the sample units to the laboratory
and use actual laboratory techniques to measure its chemical parameters is expensive.
For similar applications of RSS in environmental studies, we refer to Cobby et al. [9],
Halls and Dell [12], Martin et al. [14], and Ozturk et al. [17].
The standard ranked set sampling design can be described as follows:
I. Select a simple random sample of size k2 units from the target population and divide
them into k samples each of size k.
II. Rank the units within each sample in increasing magnitude by using personal judg-
ment, eye inspection or based on a concomitant variable.
III. Select the ith ranked unit from the ith (i = 1, · · · , k) sample for actual quanti�cation.
IV. The above Steps I through III can be repeated n times (cycles) if needed to obtain
a ranked set sample of size N = nk.

Let Y1, · · · , Yk be a simple random sample of size k, then the measured ranked set sam-
ple units are denoted by

{
Y[i]j , i = 1, · · · , k, j = 1, · · · , n

}
, where Y[i]j is the ith ranked

unit from the jth cycle. It is of interest to note here that Y[i]j (i = 1, · · · , k) are inde-
pendent random variables, and they follow the distribution of the ith order statistic of a
sample of size k based on perfect ranking in the jth cycle, j = 1, · · · , n. The cumulative
distribution function (cdf) of Y[i] is given by F[i](y) = i

(
k
i

) ∫ F (y)

0
wi−1(1−w)k−idw, and its

probability density function (pdf) is de�ned as f[i](y) = i
(
k
i

)
[F (y)]i−1 [1− F (y)]k−i . The

mean and the variance of Y[i] are µ[i] =
∫ +∞
−∞ yf[i](y)dy and σ2

[i] =
∫ +∞
−∞ (y−µ[i])

2f[i](y)dy,
respectively.

Under imperfect ranking, the Y[i]j 's follow the distribution of the ith judgment order
statistic. McIntyre [15] used the empirical estimator of the mean based on RSS to esti-
mate the population mean and deduced that his estimator is more e�cient than its SRS
counterpart via Monte Carlo simulation based on the same number of measured units.
The RSS empirical mean estimator is de�ned as

ȲRSS =
1

nk

n∑
j=1

k∑
i=1

Y[i]j ,(1.1)

with variance

V ar
(
ȲRSS

)
=
σ2

nk
− 1

nk2

k∑
i=1

(
µ[i] − µ

)2
.(1.2)

Takahasi and Wakimoto [21] introduced the same method independently and was the
�rst who proved mathematically that, ȲRSS is an unbiased estimator and has smaller
variance than its counterpart in SRS regardless of the issue of ranking. They proved that

1 ≤
V ar

(
ȲSRS

)
V ar

(
ȲRSS

) ≤ k + 1

2
,
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where ȲSRS = 1
nk

∑n
j=1

∑k
i=1 Yij is the SRS estimator of the population mean with

V ar
(
ȲSRS

)
= σ2

nk
.

The lower bound is attained if and only if the parent distribution is degenerate when
the ranking is perfect, while the upper bound is attained if and only if the parent distri-
bution is rectangular.

Bouza [7] and Al-Omari and Bouza [4] considered the problem of estimation of pop-
ulation mean in the RSS with missing values. Al-Saleh and Al-Omari [5], Al-Omari and
Al-Saleh [3] and Al-Omari [1], [2] proposed some mean estimators in other variations of
the RSS.

Stokes [20] suggested an estimator of the population variance based on RSS and showed
that it is asymptotically (n→∞ or k →∞) unbiased of the population variance and has
greater e�ciency than the sample variance using SRS regardless of the issue of ranking.
The variance estimator of Stokes [20] is given by

S2
Stokes =

1

nk − 1

n∑
j=1

k∑
i=1

(
Y[i]j − ȲRSS

)2
.(1.3)

Recently, an unbiased estimator of variance is proposed by MacEachern et al. [13] as

S2
M =

1

2n2k2

k∑
i 6=j

n∑
r=1

n∑
s=1

(
Y[i]r − Y[j]s

)2
+

1

2n(n− 1)k2

k∑
i=1

n∑
r=1

n∑
s=1

(
Y[i]r − Y[i]s

)2
.(1.4)

They showed that this estimator is more e�cient than S2
Stokes , especially when the

ranking is perfect. However, S2
M can be applied if the number of cycles is n ≥ 2.

Perron and Sinha [18] demonstrated that S2
M has the minimum variance among all

unbiased estimators of the form
∑
i

∑
j

∑
r

∑
s γi,j,r,sY[i]rY[j]s , where the coe�cients

{γi,j,r,s} satisfy γi,j,r,s = γj,i,r,s.
Another estimator of variance when the RSS is applied by measuring a concomitant

variable is proposed by Zamanzade and Vock [22]. Their estimator was obtained by
conditioning on observed concomitant values and using nonparametric kernel regression.
Zamanzade and Vock [22]`s simulation results indicated that their proposed estimator
considerably improves the estimation of variance when the rankings are fairly good.
However, since our interest here is not about using values of concomitant variable, we do
not consider their estimator for more investigations.

Biswas et al. [6] considered the problem of estimation of variance in �nite population
setting using jackknife method. Chen and Lim [8] considered the problem of estimation of
variances of strata in a balanced ranked set sample. Sengupta and Mukhuti [19] proposed
some unbiased variance estimators when the parent distribution is known to be simple
exponential.

The rest of this paper is organized as follows: In Section 2, the suggested sampling
scheme is explained and discussed for estimating the population mean and variance. In
Section 3, we compare the performance of the mean and variance estimators using NRSS
with their counterparts in RSS and SRS methods. In Section 4, a real data example is
provided to show the application of the new sampling strategy in practice. Some con-
cluding remarks are provided in Section 5.

2. Neoteric Ranked Set Sampling

Similar to the RSS, neoteric ranked set sampling (NRSS) is suggested to apply in
situations where the ranking of the sample observations is much easier than obtaining
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their precise values. The NRSS scheme can be described as follows:
I. Select a simple random sample of size k2 units from the target population.
II. Rank the k2 selected units in an increasing magnitude based on a concomitant vari-
able, personal judgment or any inexpensive method.
III. If k is an odd, then select the

[
k+1

2
+ (i− 1) k

]
th ranked unit for i = 1, · · · , k. But if

k is an even, then select the [l + (i− 1)k]th ranked unit, where l = k
2
if i is an even and

l = k+2
2

if i is an odd for i = 1, · · · , k.
IV. Repeat Steps I through III n times (cycles) if needed to obtain a neoteric ranked set
sample of size N = nk.
To illustrate the NRSS method, let us consider the following special case of univariate
observations.

Let Yij , Y2j , · · · , Yk2j be k2 simple random units selected from the population of
interest, and let Y[i]j , Y[2]j , · · · , Y[k2]j be the order statistics of Yij , Y2j , · · · , Yk2j for
j = 1, · · · , n.
1) Using NRSS
Assume that k = 3 and n = 1, then we have to select k2 = 9 units as

Y11, Y21, Y31, Y41, Y51, Y61, Y71, Y81, Y91.

Now, rank the units based on personal judgment or eye inspection to get

Y[1]1, Y[2]1, Y[3]1, Y[4]1, Y[5]1, Y[6]1, Y[7]1, Y[8]1, Y[9]1.

Using NRSS method, we have to choose the units with the rank 2, 5, 8 for actual quan-
ti�cation as

{
Y[1]1, Y[2]1 , Y[3]1, Y[4]1, Y[5]1 , Y[6]1, Y[7]1, Y[8]1 , Y[9]1

}
.

Then the measured NRSS units are
{
Y[2]1, Y[5]1, Y[8]1

}
, where their mean and the variance

are considered as estimators of the population mean and variance, respectively.
2) Using RSS

Now, using RSS method, we have to select 9 units:

Y11, Y12, Y13

Y21, Y22, Y23

Y31, Y32, Y33

 .
We then rank the units within each set with respect to a variable of interest and then
select the ith ranked unit of the ith sample as:

Y1[1] , Y1[2], Y1[3]

Y2[1], Y2[2] , Y2[3]

Y3[1], Y3[2], Y3[3]

 .
The measured RSS units are

{
Y1[1], Y2[2], Y3[3]

}
.

It is of interest to note here, that even if we select k2 units in both methods RSS and
NRSS, we only measure k units. Also, in RSS we rank k units in each of the k sets, while
in the NRSS, we rank all the k2 selected units at the same time.

In general, the resulting neoteric ranked set sample is denoted by{
Y[(i−1)k+l]j ; i = 1, · · · , k, j = 1, · · · , n

}
, where Y[(i−1)k+l]j is the [(i− 1)k + l]th mea-

sured unit from the jth cycle, and l = k+1
2

if k is odd, l = k
2
if k and i are both
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even and l = k
2

+ 1 if k is even but i is odd. Unlike RSS, NRSS measured units{
Y[(i−1)k+l]j ; i = 1, · · · , k

}
are dependent, and they follow the distribution of [(i− 1)k + l]th

order statistics of a sample of size k2 based on perfect ranking for j = 1, · · · , n. In the
case of imperfect rankings, the

{
Y[(i−1)k+l]j ; j = 1, · · · , n

}
follow distribution of judg-

ment order statistics of a sample of size k2.
To simplify the notations, if the sample size k is odd, then the measured units will be

denoted by Y[
k+1

2
], Y[

3k+1
2

], Y[
5k+1

2
], · · · , Y[

2k2−k+1
2

]. But if the sample size k is even, then

the measured units are denoted by Y[
k+2

2
], Y[

3k
2

], Y[
5k+2

2
], Y[

7k
2

], Y[
9k+2

2
], · · · , Y[

2k2−k
2

].
The suggested estimator of the population mean using NRSS is de�ned by

ȲNRSS =
1

nk

n∑
j=1

k∑
i=1

Y[(i−1)k+l]j ,(2.1)

with variance

V ar
(
ȲNRSS

)
=

1

nk2

k∑
i=1

V ar
(
Y[(i−1)k+l]1

)
+

2

nk2

k∑
i<j

Cov
(
Y[(i−1)k+l]1, Y[(j−1)k+l]1

)
.(2.2)

In the following theorem, we prove that the proposed mean estimator is unbiased for
symmetric distributions.

2.1. Theorem. ȲNRSS is an unbiased estimator of population mean if the rankings are

perfect and the parent distribution is symmetric.

Proof. Without loss of generality, we may suppose that n = 1.
If k is odd, then the NRSS estimator of the population mean can be written as

ȲNRSS =
1

k

k−1
2∑
i=1

(
Y

[ 2ik−k+1
2

]
+ Y

[ 2k
2−ik+1

2
]

)
+ Y

[ k
2+1
2

]
.

Take its expectation to have

E
(
ȲNRSS

)
= E

 1

k

k−1
2∑
i=1

(
Y

[ 2ik−k+1
2

]
+ Y

[ 2k
2−ik+1

2
]

)
+ Y

[ k
2+1
2

]



=
1

k

k−1
2∑
i=1

(
E
(
Y

[ 2ik−k+1
2

]

)
+ E

(
Y

[ 2k
2−ik+1

2
]

))
+ E

(
Y

[ k
2+1
2

]

)
.

From symmetric assumption about µ , we have Y[i] − µ
d
= µ − Y[i] , see for example

David and Nagaraja [11]. Thus, µ− µ
[ 2ik−k+1

2
]

= µ 2k2−ik+1
2

− µ, and then µ
[ 2ik−k+1

2
]
+

µ 2k2−ik+1
2

= 2µ . Also, E

(
Y

[ k
2+1
2

]

)
= µ since it is the median of the chosen sample of

size k2. Therefore,

E
(
ȲNRSS

)
=

1

k

k−1
2∑
i=1

(
µ

[ 2ik−k+1
2

]
+ µ

[ 2k
2−ik+1

2
]

)
+ µ

[ k
2+1
2

]

1

k

[
k − 1

2
(2µ) + µ

]
= µ.
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The case of the even sample size can be proved by rewriting ȲNRSS as:

ȲNRSS =
1

k

k
4∑
i=1

(
Y[ 4ik−3k

2 ] + Y[
2k2−4ik+3k+2

2

])+
1

k

k
4∑
i=1

(
Y[ 4ik+k+2

2 ] + Y[
2k2−4ik−k+4

2

]).
�

Let us consider the following two cases of symmetric and asymmetric distributions
under perfect ranking.

1. Uniform distribution. Suppose that the random variable Y has a uniform U (0, 1)
distribution. Therefore, the mean and variance of the ith ranked unit Y[i], respectively,

are given by E
(
Y[i]

)
= i

k+1
and Var

(
Y[i]

)
= i(k−i+1)

(k+1)2(k+2)
.

For k = 6, we have to select 36 units from the population and then measure only 6
units of them to be a neoteric ranked set sample which are Y[4], Y[9], Y[16], Y[21], Y[28], Y[33].
The NRSS mean estimator can be obtained as

ȲNRSS =
1

6

[
Y[4] + Y[9] + Y[16] + Y[21] + Y[28] + Y[33]

]
.

The expectation of this estimator is

E
(
ȲNRSS

)
=

1

6

[
E
(
Y[4]

)
+ E

(
Y[9]

)
+ E

(
Y[16]

)
+ E

(
Y[21]

)
+ E

(
Y[28]

)
+ E

(
Y[33]

)]
=

1

6

(
4

37
+

9

37
+

16

37
+

21

37
+

28

37
+

33

37

)
=

1

6

(
111

37

)
= 0.5,

which is an unbiased estimator of the true population mean, µ = 0.5. Recall that,

V ar
(
ȲNRSS

)
=

1

k2

k∑
i=1

V ar
(
Y[(i−1)k+s]

)
+

2

k2

k∑
i<j

Cov
(
Y[(i−1)k+s], Y[(j−1)k+s]

)
,

where for the uniform distribution

Cov
(
Y[j], Y[i]

)
= E

(
Y[j].Y[i]

)
− E

(
Y[j]

)
E
(
Y[i]

)
=

j(k + 1− i)
(k + 1)2(k + 2)

.

Therefore,
V ar

(
ȲNRSS

)
= 1

36

(
V ar

(
Y[4]

)
+ V ar

(
Y[9]

)
+ V ar

(
Y[16]

)
+ V ar

(
Y[21]

)
+ V ar

(
Y[28]

)
+ V ar

(
Y[33]

))
+ 2

36

Cov (Y[4], Y[9]

)
+ Cov

(
Y[4], Y[16]

)
+ Cov

(
Y[4], Y[21]

)
+ Cov

(
Y[4], Y[28]

)
+ Cov

(
Y[4], Y[33]

)
+

Cov
(
Y[9], Y[16]

)
+ Cov

(
Y[9], Y[21]

)
+ Cov

(
Y[9], Y[28]

)
+ Cov

(
Y[9], Y[33]

)
+ Cov

(
Y[16], Y[21]

)
+

Cov
(
Y[16], Y[28]

)
+ Cov

(
Y[16], Y[33]

)
+ Cov

(
Y[21], Y[28]

)
+ Cov

(
Y[21], Y[33]

)
+ Cov

(
Y28, Y[33]

)


=
1

36

(
66

26011
+

126

26011
+

168

26011
+

168

26011
+

126

26011
+

66

26011

)
+

2

36

[ (
56

26011
+ 42

26011
+ 32

26011
+ 18

26011
+ 8

26011

)
+
(

189
52022

+ 72
26011

+ 81
52022

+ 18
26011

)
+(

128
26011

+ 72
26011

+ 32
26011

)
+
(

189
52022

+ 42
26011

)
+ 56

26011

]
=

7

2812
.

Now, the variance of mean estimator based on a simple random sample of size k = 6

is V ar
(
ȲSRS

)
= σ2

k
= 1

12(6)
= 1

72
. Therefore, the relative e�ciency (RE) of the NRSS

estimator with respect to SRS estimator is RE1

(
ȲNRSS , ȲSRS

)
=

MSE(ȲSRS)
MSE(ȲNRSS)

= 5.5794,

and the RE of the RSS estimator with respect to its SRS counterpart isRE2

(
ȲRSS , ȲSRS

)
=

MSE(ȲSRS)
MSE(ȲRSS)

= 3.5.
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Exponential distribution. If Y has an exponential distribution with mean 1, then the
mean and variance of the ith order statistic, Y[i] are given by

E
(
Y[i]

)
=

k∑
w=k−i+1

1
w
, and Var

(
Y[i]

)
=

k∑
w=k−i+1

1
w2 .

For m = 5, we have to select 25 units from the population and then measure only 5
units of them to be a neoteric ranked set sample, which are Y[3], Y[8], Y[13], Y[18], Y[23].
Therefore, the NRSS mean estimator is

ȲNRSS =
1

5

[
Y[3] + Y[8] + Y[13] + Y[18] + Y[23]

]
.

The expectation of this estimator is

E
(
ȲNRSS

)
=

1

5

[
E
(
Y[3]

)
+ E

(
Y[8]

)
+ E

(
Y[13]

)
+ E

(
Y[18]

)
+ E

(
Y[23]

)]
=

1

5

(
1727

13800
+

22798213

60568200
+

19081066231

26771144400
+

10914604807

8923714800
+

20666950267

8923714800

)

=
1

5

(
5090112581

1070845776

)
= 0.950671,

where E
(
Y[3]

)
=

25∑
w=23

1
w

= 1727
13800

, E
(
Y[8]

)
=

25∑
w=18

1
w

= 22798213
60568200

, E
(
Y[13]

)
=

25∑
w=13

1
w

=

19081066231
26771144400

, E
(
Y[18]

)
=

25∑
w=8

1
w

= 10914604807
8923714800

, E
(
Y[23]

)
=

25∑
w=3

1
w

= 20666950267
8923714800

.

It can be seen that this estimator is biased with Bias
(
ȲNRSS

)
= −0.0493285, which is

very quite close to the bias value -0.05 obtained in Table 2, when ρ = 1.
The suggested NRSS estimator of the population variance is given by

S2
NRSS =

1

nk − 1

n∑
j=1

k∑
i=1

(
Y[(i−1)k+l]j − ȲNRSS

)2
(2.3)

It is of interest to note here that S2
NRSS has a negligible bias of the population variance,

which approaches to zero in most cases.

3. Monte Carlo Comparison

In this section, the performances of the proposed mean and variance estimators based
on NRSS are compared with their counterparts using RSS and SRS methods. As we
mentioned before, we only measure on N = nk units using NRSS and RSS methods, to
compare them with N units using SRS method.

For Monte Carlo simulation, we have used the model of imperfect ranking suggested by
Dell and Clutter (1972), assuming (Z,X) follows a standard bivariate normal distribution

with correlation coe�cient ρ. Then, we take Y = Z, Φ(Z), log
[

Φ(Z)
1−Φ(Z)

]
, − log [Φ(Z)]

and [Φ(Z)]5 as the variable of interest, where Φ(.) is the cdf of the standard normal
distribution. Therefore, we allow the relation between the interest variable (Y ) and
the auxiliary variable (X) to be linear or non-linear, and the parent distributions to be
Normal (0,1), Uniform (0,1), Logistic (0,1), Exponential (1) and Beta (0.2,1), respectively.
Thus we have considered both symmetric and asymmetric distributions with bounded
and unbounded supports in our simulation study.

The values of ρ are 0, 0.2, 0.4, 0.6, 0.8, 1. Without loss of generality, we assumed
that the ranking is based on X. Therefore, as ρ gets large to 1, the ranking approaches to
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Table 1. The relative e�ciencies of NRSS mean estimator to SRS
mean estimator (RE1) and RSS mean estimator to SRS mean estimator
(RE2) for di�erent values of (N, k).

Parent
Normal(0,1) Uniform(0,1) Logistic(0,1) Exponential(1) Beta(0.2,1)

Distribution

(N, k) ρ RE1 RE2 RE1 RE2 RE1 RE2 RE1 RE2 RE1 RE2
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01

(10,5) 0.4 1.14 1.11 1.13 1.12 1.15 1.11 1.14 1.11 1.1 1.08
0.6 1.40 1.28 1.34 1.30 1.42 1.29 1.38 1.24 1.29 1.21
0.8 2.02 1.68 1.94 1.71 2.05 1.66 1.92 1.51 1.71 1.47
1 4.75 2.78 4.68 3.00 4.88 2.56 4.37 2.16 4.05 2.14

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02

(10,10) 0.4 1.17 1.14 1.16 1.14 1.18 1.14 1.14 1.11 1.12 1.10
0.6 1.47 1.4 1.43 1.39 1.51 1.39 1.43 1.32 1.32 1.27
0.8 2.37 2.03 2.25 2.03 2.38 1.99 2.19 1.77 1.94 1.71
1 9.78 4.82 9.71 5.50 9.99 4.2 9.00 3.43 8.94 3.53

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01

(20,5) 0.4 1.15 1.11 1.12 1.11 1.16 1.12 1.13 1.09 1.10 1.08
0.6 1.41 1.31 1.35 1.27 1.42 1.29 1.37 1.23 1.29 1.21
0.8 2.03 1.68 1.90 1.7 2.06 1.64 1.90 1.53 1.68 1.47
1 4.74 2.78 4.66 3.00 4.89 2.58 3.99 2.19 3.93 2.12

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.03 1.03 1.05 1.04 1.03 1.02 1.03 1.02 1.02 1.03

(20,10) 0.4 1.16 1.13 1.15 1.14 1.17 1.13 1.15 1.12 1.11 1.09
0.6 1.48 1.40 1.44 1.39 1.49 1.39 1.43 1.32 1.32 1.27
0.8 2.35 2.02 2.24 2.03 2.37 1.96 2.16 1.79 1.93 1.70
1 9.71 4.79 9.74 5.50 9.92 4.21 8.00 3.41 8.84 3.52

completely perfect. The relative e�ciency (RE) of NRSS and RSS with respect to SRS
is de�ned as

RE1

(
ȲNRSS , ȲSRS

)
=

MSE
(
ȲSRS

)
MSE

(
ȲNRSS

) , RE2

(
ȲRSS , ȲSRS

)
=
MSE

(
ȲSRS

)
MSE

(
ȲRSS

) ,
RE3

(
S2
Stokes, S

2
SRS

)
=

MSE
(
S2
SRS

)
MSE (S2

Stokes)
, RE4

(
S2
M , S

2
SRS

)
=
MSE

(
S2
SRS

)
MSE (S2

M )
,

RE5

(
S2
NRSS , S

2
SRS

)
=

MSE
(
S2
SRS

)
MSE (S2

NRSS)
.

where MSE
(
θ̂
)

= V ar
(
θ̂
)

+
[
Bias

(
θ̂
)]2

.

The values of (N, k) are selected to be (10, 5) , (10, 10) , (20, 5) , (20, 10). So, we can
assess the e�ect of increasing total sample size for �xed k, and the e�ect of increasing k
when the total sample size is �xed. The number of repetitions in the simulation study
is set to be 100,000 for each sample size. The results are reported in Tables 1-4 for
estimating the population mean and variance.



1899

T
a
b
le

2
.
E
st
im

a
te
d
b
ia
se
s
o
f
Ȳ
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Table 1 gives the relative e�ciencies of the mean estimators based on NRSS and
RSS schemes to SRS mean estimator for di�erent distributions. We observe that when
rankings are prefect (ρ = 1), the e�ciency gain in using NRSS mean estimator is approx-
imately two times higher than the mean estimator based on RSS scheme. Furthermore,
the performance of NRSS mean estimator for the symmetric distributions is slightly
better than the asymmetric distributions, and the best performance of NRSS mean esti-
mator is for logistic distribution. It is clear from this table that the e�ect of the imperfect
ranking on ȲNRSS is more than ȲRSS , however, even in the case of imperfect ranking
(ρ ≤ 0.8), the ȲNRSS is still superior to ȲRSS for ρ ≥ 0.4, and it is as e�cient as ȲRSS
for ρ ≤ 0.4. When the rankings are completely random (ρ = 0), all estimators have the
same performances. This can be justi�ed by the fact that in the case of random rankings,
RSS and NRSS schemes are intrinsically the same as SRS design. It is worth mentioning
that in all considered cases, the relative e�ciencies of ȲNRSS and ȲRSS increase as the
set size (k) increases for �xed sample size (N).

Table 2 presents the estimated biases of the NRSS mean estimator for asymmetric
distributions. We observe that the proposed mean estimator slightly underestimates the
true population mean when the parent distribution is standard exponential and ρ ≥ 0.4.
Furthermore, the bias of ȲNRSS decreases in absolute value when set size (k) increases
or the correlation of coe�cient (ρ) decreases. In the case of the parent distribution being
Beta(0.2,1), the NRSS mean estimator is almost unbiased.

The relative e�ciencies of di�erent variance estimators S2
NRSS and S2

Stokes to S2
SRS

are presented in Table 3. It is clear from this table that the performance of S2
NRSS

dominates all other estimators considered here when the rankings are perfect (ρ = 1),
and S2

NRSS performs at least twice as good as its competitors in RSS scheme. Although
the imperfect ranking has more negative e�ect on S2

NRSS than S2
Stokes and S

2
M , S2

NRSS

is still superior to its RSS competitors for ρ ≤ 0.8. Furthermore, we also observe that
the relative e�ciencies increase as the set size (k) increases for �xed sample size (N).

The estimated bias values of S2
NRSS and S2

Stokes are given in Table 4. We observe
that for standard uniform and Beta(0.2,1) distributions, S2

NRSS and S2
Stokes are almost

unbiased. However, for standard normal, standard exponential and standard logistic
distributions, S2

Stokes overestimates true population variance and S2
NRSS underestimates

σ2. It is also evident that the bias of S2
NRSS is larger than the bias of S2

Stokes in absolute
value. Furthermore, we observe that the biases of S2

Stokes and S
2
NRSS decrease in absolute

value as ρ decreases.

4. A real data set

In this section, a real data set is considered to illustrate the performance of NRSS
method in estimating the population mean and variance. The data set consists of the
percentage of body fat determined by underwater weighing and various body circumfer-
ence measurements for 252 men. For more details about these data, see
http://lib.stat.cmu.edu/datasets/bodyfat. We take the percentage of body fat as the
interest variable (Y ) and abdomen circumference as concomitant variable (X). Sampling
with replacement is considered, so the assumption of independence is covered. The mean
and variance of the target variable Y in the population are µY = 19.15 and σ2

Y = 70.03,
respectively, and the correlation of coe�cient between the two variables is ρXY = 0.81.
To select a sample of size 10, using using both RSS and NRSS designs, the following
steps are carry out:
I. Select a bivariate simple random sample of size 25 of (X,Y ).
II. On basis of NRSS, rank the X values and use their ordering for Y . Then, select the
3rd, 8th, 13th, 18th and 23rd judgment ranked values of Y for actual quanti�cation to
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Table 5. The values of the variable of interest Y using NRSS, RSS
and SRS designs.

NRSS 25.5 5.3 19.7 27.2 27.0 15.1 5.7 22.9 26.0 32.3

RSS 27.3 18.5 19.7 27.0 18.5 31.6 10.6 15.2 10.6 15.2

SRS 0.7 29.6 26.7 11.5 19.2 27.3 17.5 16.5 3.0 20.5

constitute a neoteric ranked set sample of size 5.
III. For RSS, divide the 25 SRS observations into 5 sets each of size 5. Then, use the true
ranked X values to rank the values of Y within each set of size 5 units. Finally, select
the ith judgment ranked values of Y from the ith sample (i = 1, · · · , 5).
IV. Repeat Steps I to III two times to have a sample of size 10 from NRSS and RSS
designs.
Also, a simple random sample of size 10 is selected from the same population. The results
of measured values in NRSS, RSS and SRS designs are presented in Table 5.
The above results in Table 5 showed that

ȲNRSS = 20.67, ȲRSS = 19.42, ȲSRS = 17.25,

S2
NRSS = 85.22, , S2

Stokes = 51.20, S2
M = 49.89, S2

SRS = 96.42.

Our results showed that the means of 100000 repeated values of the suggested estimators
are all quite close to the real population parameters. For example,
Bias

(
ȲNRSS

)
= 20.67 − 19.15 = 1.52, and Bias

(
S2
NRSS

)
= 85.22 − 70.03 = 15.19,

which are more better than the SRS estimators. Also, the NRSS variance estimator is
more e�cient than its counterparts in Stokes [20], and MacEachern et al. [13].

5. Conclusion

In this paper, a new modi�cation of the usual RSS is suggested for estimating the
population mean and variance. The suggested estimators are compared with their com-
petitors in SRS method. Our simulation results indicate that the suggested empirical
mean and variance estimates are strongly better than their competitors in RSS and SRS
designs for the same number of measured units with perfect ranking. In the case of
imperfect rankings, the NRSS estimators are still superior to their counterparts in the
RSS and SRS design and their superiority decrease as the quality of rankings decreases.
We prove that the NRSS mean estimator is unbiased when the parent distribution is
symmetric. For asymmetric distributions, the simulation results indicate that the NRSS
mean estimator is slightly biased. Thus, based on the above observations, the NRSS
can be recommended for estimating the population parameters due to its e�ciency with
respect to SRS and RSS methods.

In this paper, we consider the problem of estimation of mean and variance based on
the NRSS. One can use the NRSS scheme for estimation of cumulative distribution func-
tion and population quantiles. It is also interesting to investigate the performance of
goodness of �t tests based on empirical distribution function (e.g. Kolmogorov-Smirnov,
Anderson�Darling, etc) NRSS and compare them with their counterparts in the RSS and
SRS designs.
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