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Abstract
This paper presents a double sampling version of Yadav and Kadilar
(2013) estimator alongwith its properties under large sample approxi-
mation. Cost aspect is also discussed. We have compared the proposed
estimator with usual unbiased estimator and usual double sampling
ratio estimator and shown that the proposed estimator is better than
usual unbiased estimator and other existing estimators under some re-
alistic conditions to two-phase sampling.
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1. Introduction
The use of auxiliary information has been dealt with at great length for improving

estimators of population parameters in sample surveys. Various estimation procedures in
sample surveys need advance knowledge of some auxiliary variable which is then used to
increase the precision of estimates. For example, the ratio - type estimator due to Isaki
(1983) need the advance knowledge of population variance S2

x of the auxiliary variable x.
When the population variance S2

xis not known, it is sometimes estimated from a prelim-
inary large sample on which only the auxiliary characteristic x is observed. The value
of S2

xin the estimator is then replaced by its estimate. A smaller second phase sample
of the variate under study y is then taken. This technique, known as double sampling
or two-phase sampling, is especially appropriate if the x values are easily accessible and
much cheaper to collect than the yi values see. Hidiroglou and Sarandal (1998). The
use of double sampling is necessary if the x - value is obtained by performing a non-
destructive experiment where as to obtain a y - value of a unit, a destructive experiment
has to be performed, see UnniKrishan and Kunte (1995). Double sampling is also an able
alternative to simple random sampling when there are expected to be gains from using
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auxiliary information.
let U = (U1, U2, ...UN ) denote the population of N units and let (y, x) be the variate

defined on U taking values (yi, xi) on Ui(i = 1, 2, ..., N). It is desired to estimate S2
y of

the study variate y. A simple random sample of size n is drawn without replacement
(SRSWOR) from the population U . The usual unbiased estimator of based on SRSWOR
is given by :

S2
y =

1

n− 1

n∑
i=1

(yi − ȳ)2,(1.1)

where ȳ =
1

n

n∑
i

yi is the sample mean based on n observations.

To improve the usual unbiased estimator s2y, using the known population variance S2
x

of the auxiliary variate x, Isaki (1983) suggested a ratio-type estimator for the population
variance S2

y as

tl =s2y
S2
x

s2x
,(1.2)

where s2x =
1

n− 1

n∑
i=1

(xi − x̄)2, is an unbiased estimator of the population variance s2x

and x̄ =
1

n

n∑
i=1

xi is the sample mean.

Singh et al. (2011) proposed the exponential ratio estimator for the population vari-
ance S2

y as

(1.3) ts = s2yexp(
S2
x − s2x
S2
x + s2x

).

when the population varianceS2
x of the auxiliary character x, the usual linear regression

estimator for population variance S2
x is defined by

(1.4) tlr = s2y + β̂(S2
x − s2x)

where β̂=
s2y(λ̂22 − 1)

s2x(λ̂04 − 1)
is sample regression coefficient,

λ̂04 =
µ̂04

µ̂2
02

, λ̂22 =
µ̂22

µ̂20µ̂02
,

µ̂04 =
1

n

n∑
i=1

(xi − x̄)4, µ̂02 =
1

n

n∑
i=1

(xi − x̄)2,

µ̂20 =
1

n

n∑
i=1

(yi − ȳ)4, µ̂22 =
1

n

n∑
i=1

(yi − ȳ)2(xi − x̄)2.

Motivated by Upadhyaya et al. (2011), Yadav and Kadilar (2013) suggested the following
class of estimators of the population variance S2

y as

(1.5) ty = s2yexp[
S2
x − s2x

S2
x + (α− 1)s2x

],

where (α ≥ 0).
In this paper we have studied the properties of the above estimators t1, ts, tlr and

tyin the case of double sampling (i.e. when the population variance S2
x of the auxiliary

variable x is not known). Cost aspects are also discussed. Numerical illustration is given
in support of the present study.
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2. Two-phase sampling estimators
When the population variance S2

xof x is not known, a first phase sample of n1is drawn
from the population on which only the x-characteristic is measured in order to furnish a
good estimate of S2

x.Then a second phase sample of size n is drawn on which both the vari-
ates y and x are measured [see Singh and Ruiz Espejs (2007)].Let (x1, x2, ..., xn1)be the
first phase sample drawn by simple random sampling without replacement (SRSWOR)
from the given population U and only auxiliary variable x be measured.
Also, let (y1, y2, ..., yn) and (x1, x2, ..., xn),(n < n1)denote respectively, the second phase
sample for the study variable y and the auxiliary variable x respectively.

Let us write x̄1 =
1

n1

n1∑
i=1

xi , s2x1
=

1

n1 − 1

n1∑
i=1

(xi−x̄1)2 , x̄ =
1

n

n∑
i=1

xi , s2x =
1

n− 1

n∑
i=1

(xi−

x̄)2 , ȳ =
1

n

n∑
i=1

yi , s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2 ,

Then the two-phase sampling (or double sampling) estimators of population variance S2
y

are given by

(2.1) tld = s2y[
s2x1
s2x

],

(2.2) tsd = s2yexp[
s2x1 − s2x
s2x1 + s2x

],

and

(2.3) tyd = s2yexp[
s2x1 − s2x

s2x1 + (α− 1)s2x
].

It is to be mentioned that the estimators tld, tsd and tyd are double sampling versions
of Isaki (1983) estimator, Singh et al. (2011) estimator and Yadav and Kadilar (2013)
estimator. For α = 2 in (8),tyd reduces to the estimator tsd.

3. The first Degree Approximation to the Biases and Variances
of the Suggested Estimators.
In order to study the large sample properties of the proposed estimators, we define.

s2y = S2
y(1 + ε0), s2x = S2

x(1 + ε1),s2x1 = S2
x(1 + ε2)

such that E(ε0) = E(ε1) = E(ε2) = 0
The following two cases will be considered separately.

Case - I : When the second phase sample of size n is a subsample of the first phase
of size n1.

Case - II : When the second phase sample of size n is drawn independently of the
first phase sample of size n1 see Bose (1943)

Case I - When the second phase sample of size n is a subsample of the first phase
sample of size n1 (n < n1), the expected values are :

E(ε20) =
1

n
(λ40−1), E(ε21) =

1

n
(λ04−1), E(ε0ε1) =

1

n
(λ22−1), E(ε22) =

1

n1
(λ04−1),

(3.1) E(ε0ε2) =
1

n1
(λ22 − 1), E(ε1ε2) =

1

n1
(λ40 − 1),

where λrs =
µrs

(µ
r/2
20 )(µ

s/2
02 )

, µrs =
1

N

N∑
i=1

(yi − ȳ)r(xi − x̄)s

(r, s) being non-negative integers,
Case II - When the second phase sample of size n is independent of the first phase
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sample of size n1 , the expected value are :

E(ε20) =
1

n
(λ40 − 1), E(ε21) =

1

n
(λ04 − 1), E(ε0ε1) =

1

n
(λ22 − 1),

(3.2) E(ε22) =
1

n1
(λ04 − 1), E(ε0ε2) = E(ε1ε2) = 0,

Expressing tld, tsd and tyd in terms of ε′is, (i = 0, 1, 2) , we have

(3.3) tld = s2y(1 + ε0)(1 + ε1)−1(1 + ε2)

(3.4) tsd = s2y(1 + ε0)exp[− (ε1 − ε2)

2
(1 +

ε1 + ε2
2

)−1]

(3.5) tyd = s2y(1 + ε0)exp[− (ε1 − ε2)

α
(1 +

(α− 1)ε1 + ε2
α

)−1]

Expanding the right hand side of (11), (12) and (13) multiplying out and neglecting
terms of e′s having power greater than two we have

tld ∼= S2
y(1 + ε0 + ε2 − ε1 + ε0ε2 − ε0ε1 − ε1ε2 + ε21)

or

(3.6) (tld − S2
y) ∼= S2

y(ε0 + ε2 − ε1 + ε0ε2 − ε0ε1 − ε1ε2 + ε21)

tsd ∼= S2
y [(1 + ε0 −

(ε1 − ε2)

2
− (ε0ε1 − ε0ε2)

2
+

(3ε21 − ε22 − 2ε1ε2)

8
]

or

(3.7) (tsd − S2
y) ∼= S2

y [(ε0 −
(ε1 − ε2)

2
− (ε0ε1 − ε0ε2)

2
+

(3ε21 − ε22 − 2ε1ε2)

8
]

tyd ∼= S2
y [1 + ε0 −

(ε1 − ε2)

α
− (ε0ε1 − ε0ε2)

α
+

((2α− 1)ε21 − ε22 − αε1ε2)

2α2
]

or

(3.8) (tyd − S2
y) ∼= S2

y [ε0 −
(ε1 − ε2)

α
− (ε0ε1 − ε0ε2)

α
+

((2α− 1)ε21 − ε22 − 2ε1ε2)

2α2
]

Now squaring both sides of (14), (15) and (16) and neglecting terms of ε′shaving power
greater than two we have

(3.9) (tld − s2y) = S4
y(ε20 + (ε2 − ε1)2 − 2(ε0ε1 − ε0ε2)]

(3.10) (tsd − S2
y)2 = S4

y(ε20 +
(ε1 − ε2)2

4
− (ε0ε1 − ε0ε2)]

and

(3.11) (tyd − S2
y)2 = S4

y(ε20 +
(ε1 − ε2)2

α2
− (2ε0ε1 − ε0ε2)

α
)]

Taking expectations of both sides of (14), (15), (16) and (17), (18), (19) and using the
results in (9), we get the biases and mean squared errors of t1d, tsdand tyd to the first
degree of approximation under case-I respectively as

(3.12) B(tld)1 = (
1

n
− 1

n1
)(λ04 − 1)S2

y(1− C)

(3.13) B(tsd)1 =
1

8
(

1

n
− 1

n1
)(λ04 − 1)S2

y(3− 4C)



1261

(3.14) B(tyd)1 =
(λ04 − 1)

2α2
[
1

n
[2α(1− c)− 1]− 1

n1
(1 + α(1− 2c))]

(3.15) MSE(t1d)1 = S4
y [

1

n
(λ40 − 1) + (

1

n
− 1

n1
)(λ04 − 1)(1− 2c)]

(3.16) MSE(tsd)1 = S4
y [

1

n
(λ40 − 1) + (

1

n
− 1

n1
)
1

4
(λ04 − 1)(1− 4c)]

(3.17) MSE(tyd)1 = S4
y [

1

n
(λ40 − 1) + (

1

n
− 1

n1
)

1

α2
(λ04 − 1)(1− 2αc)]

where c =
λ22 − 1

λ04 − 1
, and B(.)1 and MSE(.)1stand the bias of (.) under case-I (i.e. when

the second phase sample is a subsample of the first phase sample) respectively.
Now taking the expectations of both sides of (14), (15), (16) and (17), (18) and (19) and
using results in (10) we get the biases and mean squared errors of the estimators t1d, tsd
and tyd to the first degree of approximation under case-II respectively as

(3.18) B(tld)11 =
S2
y(λ04 − 1)

n
(1− c)

(3.19) B(tsd)11 =
S2
y(λ04 − 1)

8
[
3− 4c

n
− 1

n1
]

(3.20) B(tyd)11 =
S2
y(λ04 − 1)

2α2
[
(2α− 2αc− 1)

n
− 1

n1
]

(3.21) MSE(tld)11 = S4
y [(

1

n
)[(λ40 − 1) + (λ04− 1)(1− 2c)] +

λ04 − 1

n1
]

(3.22) MSE(tsd)11 = S4
y [(

1

n
)[(λ40 − 1) +

(λ04 − 1)

4
(1− 4c)] +

λ04 − 1

4n1
]

(3.23) MSE(tyd)11 = S4
y [(

1

n
)[(λ40 − 1) +

(λ04 − 1)

α2
(1− 2αc)] +

λ04 − 1

α2n1
]

where B(.)11 and MSE(.)11stand the bias of (.) and MSE of (.) under case-II.

4. Optimum choice of the scalar ′α′

Case - I The MSE(tyd)1 at (25)is minimized for

(4.1) α =
1

c
= αopt(say)

Substitution (32) in (8) yields the asymptotically optimum estimator (AOE) of S2
y as

(4.2) tyd(0) = s2yexp[
c(s2x1 − s2x)

cs2x1 + (1− c)s2x
]

The value of ′c′ can be guessed quite accurately from the past data or experience gathered
in due course of time see Yadav and Kadilar (2013, p. 148). In case c is not known, it

is worth advisable to replace c by its consistent estimate ĉ =
(λ̂22 − 1)

λ̂04 − 1
based on sample

data at hand, where λ̂22 and λ̂04 are same as defined earlier. Thus replacing ′c′ by its
estimate ′ĉ′in (33) , we get an estimator of S2

y based on estimated optimum as

(4.3) t̂yd(0) = s2yexp[
ĉ(s2x1 − s2x)

ĉs2x1 + (1− ĉs2x)
]
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It can be shown to the first degree of approximation that

(4.4) MSE(tyd(0))1 = MSE(t̂yd(0))1 =
s4y
n

[(λ40 − 1)− (
n1 − 1

n1
)
(λ22 − 1)2

(λ04 − 1)
]

which equals to the approximate variance / MSE of the regression estimator

tlrd = s2y +
s2y((λ̂)22 − 1)

s2x((λ̂)04 − 1)
(s2x1 − s2x)

Thus the proposed t̂yd(0) is an alternative to the regression estimator tlrd It is well known
under SRSWOR that to the first degree of approximation (ignoring fpc term) that

(4.5) V (s2y) = MSE(s2y) =
1

n
S4
y(λ40 − 1)

From (23), (24), (35) and (36) we have

(4.6) MSE(s2y)−MSE(t̂yd(0)) = (
1

n
− 1

n1
)S4

y
(λ22 − 1)2

(λ04 − 1)
≥ 0

(4.7) MSE(tld)−MSE(t̂yd(0)) = (
1

n
− 1

n1
)S4

y(λ04 − 1(1− c)2 ≥ 0

(4.8) MSE(tsd)−MSE(t̂yd(0)) = (
1

n
− 1

n1
)S4

y
(λ04 − 1)

4
(1− 2c)2 ≥ 0

It follows from (37), (38) and (39) that the proposed estimator t̂d(0) is more efficient than
the usual unbiased estimator S2

y , tld and tsd. Thus the proposed estimator t̂yd(0) is an
appropriate choice among the estimator S2

y , tld, tsd and t̂yd(0) to be used in practice.
case - II: The MSE(tyd)11 at (31) is minimized for

(4.9) α =
n+ n1

n1c
= α∗opt

Substitution of (40) is (8) yields the asymptotically optimum estimator (AOE) under
case-II as

(4.10) t∗yd(0) = s2yexp[
c(s2x1 − s2x)

cs2x1 + (δ − c)s2x
]

where δ = (n+ n1)/n1

if c is not known, then we replace c by its consistent estimate ĉ. thus the estimator based
on estimated optimum value ĉ of c is given by

(4.11) (t̂)∗yd(0) = s2yexp[
(ĉ)(s2x1 − s2x)

(ĉ)s2x1 + (δ − (ĉ))s2x)
]

To the first degree of approximation (ignoring fpc terms), it can be shown that

(4.12) MSE(t∗yd(0)) =
S4
y

n
[(λ40 − 1)− n1

(n+ n1)
(λ04 − 1)c2]

From (29), (30), (36) and (43), we have

(4.13) MSE(s2y)−MSE(t̂∗yd(0)) =
n1

n(n+ n1)
S4
y(λ04 − 1)c2 ≥ 0

(4.14) MSE(tld)11 −MSE(t̂∗yd(0)) =
S4
y(λ04 − 1n+ n1(1− c)2)

n(n+ n1)
≥ 0
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(4.15) MSE(tsd)11 −MSE(t̂∗yd(0)) =
S4
y(λ04 − 1)(n+ n1 − 2n1c

2)

4nn1(n+ n1)
≥ 0

Thus the proposed estimator t̂∗yd(0) is more efficient than the usual unbiased estimator
s2y, tld and tsd under case - II.
From (35) and (43), we have

(4.16) [MSE(t∗yd(0))1 −MSE(t∗yd(0))11] =
ns4y(λ04 − 1)c2)

n1(n+ n1)
≥ 0

which shows that the proposed estimator tyd(0) under case -I is better than the proposed
estimator t∗yd(0) under case - II.

5. EFFICIENCY COMPARISON OF THE PROPOSED ESTI-
MATOR WHEN THE SCALAR ıα DOES NOT COINCIDE
EXACTLY WITH ITS OPTIMUM VALUE.
In this section we compare the proposed estimator tydwith the estimators s2y, tld, tsd

under case - I and II.
Case - I:From (25) and (36) we have

(5.1) MSE(s2y)−MSE(tyd)1 = (
1

n
− 1

n1
)s4y

1

α2
(2αc− 1)

which is positive if

2αc− 1 > 0

i.e. if

(5.2) α >
1

2c

From (23) and (25) we have

MSE(tld)1 −MSE(tyd)1 = (
1

n
− 1

n1
)s4y(λ04 − 1)[1− 2c− 1

α2
+

2c

α
]

which is positive if [(1− 1

α2
)− 2c(1− 1

α
)] > 0

i.e. if

(5.3) eithermin.[1,
1

(2c− 1)
] < α < max.[1,

1

(2c− 1)
], c >

1

2

or

(5.4) α > 1, 0 ≤ c ≤ 1

2

Further from (24) and (25) we have

MSE(tsd)1 −MSE(tyd)1 = (
1

n
− 1

n1
)s4y(λ04 − 1)(

1

2
− 1

α
)(

1

2
+

1

α
− 2c)

which is greater than ’ zero’ if

(
1

2
− 1

α
)(

1

2
+

1

α
− 2c)
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i.e. if

(5.5) eithermin.[2,
2

4c− 1
] < α < max.[2,

2

4c− 1
]

or

α > 2, 0 ≤ c ≤ 1

4

Thus we established the following theorem.
Theorem - 5.1 The proposed estimator tyd in case-I is more efficient than :
(i) the usual unbiased estimators2y if

α >
1

2c

(ii)the Isaki (1983) double sampling ratio estimator tld if

eithermin.[1,
1

(2c− 1)
] < α < max.[1,

1

(2c− 1)
], c >

1

2

or

(5.6) α > 1, 0 ≤ c ≤ 1

2

(iii)the double sampling version of Singh et al (2011) estimator tsd if

eithermin.[2,
2

4c− 1
] < α < max.[2,

2

4c− 1
]

or

α > 2, 0 ≤ c ≤ 1

4

Case II-From (31) and (36) we have

MSE(s2y)−MSE(tyd)11 = −s4y(λ04 − 1)
1

α2
[
1

n
(1− 2αc) +

1

n1
]

which is positive if

(5.7) [
1

n
(1− 2αc) +

1

n1
] ≤ 0

i.e. if α >
δ

2c
,

where δ =
(n+ n1)

n1
.

From (29) and (31) we have

MSE(tld)11 −MSE(tyd)11 = S4
y(λ04 − 1)[

1

n
(1− 2c) +

1

n1
− (1− 2αc)

nα2
− 1

α2n1
]

which is positive if

[(
1

n
+

1

n1
)(1− 1

α2
)− 2

n
(1− 1

α
)c] > 0

i.e. if
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either 1 < α <
δ

2c− δ or
δ

(2c− δ) < α < 1

or equivalently,

(5.8) min.[1,
δ

(2c− δ) ] < α < max.[1,
δ

2c− δ ].

Also the difference

(5.9) [MSE(tld)11 −MSE(tyd)11] ispositiveif α > 1, c <
δ

2

From (30) and (31) we have

[MSE(tsd)11−MSE(tyd)11] = S4
y(λ04− 1)[

1

n
[
1− 4c

4
− 1− 2αc

α2
] + (

1

4
− 1

α2
)

1

n1
]

= S4
y(λ04 − 1)(1− 2

α
)[
δ

4
(1 +

2

α
− c]

which is positive if

either 2 < α <
2δ

4c− δ or
2δ

(4c− δ) < α < 2

or equivalently,

(5.10) min.[2,
2δ

(4c− δ) ] < α < max.− [2,
2δ

4c− δ ].

Now established the following theorem.
Theorem - 5.2 The proposed estimator tyd under case II is more efficient than :
(i) the usual unbiased estimator s2y if

α >
δ

2c

(ii)the Isaki’s (1983) ratio type double (two phase) sampling estimator tsd if

either [min.1,
δ

(2c− δ) ] < α < max.[1,
δ

2c− δ ].

(iii) the Singh et al.’s (2011) estimator tsd if

either [2,
2δ

4c− δ ] < α < max.[2,
2δ

4c− δ ]

6. Comparison with single phase sampling
In this section following Singh and Ruiz Espejo (2007) the comparisons between dou-

ble and Single-phase sampling have been made for fixed cost. We shall consider the cases
separately.
Case - I - In this case we consider the following cost function:

(6.1) c∗ = nc1 + n1c2

where c∗ equals the total cost of the survey and (c1, c2) are the costs per unit of collecting
information on the study variate y and the auxiliary variate x respectively.
In this case, we express the minimum MSE of tyd(or the MSE of t̂yd(0)) as

(6.2) My =
My1

n
+
My2

n1
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(6.3) My1 = [(λ40 − 1)− (λ22 − 1)2

(λ04 − 1)
= (λ40 − 1)(1− ρ∗2)S4

y

(6.4) My2 = (
(λ40 − 1)2

(λ04 − 1)
= (λ40 − 1)ρ∗2)S4

y

where ρ∗ =
(λ22 − 1)√

(λ22 − 1)(λ04 − 1)
The optimum values of n and n1 for fixed cost c∗ , which minimizes the mean squared
error My is given by

(6.5) nyopt =

C∗
√
My1

c1√
My1c1 +

√
My2c2

ny1opt =

C∗
√
My2

c2√
My1c1 +

√
My2c2

The mean squared error of ŷyd(0)corresponding to optimal double sampling estimator is

MSEopt(tyd)1 = (
1

c∗
)(
√
c1My1 +

√
c2My2)2

(6.6) (
S4
y

c∗
)(λ40 − 1)(

√
c1(1− ρ∗2 + ρ∗

√
c2)2

Case - II In case II, we assume that x is measured on y on n∗=n+n1 units andy units.
Motivated by Srivastava (1970) we shall consider a simple cost function:

(6.7) c∗ = c1n+ c∗2n
∗

where c1 andc∗2 denote costs per unit of observing the study variate y and the auxiliary
variatex values respectively. The expression of mean squared error oft̂yd(0) (under case
II) can now be written as

(6.8) M∗y =
My1

n
+
My2

n∗
,

where n∗ = n+ n1

To obtain the optimum allocation of sample between phases for a fixed cost c∗, we
minimize equation (65) with the condition (64). It is easily obtained that this minimum
is attained for

(6.9)
n

n∗
= (

My1c
∗
2

My2c1
)1/2 =

c∗2(1− ρ∗2)

c1ρ∗2

1/2

Thus the minimum MSE corresponding to these optimum values of n and n1 are given
by

(6.10) MSEopt(t̂yd(0))11 = [
S4
y(λ40 − 1)

c∗
][
√

(1− ρ∗2)c1 + ρ∗
√
c∗2]2

Had all the resources been diverted towards the study variate y only, then we would have
optimum sample size as given below

(6.11) n∗∗ =
c∗

c1

Thus the variance of the usual unbiased estimator s2y for a given fixed cost cin case of
large population is given by

(6.12) MSEopt(s
2
y) = (

c1
c∗

)s4y(λ40 − 1)
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Case - I : From (63) and (69), the suggested double sampling strategy would be profitable
if

MSEopt(t̂yd(0)) < MSEopt(S
2
y)

i.e. if

c2
c1
<

(1−
√

1− ρ∗2)2

ρ∗2

Thus we established the following theorem.
Theorem 6.1 The suggested double sampling strategy t̂yd(0) would be more efficient
than the strategy s2y as long as

c2
c1
<

(1−
√

1− ρ∗2)2

ρ∗2

Case-II From (67) and (69) it is observed that the double sampling estimator t̂yd(0) is
better than the sample mean square s2y for the same fixed cost, if

MSE(t̂yd(0))11 < MSEopt(s
2
y)

i.e. if

ρ∗2 >
4c1c

∗
2

(c1 + c∗2)2

7. Empirical Study
The appropriateness of the proposed estimator has been examined with the help of

the four data sets, given in Table1 earlier considered by Subramani and Kumarapandiyan
(2012).
We have computed the percent relative efficiencies of the estimators s2y, tld, tsdand t̂yd(0)
with respect to the usual unbiased estimator s2y by using the following formulae:

(i)PRE(tld, s
2
y)1 =

(
1

n
)((λ40)− 1)

[(
1

n
)((λ40)− 1) + (

1

n
− 1

n1
)(λ04 − 1)(1− 2c)]

× 100

(ii)PRE(tsd, s
2
y)1 =

(
1

n
)((λ40)− 1)

[(
1

n
)((λ40)− 1) + (

1

n
− 1

n1
)(

1

4
)(λ04 − 1)(1− 4c)]

× 100

(iii)PRE(t̂yd(0), s
2
y)1 =

((λ40)− 1)

[((λ40)− 1)− n1 − n
n1

c2(λ04 − 1)]
× 100

(iv)PRE(t1d, s
2
y)11 =

(
1

n
)((λ40)− 1)

[(
1

n
)[(λ40 − 1) + (λ04 − 1)(1− 2c) + (

1

n1
)(λ04 − 1)]

× 100

(v)PRE(tsd, s
2
y)11 =

(
1

n
)((λ40)− 1)

[(
1

n
)[(λ40 − 1) +

(λ04 − 1)

4
(1− 4c) + (

1

n1
)
(λ04 − 1)

4
]

×100
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(vi)PRE(t̂∗yd(0), s
2
y)11 =

((λ40)− 1)

[((λ40)− 1) +
n1

n+ n1
c2(λ04 − 1)]

× 100

Findings are shown in Table 2.
It is observed from Table 2 that the performance of the proposed estimator t̂yd(0)(t̂∗yd(0))
is more efficient than the estimators s2y ,tld and tsd . The percent relative efficiency of the
proposed estimator t̂yd(0) (under case I) is larger than the proposed estimator (t̂∗yd(0)).
Table 3, exhibits the range of α in which the proposed class of estimators t̂yd(0) is more
efficient than the usual unbiased estimator s2y , Isaki (1983) ratio type estimator tid in
double sampling and the estimator tsd which is double sampling version of Singh et al.’s
(2011) exponential type estimator.

8. Conclusion
We have suggested an improved exponential ratio estimator for estimating the popu-

lation variance in two phase sampling. It has been shown theoretically and numerically
that the proposed estimator is better than the existing estimators in literature, the usual
sample variance, traditional ratio estimator due to Isaki (1983), Yadav and Kadilar (2013)
and Singh et al. (2011) exponential ratio estimator in the sense of having lesser mean
square error. We have also given the range α of along with its optimum value for the
proposed estimator to be more efficient than other competitors. Hence, the proposed
estimator is recommended for its practical use for estimating the population variance
when the auxiliary information is available. For the sake of completeness we have also
discussed the cost aspect.
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Table 1. Parameters of the population

Parameters Population 1 Population 2 Population 3 Population 4

N 103 103 80 49
Ȳ 626.2123 62.6212 51.8264 116.1633
X̄ 557.1909 556.5541 11.2646 98.6765
ρ 0.9936 0.7298 0.9413 0.6904
sy 913.5488 91.3549 18.3569 98.8286
cy 1.4588 1.4588 0.3542 0.8508
sx 818.1117 610.1643 8.4563 102.9709
cx 1.4683 1.0963 0.7507 1.0435
λ04 37.3216 17.8738 2.8664 5.9878
λ40 37.1279 37.1279 2.2667 4.9245
λ22 37.2055 17.2220 2.2209 4.6977
c 0.9969 0.9635 0.7748 0.7846

Table 2. Percent relative efficiencies (PREs) of different estimators of
population variance S2

y with respect to the unbiased estimator s2y .

Estimator PRE(., s2y)

Population
I I II II III III IV IV

Case I Case II Case I Case II Case I Case II Case I Case II
n1=60 n1=60 n1=60 n1=60 n1=30 n1=30 n1=25 n1=25
n=40 n=40 n=40 n=40 n=20 n=20 n=20 n=20

s2y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
tld 149.90 99.38 116.92 96.71 130.34 63.62 112.90 69.78
tsd 133.41 199.80 112.54 127.65 128.62 153.73 112.00 140.10
t̂yd(0) 149.91 - 116.92 - 134.11 - 114.13 -
t̂∗yd(0) - 249.73 - 135.22 - 184.23 - 152.45
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y .

Estimator Population
I I II II III III IV IV

Case I Case II Case I Case II Case I Case II Case I Case II
n1=60 n1=60 n1=60 n1=60 n1=30 n1=30 n1=25 n1=25
n=40 n=40 n=40 n=40 n=20 n=20 n=20 n=20

s2y α > 0.50 α > 0.84 α > 0.52 α > 0.87 α > 0.65 α > 1.08 α > 0.64 α > 1.15
tld αε(1.00, 1.01) αε(1.00, 1.68) αε(1.00, 1.08) αε(1.00, 1.79) αε(1.00, 1.83) αε(1.00, 3.03) αε(1.00, 1.76) αε(1.00, 3.17)
tsd αε(0.67, 2.01) αε(1.44, 2.00) αε(0.70, 2.00) αε(1.52, 2.00) αε(0.95, 2.00) αε(2.00, 2.32) αε(0.94, 2.00) αε(2.00, 2.68)

common
range
of α
for
tyd
to be
more

efficient
sy, tld,tsd
t̂yd(0)

αε(1.00, 1.01) αε(1.43, 1.68) αε(1.00, 1.08) αε(1.52, 1.79) αε(1.00, 1.83) αε(2.00, 3.03) αε(1.00, 1.76) αε(2.00, 2.68)
Optimum
value of α 1.003 1.672 1.038 1.73 1.291 2.152 1.275 2.295


