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An optimization model for designing acceptance
sampling plan based on cumulative count of
conforming run length using minimum angle

method
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Abstract

The purpose of this article is to present an acceptance sampling plan
based on cumulative count of conforming using minimum angle method.
In this plan, if the number of inspected items until rth defective items
is greater than an upper control threshold then lot is accepted and if it
is less than a lower control threshold then the lot is rejected and if it is
between control thresholds, process of inspecting the items continues.
To design this model, we considered some important concepts like num-
ber of inspected items until rth nonconforming item in inspection, first
and second type of error, average number inspected (ANI), AQL and
LQL. Also derivative of (ANI) function in point AQL is used for opti-
mization. The objective function of this model was constructed based
on minimum angle method. Also a comparison study is carried out to
evaluate the performance of proposed methodology in 50 different data
sets.
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1. Introduction
Acceptance sampling plan is a statistical quality control technique. In such plans, a

sample is taken from a lot and the lot will either be rejected or accepted or inspection
continues upon the results of the sample taken. The purpose of acceptance sampling
plan is to determine the quality level of an incoming lot or the end production and
also ensure that the quality level of the lot satisfies the predetermined requirement.
Many types of acceptance sampling plans have been proposed. One approach to design
acceptance sampling plans is minimum angle method (Fallahnezhad [7]). In this research,
a new acceptance sampling plan is developed based on minimum angle method using
cumulative conforming run length. This idea is based on the concept of cumulative
conforming control charts. Design of cumulative conforming control charts is a favorable
issue for many authors. Cumulative conforming control charts (CCC-charts) usually are
constructed by using geometric and negative binomial variables (Chan et al. [5]). Calvin
[7] presented a control chart by using run-length of successive conforming items. Goh [12]
presented a method to control the production with low-nonconformity by (CCC-charts).
Lai [15] proposed a discrete time renewal event process when a success is preceded by a
failure and introduced modified CCC-chart. Also he calculated ANI (average number
inspected) and other indicators for this modified chart. Some authors also refer CCC-
charts as CRL-type (conforming run length) control charts or SCRL (sum of CRL) chart
(Wu et al. [17]). A CCC-chart which is based on number of inspected items until
detection of rth defective item is called CCCr-charts. Calvin [4], Goh [12], Xie and Goh
[18] and many other authors have applied CCC1-charts. Chan et al. [5] denoted that
CCCr-chart is more reliable than CCC1-chart but it takes more time and inspection items
than CCC1-charts for detecting change in fraction of non-conforming. He also presented a
two-stage decision procedure for monitoring processes with low fraction of nonconforming
and introduced CCC1 + γ chart for this purpose and presented an economical model for
minimizing total cost of the system. Di Bucchianico et al. [6] presented a case study
for monitoring the packing process in coffee production based on choosing optimal value
of r when using CCCr-charts. Aslo Bourke [2] has applied the concept of conforming
run length in designing the acceptance sampling plans. In this research, we used Markov
model in designing the sampling plan based on the concept of conforming run length. An
absorbing Markov model is developed for this sampling system (Bowling et al. [3]). In this
subject, Fallahnezhad et al. [9] developed a Markov model based on sum of run-lengths
of successive conforming items. Fallahnezhad and Niaki [11] proposed a sampling plan
using Markov model based on control threshold policy. They considered the run-lengths
of successive conforming items as a measure for process performance. Fallahnezhad et
al.[10] proposed an economical model for sampling based on decision tree. Fallahnezhad
and Hosseininasab [8] proposed a one stage economical acceptance sampling model based
on the control threshold policy. In our sampling plan we used the concept of minimum
angle method that its purpose is to reach ideal OC curve in order to decrease the risk of
sampling plan. Bush et al. [1] analyzed the sampling systems by comparing operation
characteristic (OC) curve against the ideal OC curve. His study was a motivation for
constructing the concept of minimum angle method. Soundararajan and Christina [16]
proposed a method for the selection of optimal single stage sampling plans based on the
minimum angle method. They were first authors who used minimum angle method for
designing a sampling plan. But little studies have been done on designing a sampling plan
based on minimum angle method. Soundararajan and Christina [16] used the tangent of
angle between the lines that joins [AQL,Pa(AQL)] to [LQL,Pa(LQL)] in order to reach
ideal OC curve. Pa(AQL) is the probability of acceptance when the percentage of the
defective items of the lot is AQL. This angle (θ) is denoted in Figure 1 It is obvious that
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minimizing (θ) is favorable because the OC curve approaches to ideal OC curve. tan(θ)
is obtained as follows,

tan(θ) =
LQL−AQL

Pa(AQL)− Pa(LQL)

Since (θ) should be minimized, thus the value of tan(θ) should be minimized also since
LQL−AQL is constant thus the value of [Pa(AQL)− Pa(LQL)] should be maximized.
In this paper, a nonlinear model for acceptance sampling plans by developing a Markov

Figure 1. Tangant angle minimizing using AQL, LQL [16]

model is presented. To design this model, we considered some important concepts like
number of conforming items until rth nonconforming item in inspection, first and second
type of error, average number inspected (ANI), AQL and LQL. Also derivative of
(ANI) function in point AQL is used for optimization. The objective function of this
model was constructed based on minimum angle method. The model has been solved for
4 scenarios in the cases r = 1 or r = 2 or r = 3 by using visual basic 6 in Microsoft excel
2013. Then the optimal solutions have been collected and analyzed in order to determine
which one of these sampling plans is more desirable in practical environment. The rest
of the paper is organized as follows. We present the model in Section 2. A case study
is solved in Section 3. Section 4 provides a sensitivity analysis for illustrating the effect
of different parameters on the objective function. In section 5, a comparison study is
carried out in 50 different data sets.

2. Model Development
The purpose of this model is to develop an optimization model for determining the

optimum value of thresholds of an acceptance sampling design. This acceptance sampling
design is based on run length of conforming items. Assume that in an acceptance sampling
plan, Y is defined as the number of inspected items until detecting rtk nonconforming
item. It is obvious that Y follows negative binomial distribution.
The decision making method is as follows,
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If Y ≥ U then the lot is accepted and if Y ≤ L then the lot is rejected. If U > Y > L
then inspection of the items continues where U is an upper control threshold and L is a
lower control threshold. Thus states of the decision making method are as follows,
State 1: U > Y > L, continue inspecting.
State 2: Y ≥ U , the lot is accepted.
State 3: Y ≤ L, the lot is rejected.
If pkl denotes the probability of going from state k to state l then transition probabilities
are obtained as follows, [7]

p11 = P {U > Y > L} , p12 = P {Y ≥ U} , p13 = P {Y ≤ L}(2.1)

where P (Y |r, p ) =
(

i− 1
r − 1

)
(1− p)i−r pr; for i = r, r + 1, ... is the negative binomial

distribution and p denotes the proportion of nonconforming items in the lot.
Fallahnezhad [7] proposed a new optimization model for designing sampling plans based
on minimum angle method and run length of inspected items with considering minimum
angle method and average number of inspection (ANI) in the optimization model. He
tried to solve his model by search procedure just for r = 1 (r is number of nonconforming
items in inspection process). In the proposed model, we try to optimize some important
criteria of sampling plans simultaneously. The objective function is constructed using
minimum angle method which optimizes the producer risk and consumer risk simulta-
neously. Also the constraints of average number inspected (ANI) and first derivative of
ANI function and risks are included in the model. Then we tried to solve the proposed
model by search method for r = 1, 2, 3 with considering all mentioned concepts.
The transition probability matrix is as follows (Fallahnezhad [7]),

P =
1
2
3

 1
p11

2
p12

3
p13

0 1 0
0 0 1

(2.2)

States 2 and 3 are absorbing state and state 1 is transient. The transition probability ma-
trix should be rewritten in the following form in order to calculate long run probabilities
of absorption:[

A O
R Q

]
(2.3)

where Q is transition probability matrix among non-absorbing states and R is the matrix
containing probabilities of going from non-absorbing states to absorbing states and A is an
identity matrix and O is matrix of zeros. Thus following matrix is obtained (Fallahnezhad
[7]),

2
3
1

 2

1
3

0
1

0
0 1 0
p12 p13 p11

(2.4)

The fundamental matrix M can be determined as follows (Bowling et al [3]):

M = m11(p) = (I −Q)−1 =
1

1− p11
=

1

1− P {U > Y > L}(2.5)

where I is the identity matrix. The value m11(p) denotes the expected number of visiting
the transient state 1 until absorption occurs. The absorption probability matrix, F is
calculated as follows (Bowling et al. [3]):

F =M ×R = 1
[

2

f12(p)
3

f13(p)

]
= 1

[
2

p12
1−p12

3
p13

1−p13

]
(2.6)
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where f12(p) and f13(p) denote the probabilities of accepting and rejecting the lot, re-
spectively.
The objective function of this model is written by using minimum angle method. In
this approach, our goal is to maximize the value of {Pa(AQL) − Pa(LQL)} where
Pa(LQL) and Pa(AQL) are the probabilities of accepting the lot when the proportion
of nonconforming items in the lot is respectively LQL and AQL. It is obvious that
1− Pa(AQL) is risk of producer thus maximizing Pa(AQL) is favorable. Also Pa(LQL)
is the risk of consumer thus minimizing Pa(LQL) is favorable. Consequently maximizing
{Pa(AQL)−Pa(LQL)} for a sampling system would be desired. The values of Pa(LQL)
and Pa(AQL) are determined as follows,

p = AQL→ Pa(AQL) = f12(AQL) =
P{U ≤ Y }

1− P{U > Y > L}(2.7)

p = LQL→ Pa(LQL) = f12(LQL) =
P{U ≤ Y }

1− P{U > Y > L}(2.8)

The objective function in minimum angle method is as follows, (Fallahnezhad [7])

Z =Max
L,U
{Pa(AQL)− Pa(LQL)}(2.9)

An important performance measure of sampling plans is the average number inspected
(ANI) . Since sampling and inspecting has cost, therefore designs with minimum ANI
are preferred. Therefore we try to consider the ANI in constraint of optimization model
so that its value does not get more that a control threshold. These constraints are written
for both cases of acceptable and unacceptable lots where the proportion of nonconforming
items in lot is equal to AQL and LOL, respectively. This constraint is written based
on the value of m11(p). As mentioned, m11(p) is the expected number of times that the
transient state 1 is visited until absorption occurs, since in each visit to transient state,
the average number of inspections is r

p
which is the mean value of negative binomial

distribution, consequently the value of ANI is given by r
p
m11(p). Now these constraints

are obtained for both cases of acceptable lot (p = AQL) and unacceptable lot (p = LQL)
respectively,

ANI(AQL) ≤W(2.10)

ANI(LQL) ≤M(2.11)

where W and M are upper control limits for these constraints and,

ANI(AQL) =
r

AQL
m11(AQL)(2.12)

ANI(LQL) =
r

LQL
m11(LQL)(2.13)

It is very important that acceptance sampling plans satisfy the constraints of first and
second type errors. These two types of errors are important performance measure of
acceptance sampling plans. First type error probability is the probability of rejecting an
acceptable lot and Second type error probability is the probability of accepting an unac-
ceptable lot. So we have included these two concepts as the constraints of optimization
model.
Thus we added following constraints to the optimization model for both cases of accept-
able lot (p = AQL) and unacceptable lot (p = LQL) respectively,

Pa(AQL) ≥ 1− α(2.14)
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Pa(LQL) ≤ β(2.15)

where α is the value of first type error probability and β value of second type error
probability. According to the ANI graph, when the percentage of the defectives in lot is
equal to the AQL, the ideal is that the derivation of the function at this point be equal
to zero, or in other words, reaches its minimum value. We try to consider this concept
as a constraint and examine its impact on the optimal solution of the model. The first
derivative of ANI function is written as follows (Chen [13]),

ANIp(p) =
∂

∂p

r

k(p)
=
−rkp(p)
k2(p)

(2.16)

where
k(p) = p {1− [F (U − 1 |r, p)− F (L |r, p )]}
kp(p) = 1− F (U − 1 |r, p)− F (L |r, p ) + (L− 1)f(L− 1 |r, p )− Uf(U |r, p )(2.17)

We considered upper and lower limits for derivative of ANI when the percentage of the
defective in lot is equal to AQL in order to apply this constraint in the model. Since AQL
is an important parameter in decision making about the lot thus this value is selected as
reference value in constraint of ANI derivative. It is obvious that lower limit is negative
and upper limit is positive. As much as the interval of these limits would be tighter
then it will be closer to zero that is more favorable for us. This constraint is obtained as
follows,

λ1 ≤ ANIp(AQL) ≤ λ2(2.18)

where λ1 and λ2 are lower and upper limits for the first derivation of ANI function,
respectively. Now the optimization problem can be defined as follows,

Max
L,U

Z

s.t.
ANI(AQL) ≤W
ANI(LQL) ≤M
Pa(AQL) ≥ 1− α
Pa(LQL) ≤ β
λ1 ≤ ANIp(AQL) ≤ λ2

(2.19)

Optimal values of L,U, r can be determined by solving above nonlinear optimization prob-
lem using search procedures or other optimization tools. The parameters like W,M,α, β,
λ1, λ2, AQL,LQL are predetermined for solving the model in order to reach the optimal
values of L,U, r. The advantage of this sampling system is to consider most important
critical factors affecting on performance of sampling methods in an optimization model
which optimizes them simultaneously.

3. Case Study
A case study is solved using Visual basic codes in Microsoft excel 2013 in order to

demonstrate the application of the proposed methodology in designing acceptance sam-
pling models. The following example is intended to provide illustrations about application
of the model in a juice factory. The quality engineer tries to design an acceptance sam-
pling plan for accepting or rejecting an incoming lot received from suppliers. The values
of AQL and LQL and other important parameters are specified as required quality stan-
dards by both sides (consumer and producer).
This case is solved and the values in intervals L = [0, 20] and U = [1, 90] and r = [1, 2, 3]
are searched for optimal solution in each scenario, while L and U are integer. In the
other words, we restricted our search space in order to reach optimal value of L and U
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Table 1. Optimal solution of case study

r L U Z ANI(AQL) ANI(LQL) ANIp(AQL) Pa(AQL) Pa(LQL)

2 3 35 0.94 83.45 37.59 52.44 0.98011 0.00574

Table 2. Input Parameters of Different scenarios

Scenarios M W λ2 λ1 β α LQL AQL

1 70 80 250 -250 0.2 0.15 0.3 0.06
2 100 130 200 -200 0.2 0.1 0.2 0.04
3 60 70 400 -400 0.1 0.05 0.2 0.05
4 50 105 100 -100 0.1 0.05 0.2 0.05

Table 3. Number of feasible solutions for each scenario

Scenarios r = 1 r = 2 r = 3

Scenario 1 10 48 11
Scenario 2 1 33 28
Scenario 3 0 6 0
Scenario 4 0 3 6

and r. It is observed that optimal solution lies in the specified intervals in all consid-
ered practical cases. Thus first the feasible value of L and U will be determined and
the optimal solution which maximizes the objective function is determined among them.
It is assumed that AQL = 0.05, LQL = 0.2, λ1 = −80, λ2 = 80, M = 50, W = 90,
α = 0.05, β = 0.1. We solved the proposed model with these input parameters. The
results show that there are just 3 feasible solutions in the solution space. Table 1 shows
the optimal solutions. It is obvious that the result of the proposed model is applicable
in any production environment.
In the cases that required sample size is limited then we can easily consider this limi-
tation in the constraints of the model. It is observed that ANI of proposed method is
large for r = 3, 4, ... but when small sample size is an important criterion, we may apply
r = 1, 2 for sampling system. It is obvious that optimal solution of optimization model
for r = 1 or r = 2 with tighter intervals for ANI function would result in smaller values
for required number of inspected items.

4. Sensitivity Analysis
In this section, a sensitivity analysis is done for illustrating the effect of different

parameters on the results of the model. This model was solved in several scenarios with
different assumptions. Table 2 shows the input parameters of different scenarios.
Each scenario is solved in the cases, r = 1, r = 2 and r = 3 and the number of feasible
solutions are summarized in Table 3.
As can be seen in Table 2, the number of feasible solutions for each scenario is not the
same in cases, r = 1, r = 2 and r = 3. For example, case r = 1 will not have any feasible
solutions in Scenario 3 and 4. Also case r = 3 will not have any feasible solutions in
Scenario 3. Table 4 shows the optimal solution of the model for each scenario.
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Table 4. Optimal solution for each scenario

Scenarios r L U Z ANI(AQL) ANI(LQL) ANIp(AQL) pa(AQL) pa(LQL)

Scenario 1 3 4 34 0.98 78.31 28.30 -200.67 0.99014 0.00099
Scenario 2 3 5 58 0.99 131.42 73.79 190.35 0.9946 0.00095
Scenario 3 2 3 29 0.92 69.43 36.60 -286.97 0.96 0.04
Scenario 4 3 7 46 0.97 103.70 46.28 14.74 0.98011 0.00574

Table 5. Input Parameters

Scenarios M W λ2 λ1 β α LQL AQL

1 70 80 250 0 0.2 0.15 0.3 0.06
2 100 130 200 0 0.2 0.1 0.2 0.04

Table 6. Optimal Solution

Scenarios r L U Z ANI(AQL) ANI(LQL) ANIp(AQL) pa(AQL) pa(LQL)

Scenario 1 2 1 28 0.97 68.82 30.80 49.60 0.978592 0.00199
Scenario 2 3 5 57 0.99 129 73.77 85.93 0.9947 0.00115

According to Table 4, the case r = 3 will be optimal in most of the scenarios and case
r = 2 will be optimal in scenario 3. Since we saw that the model could not find any
feasible solution in case r = 3 for scenarios 3 thus this result was justified. Also the case
r = 1 has not been optimal in any of the scenarios. So we can say that the case r = 3 is
suitable for practical real world problems. But since we have not investigated the cases
with the values of r > 3, this is suggested as future studies but in general, it seems that
the value of r > 4 need so much more inspections and may not be feasible as can be seen
in Table 3, where the number of feasible solution has decreased significantly by changing
r = 2 to r = 3.
The first derivative of ANI function is included in the model to minimize the number
of inspected items. It is needed to analyze the effect of lower limit and upper limit for
first derivative of ANI function in order to investigate the behavior of optimal solution
by changing them. It is obvious that when the first derivative of a convex function at a
point is zero then that point is minimum value of a convex function. Thus considering
negative and positive bounds for first derivative is logical which results in finding near
optimal solution. We used this concept for monitoring the ANI value by calculating its
first derivative. Then we defined an interval for the first derivative of ANI(ANIp(AQL)).
We defined two scenarios for λ1 = 0 and λ2 > 0 inorder to check the effects of λ1 and
λ2. Table 5 shows the input parameters and Table 6 shows the optimal solutions.

The results shows that when we consider λ1 = 0 and λ2 > 0, then the variations
of objective function is negligible. In this state, a better optimal solution is obtained
according to the values of ANI(AQL), ANI(LQL) and ANIp(AQL).

5. Comparison Study
After constructing proposed method optimization model, it is very beneficial to com-

pare this new model with traditional single stage sampling method. For illustrating the
effect of different data sets on the results of the proposed model and discussion about
the application of the model in the different practical environments, we carried out a
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simulation study with 50 different random data sets. Then we compared the proposed
model withtraditional single stage sampling methodassuming the same constraints. It
is tried to search all feasible points of solution space in order to obtain general optimal
values for L,U, r. The optimization model for traditional single stage sampling method
is as follows;

Z′ =Max
n,c
{Pa(AQL)− Pa(LQL)}

s.t.
Pa(AQL) ≥ 1− α
Pa(LQL) ≤ β

(5.1)

where Pa(p) denotes the probability of accepting the lot which is obtained by cumulative
function of binomial distribution as follows;

Pa(p) =

c∑
x=0

(
n
x

)
px (1− p)n−x(5.2)

It is obvious that the constraints regarding first derivation of ANI function, ANI(AQL)
, and have not been considered in the optimization model because ANI in the traditional
single stage sampling method is fixed (ANI = n).
50 different scenarios of parameters are randomly generated by uniform distribution. The
results are summarized in Table 7. According to Table 7, proposed method has better
value of objective function in 28% of cases but proposed model is worse than traditional
method in 14% of cases and for the rest of the cases, the objective function of these two
methods are equal.
The results shows that since proposed model has more constraints than the traditional
single stage sampling method but it has better value for objective function in 28% of
cases and both methods have equal objective function in 58% of cases. Also in most
of cases, ANI(LQL) in the proposed model is less value than the sample size, n in the
traditional method but ANI(AQL) of proposed model is often more than sample size, n
in the traditional method. Thus we can assume tighter intervals for constraint regarding
ANI(AQL) in order to decrease the average number of inspected items. In general, the
results show the advantages of proposed methodology over existing methods and this
model can be efficiently applied in practical environment.

6. Conclusion
In this paper, we proposed a general nonlinear model for acceptance sampling based

on cumulative count of conforming using minimum angle method. Number of inspected
items until rth defective items was selected as criteria for decision making. We presented
our model using Markov model and derivative of ANI (average number inspected) in
AQL point to ensure that ANI chart behavior is in desired level. It’s ideal that the de-
rivative of ANI in AQL point to be equal zero in order to ensure that ANI is minimized.
This approach is suitable when our plan for accepting or rejecting a lot is based on num-
ber of inspected items until rth nonconforming item. Also it is tried that constraint of
first and second type of errors to be included in the model simultaneously. We concluded
that the case r = 3 which denotes the method of sampling until the third defective item
is suitable for practical real world problems. But since we have not investigated the cases
with the values of r > 3, thus this is suggested as future studies but in general, it seems
that the value of r > 4 needs so much more inspections and it may not be feasible. As
can be seen in Table 3, the number of feasible solution has decreased significantly by
changing r = 2 to r = 3. For analyzing the behavior of proposed model in different
data sets, we solved the model for 50 different random scenarios and also we compared
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Table 7. Proposed method VS. Traditional single sampling

Scenarios Input parameters Proposed Model Traditional Single
Sampling Method

AQL LQL W M λ1 λ2 1− α β L U r ANI(AQL) ANI(LQL) Z n c Z′

1 0.04 0.27 241 99 -400 190 0.7 0.2 2 53 3 121 87 0.99 88 10 0.99
2 0.04 0.14 289 66 -311 218 0.72 0.11 12 64 3 141 65 0.95 90 6 0.91
3 0.04 0.31 237 130 -217 156 0.89 0.14 1 52 3 118 110 0.99 79 10 0.99
4 0.03 0.23 181 63 -357 443 0.82 0.25 1 60 2 145 61 0.99 90 8 0.99
5 0.03 0.31 128 68 -372 219 0.87 0.21 0 33 1 84 10 0.99 88 10 0.99
6 0.04 0.12 187 57 -246 464 0.79 0.14 16 61 3 130 57 0.92 90 6 0.85
7 0.03 0.16 216 86 -454 453 0.72 0.16 8 88 3 196 74 0.90 90 6 0.98
8 0.03 0.23 274 120 -319 179 0.80 0.21 3 67 3 151 92 0.99 90 9 0.99
9 0.02 0.15 135 78 -72 223 0.83 0.14 0 49 1 126 41 0.99 90 6 0.98
10 0.04 0.28 278 120 -90 352 0.73 0.11 2 62 3 140 76 0.93 88 10 0.99
11 0.05 0.16 135 113 0 266 0.76 0.17 7 52 3 117 87 0.99 90 8 0.94
12 0.03 0.27 286 112 -231 260 0.79 0.16 2 72 3 162 90 0.96 90 10 0.99
13 0.04 0.25 152 127 -324 161 0.74 0.22 2 59 3 133 109 0.99 90 10 0.99
14 0.03 0.11 284 57 -425 470 0.92 0.23 9 69 2 158 54 0.99 90 5 0.90
15 0.04 0.28 249 57 -46 331 0.88 0.23 3 56 3 127 50 0.93 86 10 0.99
16 0.03 0.21 122 86 -459 214 0.78 0.10 1 49 2 119 85 0.99 90 8 0.99
17 0.04 0.24 255 79 -494 154 0.90 0.12 1 46 3 105 71 0.99 71 10 0.99
18 0.04 0.27 128 124 0 438 0.70 0.13 2 51 2 116 85 0.99 84 10 0.99
19 0.05 0.21 276 67 -440 408 0.89 0.11 5 53 3 121 71 0.99 90 9 0.98
20 0.03 0.18 205 103 -236 182 0.85 0.22 5 73 3 164 85 0.99 90 7 0.98
21 0.04 0.2 170 61 -277 478 0.78 0.18 6 61 3 137 64 0.99 90 8 0.99
22 0.04 0.32 203 143 -355 410 0.88 0.12 1 56 3 127 97 0.99 79 10 0.99
23 0.04 0.33 194 104 -307 151 0.72 0.14 1 48 3 109 55 0.99 73 10 0.99
24 0.04 0.18 237 133 -268 221 0.71 0.12 5 61 3 138 96 0.99 90 8 0.97
25 0.04 0.15 261 57 -72 419 0.92 0.16 11 61 3 136 81 0.99 90 7 0.93
26 0.05 0.29 178 141 -436 265 0.82 0.23 2 45 3 103 105 0.95 78 10 0.99
27 0.02 0.1 169 103 -267 357 0.87 0.11 0 53 1 137 93 0.99 90 4 0.91
28 0.03 0.23 211 84 0 447 0.78 0.21 4 68 3 153 60 0.91 90 9 0.99
29 0.03 0.26 115 74 -358 354 0.85 0.23 0 33 3 84 14 0.99 90 10 0.99
30 0.05 0.28 191 66 -93 166 0.83 0.13 3 49 3 111 50 0.92 82 10 0.99
31 0.03 0.14 128 83 -256 177 0.88 0.15 0 39 3 99 49 0.99 90 6 0.94
32 0.02 0.31 195 66 -108 493 0.81 0.19 1 72 1 174 29 0.89 90 10 0.99
33 0.04 0.28 282 104 -457 161 0.91 0.22 2 48 1 109 74 0.99 81 10 0.99
34 0.03 0.34 239 94 -156 270 0.80 0.12 1 83 2 186 79 0.99 83 10 0.99
35 0.02 0.14 176 78 -177 335 0.79 0.22 0 52 3 135 52 0.99 90 5 0.97
36 0.03 0.26 233 135 -456 231 0.76 0.16 2 63 3 142 95 0.94 90 10 0.99
37 0.05 0.19 205 78 -257 369 0.91 0.22 6 49 3 111 66 0.99 90 9 0.96
38 0.03 0.15 130 110 -192 402 0.85 0.13 3 53 3 127 82 0.98 90 6 0.95
39 0.03 0.25 112 68 -368 228 0.74 017 0 29 1 74 15 0.98 90 10 0.99
40 0.03 0.31 122 92 -161 250 0.87 0.21 0 34 1 86 10 0.92 85 10 0.99
41 0.03 0.20 157 112 -289 369 0.79 0.15 4 67 1 151 107 0.91 90 8 0.99
42 0.05 0.22 158 60 -234 332 0.73 0.22 5 50 2 114 52 0.99 90 10 0.99
43 0.04 0.15 181 84 -113 334 0.79 0.14 9 60 3 134 257 0.99 90 7 0.94
44 0.02 0.30 221 91 -470 349 0.74 0.2 0 72 2 174 74 0.96 90 10 0.99
45 0.03 0.34 249 147 -243 124 0.75 0.2 1 64 3 144 72 0.99 76 10 0.99
46 0.05 0.26 115 147 -156 256 0.90 0.18 2 47 3 108 97 0.99 82 10 0.99
47 0.04 0.12 164 76 -199 441 0.91 0.24 14 71 3 156 72 0.94 90 6 0.88
48 0.04 0.25 205 145 -52 262 0.76 0.22 2 53 3 121 11 0.99 89 10 0.99
49 0.04 0.22 124 103 -297 497 0.72 0.1 1 45 2 110 72 0.99 90 9 0.99
50 0.04 0.15 226 92 -131 464 0.82 0.2 8 62 3 140 81 0.97 90 7 0.95

the results with traditional single sampling method. The results show that the proposed
model has better performance.
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