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Abstract

We introduce a new family of continuous models called the beta odd
log-logistic generalized family of distributions. We study some of its
mathematical properties. Its density function can be symmetrical,
left-skewed, right-skewed, reversed-J, unimodal and bimodal shaped,
and has constant, increasing, decreasing, upside-down bathtub and
J-shaped hazard rates. Five special models are discussed. We ob-
tain explicit expressions for the moments, quantile function, moment
generating function, mean deviations, order statistics, Rényi entropy
and Shannon entropy. We discuss simulation issues, estimation by the
method of maximum likelihood, and the method of minimum spacing
distance estimator. We illustrate the importance of the family by means
of two applications to real data sets.
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1. Introduction

There has been an increased interest in de�ning new generators or generalized (G)
classes of univariate continuous distributions by adding shape parameter(s) to a base-
line model. The extended distributions have attracted several statisticians to develop
new models because the computational and analytical facilities available in program-
ming softwares like R, Maple and Mathematica can easily tackle the problems involved
in computing special functions in these extended models. Several mathematical prop-
erties of the extended distributions may be easily explored using mixture forms of the
exponentiated-G (�exp-G� for short) distributions. The addition of parameter(s) has
been proved useful in exploring skewness and tail properties, and also for improving the
goodness-of-�t of the generated family. The well-known generators are the following:
beta-G by Eugene et al. [15] and Jones [29], Kumaraswamy-G (Kw-G) by Cordeiro
and de Castro [10], McDonald-G (Mc-G) by Alexander et al. [1], gamma-G type 1 by
Zografos and Balakrishnan [53] and Amini et al. [6], gamma-G type 2 by Risti¢ and
Balakrishnan [44], odd-gamma-G type 3 by Torabi and Montazari [50], logistic-G by
Torabi and Montazari [51], odd exponentiated generalized (odd exp-G) by Cordeiro et
al. [12], transformed-transformer (T-X) (Weibull-X and gamma-X) by Alzaatreh et al.
[3], exponentiated T-X by Alzaghal et al. [5], odd Weibull-G by Bourguignon et al.
[7], exponentiated half-logistic by Cordeiro et al. [13], logistic-X by Tahir et al. [47],
T-X{Y}-quantile based approach by Aljarrah et al. [2] and T-R{Y} by Alzaatreh et al.
[4].

This paper is organized as follows. In Section 2, we de�ne the beta odd log-logistic
generalized (BOLL-G) family. Some of its special cases are presented in Section 3. In
Section 4, we derive some of its mathematical properties such as the asymptotics, shapes
of the density and hazard rate functions, mixture representation for the density, quantile
function (qf), moments, moment generating function (mgf), mean deviations, explicit
expressions for the Rényi and Shannon entropies and order statistics. Section 5 deals
with some characterizations of the new family. Estimation of the model parameters and
simulation using maximum likelihood and the method of minimum spacing distance are
discussed in Section 6. In Section 7, we illustrate the importance of the new family by
means of two applications to real data. The paper is concluded in Section 8.

2. The odd log-logistic and beta odd log-logistic families

The log-logistic (LL) distribution is widely used in practice and it is an alternative
to the log-normal model since it presents a hazard rate function (hrf) that increases,
reaches a peak after some �nite period and then declines gradually. Its properties make
the distribution an attractive alternative to the log-normal and Weibull models in the
analysis of survival data. If T has a logistic distribution, then Z = eT has the LL
distribution. Unlike the more commonly used Weibull distribution, the LL distribution
has a non-monotonic hrf which makes it suitable for modeling cancer survival data.

The odd log-logistic (OLL) family of distributions was originally developed by Gleaton
and Lynch [18, 19]; they called this family the generalized log-logistic (GLL) family. They
showed that:

� the set of GLL transformations form an Abelian group with the binary operation of
composition;

� the transformation group partitions the set of all lifetime distributions into equivalence
classes, so that any two distributions in an equivalence class are related through a GLL
transformation;

� either every distribution in an equivalence class has a moment generating function, or
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none does;

� every distribution in an equivalence class has the same number of moments;

� each equivalence class is linearly ordered according to the transformation parameter,
with larger values of this parameter corresponding to smaller dispersion of the distribution
about the common class median; and

� within an equivalence class, the Kullback-Leibler information is an increasing function
of the ratio of the transformation parameters.

In addition, Gleaton and Rahman obtained results about the distributions of the
MLE's of the parameters of the distribution. Gleaton and Rahman [20, 21] showed
that for distributions generated from either a 2-parameter Weibull distribution or a 2-
parameter inverse Gaussian distribution by a GLL transformation, the joint maximum
likelihood estimators of the parameters are asymptotically normal and e�cient, provided
the GLL transformation parameter exceeds 3.

Given a continuous baseline cumulative distribution function (cdf) G(x; ξ) with a
parameter vector ξ, the cdf of the OLL-G family (by integrating the LL density function
with an additional shape parameter c > 0) is given by

FOLL-G(x) =

∫ G(x;ξ)/G(x;ξ)

0

c tc−1

(1 + tc)2
dt =

G(x; ξ)c

G(x; ξ)c +G(x; ξ)c
.(2.1)

If c > 1, the hrf of the OLL-G random variable is unimodal and when c = 1 it
decreases monotonically. The fact that its cdf has closed-form is particularly important
for analysis of survival data with censoring.

We can write

c =
log
[
F (x; ξ)/F (x; ξ)

]
log
[
G(x; ξ)/G(x; ξ)

] and G(x; ξ) = 1−G(x; ξ).

Here, the parameter c represents the quotient of the log-odds ratio for the generated and
baseline distributions.

The probability density function (pdf) corresponding to (2.1) is

fOLL-G(x) =
c g(x; ξ)

{
G(x; ξ)G(x; ξ)

}c−1{
G(x; ξ)c +G(x; ξ)c

}2 .(2.2)

In this paper, we propose a new extension of the OLL-G family. Based on a baseline
cdf G(x; ξ) depending on a parameter vector ξ, survival function G(x; ξ) = 1 − G(x; ξ)
and pdf g(x; ξ), we de�ne the cdf of the BOLL-G family of distributions (for x ∈ R) by

F (x) = F (x; a, b, c, ξ) =
1

B(a, b)
B
( G(x; ξ)c

G(x; ξ)c +G(x; ξ)c
; a, b

)
,(2.3)

where a > 0, b > 0 and c > 0 are three additional shape parameters, B(z; a, b) =∫ z
0
wa−1(1 − w)b−1dw is the incomplete beta function, B(a, b) = Γ(a)Γ(b)/Γ(a + b) is

the beta function and Γ(a) =
∫∞

0
ta−1 e−t dt is the gamma function. We also adopt the

notation Iz(a, b) = B(z; a, b)/B(a, b).

The pdf and hrf corresponding to (2.3) are, respectively, given by

f(x) = f(x; a, b, c, ξ) =
c g(x; ξ)G(x; ξ)ac−1G(x; ξ)bc−1

B(a, b)
{
G(x; ξ)c +G(x; ξ)c

}a+b
(2.4)

and

h(x) =
c g(x; ξ)G(x; ξ)ac−1G(x; ξ)bc−1{

G(x; ξ)c +G(x; ξ)c
}a+b

{
B(a, b)−B

(
G(x;ξ)c

G(x;ξ)c+G(x;ξ)c
; a, b

)} .(2.5)
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Clearly, if we take G(x) = x/(1 + x), equation (2.3) becomes the beta log-logistic
distribution. The family (2.4) contains some sub-families listed in Table 1. The baseline
G distribution is a basic exemplar of (2.4) when a = b = c = 1. Hereafter, X ∼
BOLL-G(a, b, c, ξ) denotes a random variable having density function (2.4). We can omit
the parameters in the pdf's and cdf's.

Table 1: Some special models of the BOLL-G family.

a b c G(x) Reduced distribution

- - 1 G(x) Beta-G family (Eugene et al. [15])
1 1 - G(x) Odd log-logistic family (Gleaton and Lynch[19])
1 - 1 G(x) Proportional hazard rate family (Gupta et al. [26])
- 1 1 G(x) Proportional reversed hazard rate family (Gupta and Gupta [25])
1 1 1 G(x) G(x)

The BOLL-G family can easily be simulated by inverting (2.3) as follows: if V has a
beta (a, b) distribution, then the random variable X can be obtained from the baseline
qf, say QG(u) = G−1(u). In fact, the random variable

X = QG
[ V

1
c

V
1
c + (1− V )

1
c

]
(2.6)

has density function (2.4).

3. Some special models

Here, we present some special models of the BOLL-G family.

3.1. The BOLL-exponential (BOLL-E) distribution. The pdf and cdf of the ex-
ponential distribution with scale parameter α > 0 are given by g(x;α) = α e−αx and
G(x;α) = 1− e−αx, respectively. Inserting these expressions in (2.4) gives the BOLL-E
pdf

f(x; a, b, c, α) =
c α e−α b x

{
1− e−αx

}ac−1

B(a, b) [{1− e−αx}c + e−cα x]a+b
.

3.2. The BOLL-normal (BOLL-N) distribution. The BOLL-N distribution is de-
�ned from (2.4) by taking G(x; ξ) = Φ

(
x−µ
σ

)
and g(x; ξ) = σ−1 φ

(
x−µ
σ

)
for the cdf and

pdf of the normal distribution with parameters µ and σ2, where φ(·) and Φ(·) are the pdf
and cdf of the standard normal distribution, respectively, and ξ = (µ, σ2). The BOLL-N
pdf is given by

f(x; a, b, c, µ, σ2) =
c φ(x−µ

σ
)
{

Φ
(
x−µ
σ

)}ac−1 {
1− Φ

(
x−µ
σ

)}bc−1

σB(a, b)
[{

Φ
(
x−µ
σ

)}c
+
{

1− Φ
(
x−µ
σ

)}c]a+b
,(3.1)

where x ∈ R, µ ∈ R is a location parameter and σ > 0 is a scale parameter.

We can denote by X ∼ BOLL-N(a, b, c, µ, σ2) a random variable having pdf (3.1).

3.3. The BOLL-Lomax (BOLL-Lx) distribution. The pdf and cdf of the Lomax
distribution with scale parameter β > 0 and shape parameter α > 0 are given by
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g(x;α, β) = (α/β) [1 + (x/β)]−(α+1) and G(x;α, β) = 1 − [1 + (x/β)]−α, respectively.
The BOLL-Lx pdf follows by inserting these expressions in (2.4) as

f(x; a, b, c, α, β) =

c α
β

{
1 +

(
x
β

)}−(α+1) {
1 +

(
x
β

)}−α(ac−1)

B(a, b)

[{
1−

[
1 +

(
x
β

)]−α}c
+
{

1 +
(
x
β

)}−α c]a+b
.

3.4. The BOLL-Weibull (BOLL-W) distribution. The pdf and cdf of the Weibull
distribution with scale parameter α > 0 and shape parameter β > 0 are given by

g(x;α, β) = αβxβ−1 e−αx
β

and G(x;α, β) = 1 − e−αx
β

, respectively. Inserting these
expressions in (2.4) yields the BOLL-W pdf

f(x; a, b, c, α, β) =
c α β xβ−1 e−b c α x

β
{

1− e−αx
β
}ac−1

B(a, b)
[{

1− e−αxβ
}c

+
{
e−αxβ

}c]a+b
.

3.5. The BOLL-Gamma (BOLL-Ga) distribution. Consider the gamma distribu-
tion with shape parameter α > 0 and scale parameter β > 0, where the pdf and cdf (for
x > 0) are given by

g(x;α, β) =
βα

Γ(α)
xα−1 e−βx and G(x;α, β) =

γ(α, β x)

Γ(α)
,

where γ(α, β x) =
∫ β x

0
tα−1 e−t dt is the incomplete gamma function. Inserting these

expressions in equation (2.4), the BOLL-Ga density function follows as

f(x; a, b, c, α, β) =
c βα xα−1 e−βx

{
γ(α,β x)

Γ(α)

}ac−1 {
1− γ(α,β x)

Γ(α)

}bc−1

Γ(α)B(a, b)
[{

γ(α,β x)
Γ(α)

}c
+
{

1− γ(α,β x)
Γ(α)

}c]a+b
.

In Figures 1 and 2, we display some plots of the pdf and hrf of the BOLL-E, BOLL-
N and BOLL-Lx distributions for selected parameter values. Figure 1 reveals that the
BOLL-E, BOLL-N and BOLL-Lx densities generate various shapes such as symmetrical,
left-skewed, right-skewed, reversed-J, unimodal and bimodal. Also, Figure 2 shows that
these models can produce hazard rate shapes such as constant, increasing, decreasing, J
and upside-down bathtub. This fact implies that the BOLL-G family can be very useful
for �tting data sets with various shapes.
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Figure 1. Density plots (a)-(b) of the BOLL-E model, (c)-(d) of the
BOLL-N model and (e)-(f) of the BOLL-Lx model.



1181

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

x

h(
x)

a = 1     b = 1     c = 1
a = 0.5  b = 0.9  c = 1.5
a = 3.5  b = 0.5  c = 1.5
a = 0.65  b = 0.86  c = 1.42
a = 4    b = 0.75  c = 1.1

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

h(
x)

a = 1     b = 1     c = 0.5
a = 3     b = 0.6   c = 0.7
a = 0.99  b = 0.8   c = 0.85
a = 3       b = 0.63   c = 0.75
a = 1       b = 0.6     c = 0.8

(a) (b)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 0.5  δ = 0.5  µ = 1.5

x

h(
x)

a=0.4,c=0.15
a=0.3,c=0.5
a=0.6,c=0.3
a=0.2,c=0.4
a=0.3,c=0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.

00
0.

05
0.

10
0.

15
0.

20

c = 0.1  δ = 0.5  µ = 1.5

x

h(
x)

a=0.5,b=0.4
a=1.5,b=0.8
a=0.8,b=0.5
a=1.1,b=0.5
a=1.1,b=0.9

(c) (d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

b = 1.5  α = 0.5  β = 2

x

h(
x)

a=0.1,c=1.5
a=0.3,c=3
a=0.1,c=2.5
a=0.8,c=2
a=0.5,c=2.5

0 5 10 15

0
1

2
3

4
5

c = 1.5  α = 2  β = 2

x

h(
x)

a=5,b=2
a=1.3,b=5
a=5,b=2.5
a=8,b=3.5
a=10,b=6

(e) (f)

Figure 2. Hazard rate plots (a)-(b) of the BOLL-E model, (c)-(d) of
the BOLL-N model and (e)-(f) of the BOLL-Lx model.
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4. Mathematical properties

Here, we present some mathematical properties of the new family of distributions.

4.1. Asymptotics and shapes. The asymptotes of equations (2.3), (2.4) and (2.5) as
x→ 0 and x→∞ are given by

F (x) ∼ IG(x)c(a, b) as x→ 0,

1− F (x) ∼ IḠ(x)c(b, a) as x→∞,

f(x) ∼ c

B(a, b)
g(x)G(x)a c−1 as x→ 0,

f(x) ∼ c

B(a, b)
g(x)Ḡ(x)b c−1 as x→∞,

h(x) ∼ c g(x)G(x)a c−1

1− IG(x)c(a, b)
as x→ 0,

h(x) ∼ c g(x)Ḡ(x)b c−1

IḠ(x)c(b, a)
as x→∞.

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the BOLL-G density function are the roots of the equation:

(4.1)
g′(x)

g(x)
+ (ac− 1)

g(x)

G(x)
+ (1− bc) g(x)

G(x)
− c(a+ b)g(x)

G(x)c−1 −G(x)c−1

G(x)c +G(x)c
= 0.

There may be more than one root to (4.1). Let λ(x) = d2 log[f(x)]/d x2. We have

λ(x) =
g′′(x)g(x)− [g′(x)]2

g(x)2
+ (ac− 1)

g′(x)G(x)− g(x)2

G(x)2

+ (1− bc)g
′(x)G(x) + g(x)2

G(x)2
− c(a+ b)g′(x)

G(x)c−1 −G(x)c−1

G(x)c +G(x)c

− c(c− 1)(a+ b)g(x)2 G(x)c−2 +G(x)c−2

G(x)c +G(x)c

− (a+ b)

{
cg(x)

G(x)c−1 −G(x)c−1

G(x)c +G(x)c

}2

.

If x = x0 is a root of (4.1) then it corresponds to a local maximum if λ(x) > 0 for all
x < x0 and λ(x) < 0 for all x > x0. It corresponds to a local minimum if λ(x) < 0 for
all x < x0 and λ(x) > 0 for all x > x0. It refers to a point of in�exion if either λ(x) > 0
for all x 6= x0 or λ(x) < 0 for all x 6= x0.

The critical points of the hrf h(x) are obtained from the equation

g′(x)

g(x)
+ (ac− 1)

g(x)

G(x)
+ (1− bc) g(x)

G(x)
− c(a+ b)g(x)

G(x)c−1 −G(x)c−1

G(x)c +G(x)c

+
cg(x)G(x)ac−1G(x)bc−1

B(a, b)
{
G(x)c +G(x)c

}a+b
{

1− I G(x)c

Ḡ(x)c+G(x)c
(a, b)

} = 0.(4.2)
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There may be more than one root to (4.2). Let τ(x) = d2 log[h(x)]/dx2. We have

τ(x) =
g′′(x)g(x)− [g′(x)]2

g(x)2
+ (ac− 1)

g′(x)G(x)− g(x)2

G(x)2

+ (1− bc)g
′(x)G(x) + g(x)2

G(x)2
− c(a+ b)g′(x)

G(x)c−1 −G(x)c−1

G(x)c +G(x)c

+ c(c− 1)(a+ b)g(x)2 G(x)c−2 +G(x)c−2

G(x)c +G(x)c

− (a+ b)

{
cg(x)

G(x)c−1 −G(x)c−1

G(x)c +G(x)c

}2

+
cg′(x)G(x)ac−1G(x)bc−1{

G(x)c +G(x)c
}a+b

{
B(a, b)−B

(
G(x;ξ)c

G(x;ξ)c+G(x;ξ)c
; a, b

)}
+

c(ac− 1)g(x)2G(x)ac−2G(x)bc−1{
G(x)c +G(x)c

}a+b
{
B(a, b)−B

(
G(x;ξ)c

G(x;ξ)c+G(x;ξ)c
; a, b

)}

+
c(bc− 1)g(x)2G(x)ac−1G(x)bc−2{

G(x)c +G(x)c
}a+b

{
B(a, b)−B

(
G(x;ξ)c

G(x;ξ)c+G(x;ξ)c
; a, b

)}
−

c2(a+ b)2g(x)G(x)ac−1G(x)bc−1
{
G(x)c−1 −G(x)c−1

}{
G(x)c +G(x)c

}a+b+1
{
B(a, b)−B

(
G(x;ξ)c

G(x;ξ)c+G(x;ξ)c
; a, b

)}
+

 cg(x)G(x)ac−1G(x)bc−1{
G(x)c +G(x)c

}a+b
{
B(a, b)−B

(
G(x;ξ)c

G(x;ξ)c+G(x;ξ)c
; a, b

)}


2

.

If x = x0 is a root of (4.2) then it refers to a local maximum if τ(x) > 0 for all x < x0

and τ(x) < 0 for all x > x0. It corresponds to a local minimum if τ(x) < 0 for all x < x0

and τ(x) > 0 for all x > x0. It gives an in�exion point if either τ(x) > 0 for all x 6= x0

or τ(x) < 0 for all x 6= x0.

4.2. Useful expansions. For an arbitrary baseline cdf G(x), a random variable Z has
the exp-G distribution (see Section 1) with power parameter c > 0, say Z ∼exp-G(c),
if its pdf and cdf are given by hc(x) = cG(x)c−1 g(x) and Hc(x) = G(x)c, respectively.
Some structural properties of the exp-G distributions are studied by Mudholkar and
Srivastava [35], Mudholkar et al. [36], Mudholkar and Hutson [34], Gupta et al. [26],
Gupta and Kundu [27, 28], Nadarajah and Kotz [39], Nadarajah and Gupta [40, 41] and
Nadarajah [37].

We can prove that the cdf (2.3) admits the expansion

F (x) =

∞∑
l=0

(−1)l

B(a, b)(a+ l)

(
b− 1

l

)
G(x)c(a+l)

[G(x)c + Ḡ(x)c]a+l

=

∞∑
l=0

(−1)l

B(a, b)(a+ l)

(
b− 1

l

) ∑∞
k=0 α

(l)
k G(x)k∑∞

k=0 β
(l)
k G(x)k

.

Using the power series for the ratio of two power series, we have

F (x) =

∞∑
l=0

(−1)l

B(a, b)(a+ l)

(
b− 1

l

)
∞∑
k=0

γ
(l)
k G(x)k,
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where (for each l) α
(l)
k = ak(c(a+ l)), β

(l)
k = hk(c, a+ l), ak(c(a+ l)) and hk(c, a+ l) are

de�ned in the Appendix A and γ
(l)
k is determined recursively as

γ
(l)
k = γk(a, c) =

1

β
(l)
0

(
α

(l)
k −

1

β
(l)
0

k∑
r=1

β(l)
r γ

(l)
k−r

)
.

Then, we have

F (x) =

∞∑
k=0

bkHk(x),

where

bk =

∞∑
l=0

(−1)l γ
(l)
k

B(a, b) (a+ l)

(
b− 1

l

)
,(4.3)

and Hk(x) = G(x)k denotes the exp-G cdf with power parameter k. So, the density
function of X can be expressed as

(4.4) f(x) = f(x; a, b, c, ξ) =

∞∑
k=0

bk+1 hk+1(x; ξ),

where hk+1(x) = hk+1(x; ξ) = (k+1) g(x; ξ)G(x; ξ)k denotes the exp-G density function
with power parameter k+1. Hereafter, a random variable having density function hk+1(x)
is denoted by Yk+1 ∼ exp-G(k + 1). Equation (4.4) reveals that the BOLL-G density
function is an in�nite mixture of exp-G densities. Thus, some mathematical properties of
the new model can be obtained directly from those exp-G properties. For example, the
ordinary and incomplete moments, and mgf of X can be determined from those quantities
of the exp-G distribution.

The formulae derived throughout the paper can be easily handled in most symbolic
computation software platforms such as Maple, Mathematica and Matlab. These plat-
forms have currently the ability to deal with analytic expressions of formidable size
and complexity. Established explicit expressions to calculate statistical measures can be
more e�cient than computing them directly by numerical integration. The in�nity limit
in these sums can be substituted by a large positive integer such as 20 or 30 for most
practical purposes.

4.3. Quantile function. The qf of X, say x = Q(u) = F−1(u), can be obtained by
inverting (2.3). Let z = Qa,b(u) be the beta qf. Then,

x = Q(u) = QG

{
[Qa,b(u)]

1
c

[Qa,b(u)]
1
c + [1−Qa,b(u)]

1
c

}
.

It is possible to obtain some expansions for Qa,b(u) from the Wolfram website
http://functions.wolfram.com/06.23.06.0004.01 such as

z = Qa,b(u) =

∞∑
i=0

ei u
i/a,

where ei = [aB(a, b)]1/a di and d0 = 0, d1 = 1, d2 = (b− 1)/(a+ 1),

d3 =
(b− 1) (a2 + 3ab− a+ 5b− 4)

2(a+ 1)2(a+ 2)
,

d4 = (b− 1)[a4 + (6b− 1)a3 + (b+ 2)(8b− 5)a2 + (33b2 − 30b+ 4)a

+ b(31b− 47) + 18]/[3(a+ 1)3(a+ 2)(a+ 3)], . . .
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The e�ects of the shape parameters a, b and c on the skewness and kurtosis of X
can be based on quantile measures. The Bowley skewness (Kenney and Keeping [30]) is
one of the earliest skewness measures de�ned by the average of the quartiles minus the
median, divided by half the interquartile range, namely

B =
Q
(

3
4

)
+Q

(
1
4

)
− 2Q

(
1
2

)
Q
(

3
4

)
−Q

(
1
4

) .

Since only the middle two quartiles are considered and the outer two quartiles are ignored,
this adds robustness to the measure. The Moors kurtosis (Moors [33]) is based on octiles

M =
Q
(

3
8

)
−Q

(
1
8

)
+Q

(
7
8

)
−Q

(
5
8

)
Q
(

6
8

)
−Q

(
2
8

) .

These measures are less sensitive to outliers and they exist even for distributions without
moments.

In Figure 3, we plot the measures B and M for the BOLL-N and BOLL-Lx distribu-
tions. The plots indicate the variability of these measures on the shape parameters.
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Figure 3. Skewness (a) and (b) and kurtosis (c) and (d) of X based on
the quantiles for the BOLL-N and BOLL-Lx distributions, respectively.
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4.4. Moments. We assume that Y is a random variable having the baseline cdf G(x).
The moments of X can be obtained from the (r, k)th probability weighted moment
(PWM) of Y de�ned by Greenwood et al. [23] as

τr,k = E[Y r G(Y )k] =

∫ ∞
−∞

xr G(x)k g(x)dx.

The PWMs are used to derive estimators of the parameters and quantiles of general-
ized distributions. The method of estimation is formulated by equating the population
and sample PWMs. These moments have low variance and no severe biases, and they
compare favorably with estimators obtained by maximum likelihood. The maximum
likelihood method is adopted in Section 6.1 since it is easier to estimate the BOLL-G
parameters because of several computer routines available in widely known softwares.
The maximum likelihood estimators (MLEs) enjoy desirable properties and can be used
when constructing con�dence intervals and regions and also in test statistics.

We can write from equation (4.4)

µ′r = E(Xr) =

∞∑
k=0

(k + 1) bk+1 τr,k,(4.5)

where τr,k =
∫ 1

0
QG(u)r ukdu can be computed at least numerically from any baseline qf.

Thus, the moments of any BOLL-G distribution can be expressed as an in�nite
weighted sum of the baseline PWMs. We now provide the PWMs for three distribu-
tions discussed in Section 3. For the BOLL-N and BOLL-Ga distributions discussed in
subsections 3.2 and 3.5, the quantities τr,k can be expressed in terms of the Lauricella
functions of type A (see Exton [16] and Trott [52]) de�ned by

F
(n)
A (a; b1, . . . , bn; c1, . . . , cn;x1, . . . , xn) =
∞∑

m1=0

. . .

∞∑
mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn
(c1)m1 . . . (cn)mn

xm1
1 . . . xmnn
m1! . . .mn!

,

where (a)i = a(a+ 1) . . . (a+ i− 1) is the ascending factorial (with the convention that
(a)0 = 1).

In fact, Cordeiro and Nadarajah [11] determined τr,k for the standard normal distri-
bution as

τr,k = 2r/2 π−(k+1/2)
k∑
l=0

(r+k−l) even

(
k

l

)
2−l πl Γ

(
r + k − l + 1

2

)
×

F
(k−l)
A

(
r + k − l + 1

2
;

1

2
, . . . ,

1

2
;

3

2
, . . . ,

3

2
;−1, . . . ,−1

)
.

This equation holds when r + k − l is even and it vanishes when r + k − l is odd. So,
any BOLL-N moment can be expressed as an in�nite weighted linear combination of
Lauricella functions of type A.

For the gamma distribution, the quantities τr,k can be expressed from equation (9) of
Cordeiro and Nadarajah [11] as

τr,k =
Γ(r + (k + 1)α)

αk βr Γ(α)k+1
F

(k)
A (r + (k + 1)α;α, . . . , α;α+ 1, . . . , α+ 1,−1, . . . ,−1).

Finally, for the BOLL-W distribution, the quantities τr,k are given by

τr,k =
Γ(r/β + 1)

αr/β

k∑
s=0

(−1)s

(s+ 1)r/β+1

(
k

s

)
.
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4.5. Generating function. Here, we provide two formulae for the mgfM(s) = E(esX)
of X. The �rst formula for M(s) comes from equation (4.4) as

M(s) =

∞∑
k=0

bk+1 Mk+1(s),(4.6)

where Mk+1(s) is the exp-G generating function with power parameter k + 1.
Equation (4.6) can also be expressed as

M(s) =

∞∑
k=0

(k + 1) bk+1 ρk(s),(4.7)

where the quantity ρk(s) =
∫ 1

0
exp [sQG(u)]ukdu can be computed numerically.

4.6. Mean deviations. Incomplete moments are useful for measuring inequality, for
example, the Lorenz and Bonferroni curves and Pietra and Gini measures of inequality all
depend upon the incomplete moments of the distribution. The nth incomplete moment
of X is de�ned by mn(y) =

∫ y
−∞ x

n f(x)dx. Here, we propose two methods to determine
the incomplete moments of the new family. First, the nth incomplete moment of X can
be expressed as

mn(y) =

∞∑
k=0

bk+1

∫ G(y; ξ)

0

QG(u)n uk du.(4.8)

The integral in (4.8) can be computed at least numerically for most baseline distributions.
The mean deviations about the mean (δ1 = E(|X − µ′1|)) and about the median

(δ2 = E(|X −M |)) of X are given by

δ1 = 2µ′1 F
(
µ′1
)
− 2m1

(
µ′1
)

and δ2 = µ′1 − 2m1(M),(4.9)

respectively, where M = Q(0.5) is the median of X, µ′1 = E(X) comes from equation
(4.5), F (µ′1) can easily be calculated from (2.3) and m1(z) =

∫ z
−∞ x f(x)dx is the �rst

incomplete moment.
Next, we provide two alternative ways to compute δ1 and δ2. A general equation for

m1(z) can be derived from equation (4.4) as

m1(z) =

∞∑
k=0

bk+1 Jk+1(z),(4.10)

where

Jk+1(z) =

∫ z

−∞
xhk+1(x)dx.

Equation (4.10) is the basic quantity to compute the mean deviations in (4.9). A simple
application of (4.10) refers to the BOLL-W model. The exponentiated Weibull density
function (for x > 0) with power parameter k+1, shape parameter α and scale parameter
β, is given by

hk+1(x) = (k + 1)αβα xα−1 exp {−(βx)α} [1− exp {−(βx)α}]k ,
and then

Jk+1(z) = c (k + 1)βα
∞∑
r=0

(−1)r
(
k

r

) ∫ z

0

xα exp {−(r + 1)(βx)α} dx.

The last integral reduces to the incomplete gamma function and then

Jk+1(z) = β−1
∞∑
r=0

(−1)r (k + 1)
(
k
r

)
(r + 1)1+α−1 γ

(
1 + α−1, (r + 1)(βz)α

)
.
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A second general formula for m1(z) can be derived by setting u = G(x) in (4.4)

m1(z) =

∞∑
k=0

(k + 1) bk+1 Tk(z),

where Tk(z) =
∫ G(z)

0
QG(u)ukdu.

The main application of the �rst incomplete moment refers to the Bonferroni and
Lorenz curves which are very useful in economics, reliability, demography, insurance and
medicine. For a given probability π, applications of these equations can be addressed to
obtain these curves de�ned by B(π) = m1(q)/(π µ′1) and L(π) = m1(q)/µ′1, respectively,
where q = Q(π) is calculated from the parent qf.

4.7. Entropies. An entropy is a measure of variation or uncertainty of a random vari-
able X. Two popular entropy measures are the Rényi [43] and Shannon [45]. The Rényi
entropy of a random variable with pdf f(x) is de�ned by

IR(γ) =
1

1− γ log

(∫ ∞
0

fγ(x)dx

)
,

for γ > 0 and γ 6= 1. The Shannon entropy of a random variable X is given by IS =
E {− log [f(X)]}. It is the special case of the Rényi entropy when γ ↑ 1. Direct calculation
yields

IS = − log

[
c

B(a, b)

]
− E {log [g(X; ξ)]}+ (1− ac) E {log [G(x; ξ)]}

+ (1− bc) E
{

log
[
Ḡ(x; ξ)

]}
+ (a+ b) E

{
log
[
G(x; ξ)c + Ḡ(x; ξ)c

]}
.

First, we de�ne and compute

A(a1, a2, a3; a) =

∫ 1

0

ua1(1− u)a2

[ua + (1− u)a]a3
du

=

∞∑
i=0

(−1)i
(
a2

i

)∫ 1

0

ua1+i

[ua + (1− u)a]a3
du

=

∞∑
i=0

(−1)i
(
a2

i

)∫ 1

0

∑∞
k=0 δ1,ku

k∑∞
k=0 δ2,k u

k
du

=

∞∑
i=0

(−1)i
(
a2

i

)∫ 1

0

∞∑
k=0

δ3,ku
k

=

∞∑
i=0

(−1)i δ3,k
(k + 1)

(
a2

i

)
,

where δ1,k = ak(a1 + i), δ2,k = hk(a, a3) and

δ3,k =
1

δ2,0

(
δ1,k −

1

δ2,0

k∑
r=1

δ2,r δ3,k−r

)
.

After some algebraic manipulations, we obtain:

4.1. Theorem. Let X be a random variable with pdf (2.4). Then,

E {log [G(X)]} =
c

B(a, b)

∂

∂t
A(a c+ t− 1, b c− 1, a+ b; c)

∣∣∣
t=0

,

E
{

log
[
Ḡ(X)

]}
=

c

B(a, b)

∂

∂t
A(a c− 1, b c+ t− 1, a+ b; c)

∣∣∣
t=0

,
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E
{
G(x; ξ)a + Ḡ(X; ξ)a

}
=

c

B(a, b)

∂

∂t
A(a c− 1, b c− 1, a+ b− t; c)

∣∣∣
t=0

.

The simplest formula for the entropy of X is given by

IS = − log
[ c

B(a, b)

]
− E {log [g(X; ξ)]}

+
c (1− a c)
B(a, b)

∂

∂t
A(a c+ t− 1, b c− 1, a+ b; c)

∣∣∣
t=0

+
c (1− b c)
B(a, b)

∂

∂t
A(a c− 1, b c+ t− 1, a+ b; c)

∣∣∣
t=0

+
c (a+ b)

B(a, b)

∂

∂t
A(a c− 1, b c− 1, a+ b− t; c)

∣∣∣
t=0

.

After some algebraic developments, we have an alternative expression for IR(γ):

IR(γ) =
γ

1− γ log

[
c

B(a, b)

]
+

1

1− γ log

 ∞∑
i,k=0

ti,k EVk (gγ−1[G−1(Y )])

 .
Here, Vk has a beta distribution with parameters k + 1 and one,

ti,k =
(−1)i γ3,k(a, b, c, i)

(k + 1)

(
c(a− 1)

i

)
,

γ1,k = ak
(

(a c− 1)γ + i
)
, γ2,k = hk

(
c, (a+ b)γ

)
and

γ3,k =
1

γ2,0

(
γ1,k −

1

γ2,0

k∑
r=1

γ2,rγ3,k−r

)
,

where ak((a c− 1)γ + i) and hk
(
c, (a + b)γ

)
are de�ned in equation (8.6) given in Ap-

pendix A.

4.8. Order statistics. Order statistics make their appearance in many areas of statis-
tical theory and practice. Suppose X1, . . . , Xn is a random sample from the BOLL-G
family of distributions. We can write the density of the ith order statistic, say Xi:n, as

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i = K

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1,

where K = n!/[(i− 1)! (n− i)!].
Following similar algebraic developments of Nadarajah et al. [38], we can write the

density function of Xi:n as

fi:n(x) =

∞∑
r,k=0

mr,k hr+k+1(x),(4.11)

where hr+k(x) denotes the exp-G density function with power parameter r + k + 1 (for
r, k ≥ 0)

mr,k =
n! (r + 1) (i− 1)! br+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n− i− j)! j! ,
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and bk is de�ned in equation (4.3). The quantities fj+i−1,k can be obtained recursively

by fj+i−1,0 = bj+i−1
0 and

fj+i−1,k = (k b0)−1
k∑

m=1

[m(j + i)− k] bm fj+i−1,k−m, k ≥ 1.

Equation (4.11) is the main result of this section. It reveals that the pdf of the
BOLL-G order statistics is a linear combination of exp-G density functions. So, several
mathematical quantities of the BOLL-G order statistics such as ordinary, incomplete
and factorial moments, mgf, mean deviations and several others can be determined from
those quantities of the exp-G distribution.

5. Characterizations of the new family based on two truncated

moments

The problem of characterizing distributions is an important problem which has at-
tracted the attention of many researchers recently. An investigator will, generally, be
interested to know if their chosen model �ts the requirements of a particular distribu-
tion. Hence, one will depend on the characterizations of this distribution which provide
conditions under which one can check to see if the underlying distribution is indeed that
particular distribution. Various characterizations of distributions have been established
in many di�erent directions. In this section, we present characterizations of the BOLL-G
distribution based on a simple relationship between two truncated moments. Our char-
acterization results will employ a theorem due to Glänzel [24] (Theorem 5.1, below). The
advantage of the characterizations given here is that the cdf F is not required to have a
closed-form and is given in terms of an integral whose integrand depends on the solution
of a �rst order di�erential equation, which can serve as a bridge between probability and
di�erential equation. We believe that other characterizations of the BOLL-G family may
not be possible.

5.1. Theorem. Let (Ω,Σ,P) be a given probability space and let H = [a, b] be an interval
for some a < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be a
continuous random variable with distribution function F (x) and let q1 and q2 be two real
functions de�ned on H such that

E [q1(X) |X ≥ x] = E [q2(X) |X ≥ x] η(x), x ∈ H,

is de�ned with some real function η. Consider that q1, q2 ∈ C1(H), η ∈ C2(H) and F (x)
is twice continuously di�erentiable and strictly monotone function on the set H. Further,
we assume that the equation q2η = q1 has no real solution in the interior of H. Then, F
is uniquely determined by the functions q1, q2 and η, particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q2 (u)− q1 (u)

∣∣∣∣ e−s(u) du ,

where the function s is a solution of the di�erential equation s′ = η′ q2
η q2−q1

and C is a

constant chosen to make
∫
H
dF = 1.

We have to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence. In particular, let us assume that
there is a sequence {Xn} of random variables with distribution functions {Fn} such
that the functions q1,n, q2,n and ηn (n ∈ N) satisfy the conditions of Theorem 5.1 and let
q1,n → q1, q2,n → q2 for some continuously di�erentiable real functions q1 and q2. Finally,
let X be a random variable with distribution F . Under the condition that q1,n (X) and
q2,n (X) are uniformly integrable and the family {Fn} is relatively compact, the sequence
Xn converges to X in distribution if and only if ηn converges to η, where



1191

η (x) =
E [q1 (X) |X ≥ x]

E [q2 (X) |X ≥ x]
.

5.2. Remark. (a) In Theorem 5.1, the interval H need not be closed since the condition
is only on the interior of H.
(b)Clearly, Theorem 5.1 can be stated in terms of two functions q1 and η by taking
q2 (x) = 1, which will reduce the condition in Theorem 5.1 to E [q1 (X) |X ≥ x] = η (x).
However, adding an extra function will give a lot more �exibility, as far as its application
is concerned.

5.3. Proposition. Let X : Ω → R be a continuous random variable and let q1 (x) =

q2 (x) G (x; ξ)ac and q2 (x) =
{
G (x; ξ)c +G (x; ξ)c

}−(a+b)
G (x; ξ)1−bc for x ∈ R. The

pdf of X is (2.4) if and only if the function η de�ned in Theorem 5.1 has the form

η (x) =
1

2
[1 +G (x; ξ)ac] , x ∈ R.

Proof. If X has pdf (2.4), then

[1− F (x)]E [q2 (X) |X ≥ x] =
1

aB (a, b)
[1−G (x; ξ)ac] , x ∈ R

and

[1− F (x)]E [q1 (X) |X ≥ x] =
1

2aB (a, b)

[
1−G (x; ξ)2ac] , x ∈ R.

Finally,

η (x) q2 (x)− q1 (x) =
1

2
q2 (x) [1−G (x; ξ)ac] > 0, for x ∈ R.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q2 (x)

η (x) q2 (x)− q1 (x)
=
a c g (x) G (x; ξ)ac−1

[1−G (x; ξ)ac]
, x ∈ R,

and hence

s (x) = − log [1−G (x; ξ)ac] , x ∈ R.

Now, in view of Theorem 5.1, X has pdf (2.4). �

5.4. Corollary. Let X : Ω → R be a continuous random variable and let q2 (x) be as
in Proposition 5.3. The pdf of X is (2.4) if and only if there exist functions q1 and η
de�ned in Theorem 5.1 satisfying the di�erential equation

η′(x) q2(x)

η(x) q2(x)− q1(x)
=
a c g(x)G(x; ξ)ac−1

[1−G(x; ξ)ac]
, x ∈ R.

5.5. Remark. (a) The general solution of the di�erential equation in Corollary 5.4 is

η(x) = [1−G(x; ξ)ac]−1

[
−
∫
a c g(x)G(x; ξ)ac−) q1(x) q2(x)−1 dx+D

]
,

for x ∈ R, where D is a constant. One set of appropriate functions is given in Proposition
5.3 with D = 1/2.

(b) Clearly there are other triplets of functions (q1, q2, η) satisfying the conditions of
Theorem 5.1, e.g.,

q1(x) = q2(x)G(x; ξ)bc
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and

q2(x) =
[
G(x; ξ)c +G(x; ξ)c

]−(a+b)
G(x; ξ)1−ac, x ∈ R.

Then, η(x) = 1
2
G(x; ξ)bc and s′(x) = η′(x) q2(x)

η(x) q2(x)−q1(x)
= b c g(x)G(x)−1, x ∈ R.

6. Di�erent methods of estimation

Here, we discuss parameter estimation using the methods of maximum likelihood and
of minimum spacing distance estimator proposed by Torabi [48].

6.1. Maximum likelihood estimation. We consider the estimation of the unknown
parameters of this family from complete samples only by the method of maximum likeli-
hood. Let x1, . . . , xn be observed values from the BOLL-G distribution with parameters
a, b, c and ξ. Let Θ = (a, b, c, ξ)> be the r×1 parameter vector. The total log-likelihood
function for Θ is given by

`n = n log(c)− n log[B(a, b)] +

n∑
i=1

log[g(xi; ξ)] + (ac− 1)

n∑
i=1

log[G(xi; ξ)]

+ (bc− 1)

n∑
i=1

log[Ḡ(xi; ξ)]− (a+ b)

n∑
i=1

log
{
G(xi; ξ)c + Ḡ(xi; ξ)c

}
.(6.1)

The log-likelihood function can be maximized either directly by using the R (Adequa-
cyModel or Maxlik) (see R Development Core Team [42]), SAS (PROC NLMIXED),
Ox program (sub-routine MaxBFGS) (see Doornik [14]), Limited-Memory quasi-Newton
code for bound-constrained optimization (L-BFGS-B) or by solving the nonlinear likeli-
hood equations obtained by di�erentiating (6.1).

Let Un(Θ) = (∂`n/∂a, ∂`n/∂b, ∂`n/∂c, ∂`n/∂ξ)> be the score function. Its compo-
nents are given by

∂`n
∂a

= −nψ(a) + nψ(a+ b) + c

n∑
i=1

log[G(xi; ξ)]−
n∑
i=1

log
{
G(xi; ξ)c + Ḡ(xi; ξ)c

}
,

∂`n
∂b

= −nψ(b) + nψ(a+ b) + c

n∑
i=1

log[Ḡ(xi; ξ)]−
n∑
i=1

log
{
G(xi; ξ)c + Ḡ(xi; ξ)c

}
,

∂`n
∂c

=
n

c
+ a

n∑
i=1

log[G(xi; ξ)] + b
n∑
i=1

log[Ḡ(xi; ξ)]

−(a+ b)

n∑
i=1

G(xi; ξ)c log[G(xi; ξ)] + Ḡ(xi; ξ)c log[Ḡ(xi; ξ)]

G(xi; ξ)c + Ḡ(xi; ξ)c
,

∂`n
∂ξ

=

n∑
i=1

g(xi; ξ)(ξ)

g(xi; ξ)
+ (ac− 1)

n∑
i=1

G(xi; ξ)(ξ)

G(xi; ξ)
+ (1− bc)

n∑
i=1

G(xi; ξ)(ξ)

Ḡ(xi; ξ)

−c(a+ b)

n∑
i=1

G(xi; ξ)(ξ) G(xi; ξ)c−1 − Ḡ(xi; ξ)c−1

G(xi; ξ)c + Ḡ(xi; ξ)c
,

where h(ξ)(·) means the derivative of the function h with respect to ξ.
For interval estimation and hypothesis tests, we can use standard likelihood techniques

based on the observed information matrix, which can be obtained from the authors upon
request.
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6.2. Minimum spacing distance estimator (MSDE). Torabi [48] introduced a gen-
eral method for estimating parameters through spacing called maximum spacing distance
estimator (MSDE). Torabi and Bagheri [49] and Torabi and Montazeri [51] used di�er-
ent MSDEs to compare with the MLEs. Here, we used two MSDEs, �minimum spacing
absolute distance estimator� (MSADE) and �minimum spacing absolute-log distance es-
timator� (MSALDE) and compared them with the MLEs of the BOLL-E distribution.
For mathematical details, the reader is referred to Torabi and Bagheri [49] and Torabi
and Montazeri [51].

Table 2: The AEs, biases and MSEs of the MLEs, MSADEs and MSALDEs of the
parameters based on 1,000 simulations of the BOLL-E(2, 1.5, 0.5, 1)

distribution for n = 100, 200, 300 and 400.

MLE MSADE MSALDE

n AE Bias MSE AE Bias MSE AE Bias MSE

100 a 3.158 1.158 5.743 2.271 0.271 5.404 2.361 0.361 14.717

b 2.826 1.326 5.933 1.870 0.370 5.206 2.053 0.553 14.854

c 0.587 2.658 0.301 0.509 1.771 0.027 0.582 1.861 0.133

α 1.203 0.203 0.817 1.074 0.074 0.303 1.145 0.145 0.485

200 a 2.862 0.862 3.915 2.179 0.179 2.771 2.072 0.072 2.715

b 2.461 0.961 3.758 1.750 0.250 2.855 1.651 0.151 2.837

c 0.539 2.362 0.126 0.535 1.679 0.048 0.582 1.572 0.081

α 1.114 0.114 0.440 1.078 0.078 0.245 1.141 0.141 0.334

300 a 2.112 0.112 2.492 2.666 0.666 2.609 2.133 0.133 3.709

b 1.695 0.195 2.331 2.217 0.717 2.475 1.695 0.195 3.368

c 0.554 1.612 0.072 0.519 2.166 0.080 0.583 1.633 0.080

α 1.051 0.051 0.176 1.097 0.097 0.310 1.130 0.130 0.248

400 a 2.587 0.587 1.956 2.048 0.048 0.956 2.143 0.143 3.588

b 2.109 0.609 1.869 1.602 0.102 0.970 1.669 0.169 3.383

c 0.498 2.087 0.049 0.534 1.548 0.026 0.558 1.643 0.039

α 1.080 0.080 0.232 1.062 0.062 0.161 1.135 0.135 0.220

We simulate the BOLL-E distribution for n=100, 200, 300 and 400 with a = 2, b = 1.5,
c = 0.5 and α = 1. For each sample size, we compute the MLEs, MSADEs and MSALDEs
of the parameters. We repeat this process 1,000 times and obtain the average estimates
(AEs), biases and mean square error (MSEs). The results are reported in Table 2. From
the �gures in this table, we note that the performances of the MLEs and MSADEs are
better than MSALDEs.

7. Applications

In this section, we provide two applications to real data to illustrate the importance
of the BOLL-G family through the special models: BOLL-E, BOLL-N and BOLL-Lx.
The MLEs of the parameters are computed and the goodness-of-�t statistics for these
models are compared with other competing models.
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7.1. Data set 1: Strength of glass �bres. The �rst data set represents the strength
of 1.5 cm glass �bres, measured at National physical laboratory, England (see, Smith and
Naylor [46]). The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73,
1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77,
1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48,
1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63,
1.67, 1.70, 1.78, 1.89.

We �t the BOLL-E, BOLL-N, McDonald-Normal (McN) (Cordeiro et al. [9]), beta-
normal (BN) (Famoye et al. [17]) and beta-exponential (BE) (Nadarajah and Kotz [39])
models to data set 1 and also compare them through seven goodness-of-�t statistics. The
densities of the McN, BN and BE models are, respectively, given by:

McN : fMcN(x; a, b, c, µ, σ) = c
σ B(a,b)

φ
(
x−µ
σ

)
Φ
(
x−µ
σ

)ac−1 [
1− Φ

(
x−µ
σ

)c]b−1
,

µ ∈ <, a, b, c, σ > 0,

BN : fBN(x; a, b, µ, σ) = 1
σ B(a,b)

φ
(
x−µ
σ

)
Φ
(
x−µ
σ

)a−1 [
1− Φ

(
x−µ
σ

)]b−1
,

µ ∈ <, a, b, σ > 0,

BE : fBE(x; a, b, α) = α
B(a,b)

e−α b x
(
1− e−αx

)a−1
, a, b, α > 0.

7.2. Data set 2: Bladder cancer patients. The second data set represents the un-
censored remission times (in months) of a random sample of 128 bladder cancer patients
reported in Lee and Wang [31]. The data are: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11,
23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80,
25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74,
14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62,
10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,5.49, 7.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31,
4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63,
22.69.

We �t the BOLL-E, BOLL-Lx, McDonald-Lomax (McLx) and beta-Lomax (BLx)
(Lemonte and Cordeiro [32]) and BE models to these data and also compare their
goodness-of-�t statistics. The densities of the McLx and BLx models are, respectively,
given by

McLx : fMcLx(x; a, b, c, α, β) = c α
β B(a,b)

[
1 +

(
x
β

)]−(α+1)

×
{

1−
[
1 +

(
x
β

)]−α}ac−1 [
1−

{
1−

[
1 +

(
x
β

)]−α}c]b−1

,

a, b, c, α, β > 0,

BLx : fBLx(x; a, b, α, β) = α
β B(a,b)

[
1 +

(
x
β

)]−(αb+1){
1−

[
1 +

(
x
β

)]−α}a−1

×
[
1−

{
1−

[
1 +

(
x
β

)]−α}a]b−1

, a, b, α, β > 0.
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For all models, the MLEs are computed using the Limited-Memory Quasi-Newton Code
for Bound-Constrained Optimization (L-BFGS-B). Further, the log-likelihood function

evaluated at the MLEs (ˆ̀), Akaike information criterion (AIC), consistent Akaike infor-
mation criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn informa-
tion criterion (HQIC), Anderson-Darling (A∗), Cramér�von Mises (W ∗) and Kolmogorov-
Smirnov (K-S) statistics are calculated to compare the �tted models. The statistics A∗

and W ∗ are de�ned by Chen and Balakrishnan [8]. In general, the smaller the values of
these statistics, the better the �t to the data. The required computations are carried out
in R-language.
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Table 3: MLEs and their standard errors (in parentheses) for the �rst data set.

Distribution a b c µ σ α

BOLL-E 0.0698 0.1834 50.4548 - - 0.4118
(0.0931) (0.2712) (66.9766 - - (0.0125)

BOLL-N 0.0358 0.0764 34.7642 1.6597 0.6056 -
(0.0660) (0.1384) (65.6410) (0.0381) (0.5323) -

McN 0.5298 17.2226 1.2924 2.3850 0.4773 -
(0.5249) (48.8078) (6.2595) (1.8112) (0.9820) -

BN 0.5836 21.9402 - 2.5679 0.4658 -
(0.6444) (79.8234) - (1.3451) (0.4546) -

BE 17.4548 38.3856 - - - 0.2514
(3.1323) (65.8297) - - - (0.3684)

Table 4: The statistics ˆ̀, AIC, CAIC , BIC , HQIC, A∗ and W ∗ for the �rst data set.

Distribution ˆ̀ AIC CAIC BIC HQIC A∗ W ∗

BOLL-E −10.4852 28.9703 29.6599 37.5429 32.3419 0.3923 0.0681
BOLL-N −9.9976 29.9953 31.0479 40.7110 34.2098 2.0245 0.2858
McN −14.0577 38.1154 39.1680 48.8311 42.3299 0.9289 0.1659
BN −14.0560 36.1119 36.8016 44.6845 39.4836 0.9179 0.1637
BE −24.0256 54.0511 54.4579 60.4805 56.5798 3.1307 0.5708

Table 5: The K-S statistics and p-values for the �rst data set.

Distribution K-S p-value (K-S)

BOLL-E 0.1126 0.4013
BOLL-N 0.0928 0.6496
McN 0.1369 0.1886
BN 0.1356 0.1973
BE 0.2168 0.0053

Table 6: MLEs and their standard errors (in parentheses) for the second data set.

Distribution a b c α β

BOLL-E 0.2772 0.1548 3.7895 0.1563 -
(0.2529) (0.1441) (3.1996) (0.0413) -

BOLL-Lx 0.4507 0.3046 2.5267 8.5700 57.6246
(0.4279) (0.3573) (2.0183) (14.4135) (88.4252)

McLx 1.5052 5.9638 2.0608 0.7177 10.9267
(0.2831) (30.1616) (2.9944) (3.0698) (16.6896)

BLx 1.5882 12.0014 - 0.3859 20.4693
(0.2830) (319.2372) - (10.0697) (14.0657)

BE 1.3781 0.2543 - 0.4595 -
(0.2162) (0.0251) - (0.0028) -
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Table 7: The statistics ˆ̀, AIC, CAIC , BIC , HQIC, A∗ and W ∗ for the second data set.

Distribution ˆ̀ AIC CAIC BIC HQIC A∗ W ∗

BOLL-E −409.8323 827.6646 827.9898 839.0727 832.2998 1.5745 0.2022
BOLL-Lx −409.2256 828.4513 828.9431 842.7115 834.2453 0.0800 0.0126
McLx −409.9128 829.8256 830.3174 844.0858 835.6196 0.1688 0.0254
BLx −410.0813 828.1626 828.4878 839.5708 832.7978 0.1917 0.0285
BE −412.1016 830.2033 830.3968 838.7594 833.6797 0.5475 0.0896

Table 8: The K-S statistics and p-values for the second data set.

Distribution K-S p-value (K-S)

BOLL-E 0.0295 0.9999
BOLL-Lx 0.0341 0.9984
McLx 0.0391 0.9896
BLx 0.0407 0.9840
BE 0.0688 0.5793
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Figure 4. Plots (a) and (b) of the estimated pdfs and cdfs of the
BOLL-E and BOLL-N and other competitive models.

Tables 3 and 6 list the MLEs and their corresponding standard errors (in parentheses)
of the parameters. The values of the model selection statistics AIC, CAIC, BIC, HQIC,
A∗, W ∗ and K-S are listed in Tables 4-5 and 7-8. We note from Tables 4 and 5 that the
BOLL-E and BOLL-N models have the lowest values of the AIC, CAIC, BIC, HQIC,W ∗

and K-S statistics (for the �rst data set) among the �tted McN, BN and BE models, thus
suggesting that the BOLL-E and BOLL-N models provide the best �ts, and therefore
could be chosen as the most adequate models for the �rst data set. The histogram of
these data and the estimated pdfs and cdfs of the BOLL-E and BOLL-N models and their
competitive models are displayed in Figure 4. Similarly, it is also evident from the results
in Tables 7 and 8 that the BOLL-E and BOLL-Lx models give the lowest values for the
ˆ̀, AIC, CAIC, BIC, HQIC, A∗, W ∗ and K-S statistics (for the second data set) among
the �tted McLx, BLx, KwLx and Lx distributions. Thus, the BOLL-E and BOLL-Lx
models can be chosen as the best models. The histogram of the second data set and
the estimated pdfs and cdfs of the BOLL-E and BOLL-Lx models and other competitive
models are displayed in Figure 5.
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Figure 5. Plots (a) and (b) of the estimated pdfs and cdfs of the
BOLL-E and BOLL-Lx models and other competitive models.

It is clear from the �gures in Tables 4-5 and 7-8, and Figures 4 and 5 that the BOLL-E,
BOLL-N and BOLL-Lx models provide the best �ts to these two data sets as compared
to other models.

8. Concluding remarks

The generalized continuous univariate distributions have been widely studied in the
literature. We propose a new class of distributions called the beta odd log-logistic-G
family. We study some of its structural properties including an expansion for its density
function and explicit expressions for the moments, generating function, mean deviations,
quantile function and order statistics. The maximum likelihood method and the method
of minimum spacing distance are employed to estimate the model parameters. We �t
three special models of the proposed family to two real data sets to demonstrate its
usefulness. We use some goodness-of-�t statistics in order to determine which distribution
�ts better to these data. We conclude that these special models provide consistently
better �ts than other competing models. We hope that the new family and its generated
models will attract wider applications in several areas such as reliability engineering,
insurance, hydrology, economics and survival analysis.

Appendix A

We present four power series expansions required for the proof of the general result in
Section 4. First, for a > 0 real non-integer, we have the binomial expansion

(8.1) (1− u)a =

∞∑
j=0

(−1)j
(
a

j

)
uj ,

where the binomial coe�cient is de�ned for any real a as a(a−1)(a−2), . . . , (a−j+1)/j!.

Second, the following expansion holds for any α > 0 real non-integer

(8.2) G(x)α =

∞∑
r=0

ar(α)G(x)r,
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where ar(α) =
∑∞
j=r(−1)r+j

(
α
j

) (
j
r

)
. The proof of (8.2) follows from G(x)α = {1− [1−

G(x)]}α by applying (8.1) twice.
Third, by expanding zλ in Taylor series (when k is a positive integer), we have

(8.3) zλ =

∞∑
k=0

(λ)k (z − 1)k/k! =

∞∑
i=0

fi z
i,

where

fi = fi(λ) =

∞∑
k=0

(−1)k−i

k!

(
k

i

)
(λ)k

and (λ)k = λ(λ− 1) . . . (λ− k + 1) is the descending factorial.
Fourth, we use throughout an equation of Gradshteyn and Ryzhik [22] for a power

series raised to a positive integer i given by(
∞∑
j=0

aj v
j

)i
=
∞∑
j=0

ci,j v
j ,(8.4)

where the coe�cients ci,j (for j = 1, 2, . . .) are obtained from the recurrence equation
(for j ≥ 1)

(8.5) ci,j = (ja0)−1
j∑

m=1

[m(j + 1)− j] am ci,j−m

and ci,0 = ai0. Hence, ci,j can be calculated directly from ci,0, . . . , ci,j−1 and, therefore,
from a0, . . . , aj .

We now obtain an expansion for [G(x)c + Ḡ(x)c]a. We can write from equations (8.1)
and (8.2)

[G(x)c + Ḡ(x)c] =

∞∑
j=0

tj G(x)j ,

where

tj = (−1)j
[(

c

j

)
+

∞∑
i=j

(−1)i
(
c

i

)(
c

j

)]
.

Then, using (8.3), we have

[G(x)c + Ḡ(x)c]a =
∞∑
i=0

fi

(
∞∑
j=0

tj G(x)j
)i
,

where fi = fi(a) is de�ned before.
Finally, using equations (8.4) and (8.5), we obtain

[G(x)c + Ḡ(x)c]a =

∞∑
j=0

hj G(x)j ,(8.6)

where

hj = hj(c, a) =
∞∑
i=0

fimi,j ,

mi,j = (j t0)−1
j∑

m=1

[m(j + 1)− j] tmmi,j−m (for j ≥ 1)

and mi,0 = ti0.
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