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Some remarks for a certain class of holomorphic functions at the boundary of the 

unit disc 

Bülent Nafi ÖRNEK*1 and Tuğba AKYEL2 

Abstract 

We consider a boundary version of the Schwarz Lemma on a certain class which is denoted by 𝒦(𝛼). For 

the function 𝑓(𝜆) = 𝜆 + 𝑐 𝜆 + 𝑐 𝜆 +. .. which is defined in the unit disc 𝐸 such that the function 𝑓(𝜆) 

belongs to the class 𝒦(𝛼), we estimate from below the modulus of the angular derivative of the function 
'( )

( )
 at the boundary point 𝑏 with 

'( )

( )
= . Moreover, we get the Schwarz Lemma for the class 𝒦(𝛼). 

We also investigate some inequalities obtained in terms of sharpness.  
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1. INTRODUCTION 

One of the main tool of complex functions theory 

is Schwarz Lemma. Its present statement has been 

written by Constantin Caratheodory. Schwarz 

Lemma is an important results which gives the 

estimates about the values of holomorphic 
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functions defined from the unit disc into itself. 

This lemma, which is a direct applications of the 

maximum modulus principle, is commonly used as 

follows: 

Let 𝐸 = {𝜆: |𝜆| < 1} be the unit disc and  𝑇 =

{𝜆: |𝜆| = 1} be the boundary of the unit disc. Let 
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us consider a holomorphic function 𝑓 which maps 

the unit disc to itself and fixes the point zero. Then, 

under this conditions, |𝑓(𝜆)| ≤ |𝜆|  for all   𝜆 ∈ 𝐸 

and 𝑓 '(0) ≤ 1. In addition, if the equality 

|𝑓(𝜆)| = |𝜆| holds for any 𝑧 ≠ 0, or 𝑓 '(0) = 1, 

then 𝑓 is a rotation, which means 𝑓(𝜆) = 𝜆𝑒 , 

where 𝛾 is a real. So, unless 𝑓 is rotation, the 

function 𝑓 maps each disc in the unit disc into a 

strictly smaller one [4]. 

We use the Jack’s lemma which is related to the 

function 
'( )

( )
 we shall investigate [5]. 

Let 𝒜 denote the class of holomorphic functions 

in the unit disc 𝐸 for which 𝑓(0) = 𝑓 '(0) − 1 =

0, that is, 

𝑓(𝜆) = 𝜆 + 𝑐 𝜆 + 𝑐 𝜆 +. .. 

Also, let 𝒦(𝛼) be the subclass of 𝒜 includes all 

functions 𝑓(𝜆) which satisfying the condition 

      

''( )
'( )

'( )

( )

− 1 < 𝛼, 𝜆 ∈ 𝐸,         (1.1) 

where 0 < 𝛼 ≤ 1. Let 𝑓(𝜆) ∈ 𝒦(𝛼). Let 

       𝑠(𝜆) =
'( )

( )
=

( )
                 (1.2) 

and 

𝜑(𝜆) =
1

𝛼

1

𝑠(𝜆)
− 1 . 

It is clear that 𝜑(𝜆) is holomorphic function in 𝐸 

and fixes the point zero. Now, we want to prove 

that |𝜑(𝜆)| < 1 in 𝐸. By the definition of the class 

𝒦(𝛼) and (1.2), we get 

1 +
𝜆𝑓 ''(𝜆)
𝑓 '(𝜆)

𝜆𝑓 '(𝜆)
𝑓(𝜆)

− 1 =
𝜆𝑠'(𝜆)

𝑠 (𝜆)
=

−𝛼𝜆𝜑'(𝜆)
(1 + 𝛼𝜑(𝜆))

1
1 + 𝛼𝜑(𝜆)

= −𝛼𝑧𝜑'(𝜆) . 

Suppose that there exists a point 𝑧 ∈ 𝐸 such that 

𝑚𝑎𝑥
| | | |

|𝜑(𝜆)| = |𝜑(𝜆 )| = 1. Hence, 𝜑(𝜆 ) =

𝑒 , where 𝜃 is real. By Jack’s Lemma, we get 

𝜑(𝜆 ) = 𝑒    𝑎𝑛𝑑   
𝜆 𝜑'(𝜆 )

𝜑(𝜆 )
= 𝑘. 

Using the last equality and also by the elementary 

calculations, we obtain 

1 +
𝜆 𝑓 ''(𝜆 )

𝑓 '(𝜆 )

𝜆 𝑓 '(𝜆 )
𝑓(𝜆 )

− 1 = −𝛼𝜆 𝜑'(𝜆 )

= |−𝛼𝑘𝜑(𝜆 )| 

= −𝛼𝑘𝑒 = 𝛼𝑘 ≥ 𝛼, 

which contradicts with (1.1). This means that 

there is no a point 𝜆 ∈ 𝐸 such that |𝜑(𝜆 )| = 1. 

Thus, |𝜑(𝜆)| < 1 for |𝜆| < 1. By the Schwarz 

Lemma, we take |𝑐 | ≤ 𝛼. For this last inequality, 

the extremal function is 𝑓(𝜆) = . 

 

So, the following lemma is obtained. 

 

Lemma 2 If 𝑓(𝜆) ∈ 𝒦(𝛼), then |𝑐 | ≤ 𝛼. This 

inequality is sharp with the extremal function 

𝑓(𝜆) = . 

Since the area of applicability of Schwarz Lemma 

is quite wide, there exist many studies about it. 

Some of these studies is called the boundary 

version of Schwarz Lemma. An important result of 

Schwarz lemma was given by Osserman [9]. 
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In [3], all zeros of the holomorphic function in the 

unit disc different from 𝜆 = 0 and the holomorphic 

function which has no zero in the unit disc except 

𝜆 = 0 have been considered, respectively. Thus, 

the stronger inequalities have been obtained.  

After these studies, M. Jeong found a necessary 

and sufficient condition for a holomorphic 

function with fixed points only at the boundary of 

the unit disc and had some relations with 

derivatives of the function at these fixed points 

(see, [1], [2], [7], [3], [6], [7], [8], [9], [10], [12] 

and references therein).  

For the results obtained, Julia-Wolff Lemma 

lemma and the result were used. [11]. 

 

 

2. MAIN RESULTS 

In this section, we consider the function 𝑓(𝜆) =

𝜆 + 𝑐 𝜆 + 𝑐 𝜆 +. .. which is defined in the unit 

disc 𝐸 and belongs to the class of 𝒦(𝛼). We 

estimate from below the modulus of the angular 

derivative of the function 
'( )

( )
 at the boundary 

point 𝑏 with 
'( )

( )
= .  

 

Theorem 1 Let 𝑓(𝜆) ∈ 𝒦(𝛼). Assume that for 

some 𝑏 ∈ 𝑇, 𝑓 ' has an angular limit 𝑓 '(𝑏) at 𝑏, 
'( )

( )
= . Then 

   
'( )

( )

'

≥
( )

.                       

(2.1) 

The inequality (2.1) is sharp with the extremal 

function  

𝑓(𝜆) =
𝜆

1 + 𝛼𝜆
. 

Proof. Let us consider the following function 

𝜑(𝜆) =
1

𝛼

1

𝑠(𝜆)
− 1 , 

where 𝑠(𝜆) =
'( )

( )
. Then 𝜑(𝜆) is a holomorphic 

function in the unit disc 𝐸, 𝜑(0) = 0and |𝜑(𝜆)| <

1 for |𝜆| < 1. Also, we have |𝜑(𝑏)| = 1 for 𝑏 ∈

𝑇. It is clear that 

𝜑'(𝜆) =
1

𝛼

−𝑠'(𝜆)

𝑠 (𝜆)
 

and 

𝜑'(𝑏) =
1

𝛼

−𝑠'(𝑏)

𝑠 (𝑏)
. 

Since 

𝑠(𝑏) =
𝑏𝑓 '(𝑏)

𝑓(𝑏)
=

1

1 + 𝛼
, 

from Osseman we get 

1 ≤ 𝜑'(𝑏) =
1

𝛼

𝑠'(𝑏)

𝑠 (𝑏)
=

(1 + 𝛼)

𝛼
𝑠'(𝑏)  

and 

𝑠'(𝑏) ≥
𝛼

(1 + 𝛼)
. 

 

Let's show equality in (2.1). Let 

           𝑓(𝜆) = .                           (2.2) 

Differentiating (2.2) logarithmically, we obtain 

𝑙𝑛 𝑓 (𝜆) = 𝑙𝑛
𝜆

(1 + 𝛼𝜆)
= 𝑙𝑛 𝜆 − 𝑙𝑛(1 + 𝛼𝜆), 

𝑓 '(𝜆)

𝑓(𝜆)
=

1

𝜆
−

𝛼

1 + 𝛼𝜆
 

and 

𝑠(𝜆) =
𝜆𝑓 '(𝜆)

𝑓(𝜆)
= 1 −

𝛼𝜆

1 + 𝛼𝜆
=

1

1 + 𝛼𝜆
. 
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Therefore, we take 

𝑠'(𝜆) =
−𝛼

(1 + 𝛼𝜆)
 

and 

𝑠'(1) =
𝛼

(1 + 𝛼)
. 

Theorem 2 Assume that conditions of Theorem 1 

are satisfied. Then 

    
'( )

( )

'

≥
( ) | |

.            

(2.3) 

The inequality (2.3) is sharp with the extremal 

function 

𝑓(𝜆) =
𝜆

1 + 𝛼𝜆
. 

Proof. Let 𝜑(𝜆) be as in the above Theorem 1. 

Therefore, from Osserman, 

2

1 + |𝜑'(0)|
≤ 𝜑'(𝑏) =

1

𝛼

𝑠'(𝑏)

𝑠 (𝑏)

=
(1 + 𝛼)

𝛼
𝑠'(𝑏) . 

Since 

𝜑'(𝑧) =
1

𝛼

−𝑠'(𝑧)

𝑠 (𝑧)
 

and 

𝜑'(0) =
'( )

( )
= , 

it is clear that 

𝜑'(0) =
|𝑐 |

𝛼
. 

Then 

2

1 +
|𝑐 |
𝛼

≤ 𝜑'(𝑏) =
(1 + 𝛼)

𝛼
𝑠'(𝑏)  

and 

𝑠'(𝑏) ≥
𝛼

(1 + 𝛼)

2𝛼

𝛼 + |𝑐 |
. 

The last inequality shows that the inequality 

intended is obtained. 

Now, let us show the case of equality. Let 

𝑓(𝜆) =
𝜆

1 + 𝛼𝜆
. 

Then, we take by the elementary calculations 

𝑠(𝜆) =
𝜆𝑓 '(𝜆)

𝑓(𝜆)
= 1 −

𝛼𝜆

1 + 𝛼𝜆
=

1

1 + 𝛼𝜆
 

and 

𝑠'(1) =
𝛼

(1 + 𝛼)
. 

Since  

𝜆 + 𝑐 𝜆 + 𝑐 𝜆 +. . . =
𝜆

1 + 𝛼𝜆
, 

 

1 + 𝑐 𝜆 + 𝑐 𝜆 +. . . =
1

1 + 𝛼𝜆
, 

 

𝑐 𝜆 + 𝑐 𝜆 +. . . =
1

1 + 𝛼𝜆
− 1 =

−𝛼𝜆

1 + 𝛼𝜆
, 

 

𝑐 + 𝑐 𝜆+. . . =
−𝛼

1 + 𝛼𝜆
 

and 

|𝑐 | = 𝛼, 

we obtain 

𝛼

(1 + 𝛼)

2𝛼

𝛼 + |𝑐 |
=

𝛼

(1 + 𝛼)

2𝛼

𝛼 + 𝛼
=

𝛼

(1 + 𝛼)
. 

The last equality shows that the equality intended 

is obtained.  

 

According to the following theorem, we can 

strengthen the inequality (2.3) as below by taking 

into account the third coefficient 𝑐  in the 

expansion of the function 𝑓(𝜆). 
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Theorem 3 Let 𝑓(𝜆) ∈ 𝒦(𝛼). Assume that for 

some 𝑏 ∈ 𝑇, 𝑓 ' has an angular limit 𝑓 '(𝑏) at 𝑏, 

'( )

( )
= . Then            

'( )

( )

'

≥

( )
1 +

( | |)

| |
.               (2.4) 

Proof. Let 𝜑(𝜆) be the same as in the proof of 

Theorem 1. Let us consider the function  

𝑘(𝑧) =
𝜑(𝑧)

𝐵(𝑧)
, 

where 𝐵(𝜆) = 𝜆. The function 𝑘(𝑧) is 

holomorphic in 𝐸. According to the maximum 

modulus princible, we have |𝑘(𝜆)| < 1 for each 

𝜆 ∈ 𝐸. From equality of 𝑘(𝜆), we have 

𝑘(𝜆) =
𝜑(𝜆)

𝜆
=

1
𝛼

1
𝑠(𝜆)

− 1

𝑧
𝜆 

=

1
𝛼

1
1 + 𝑐 𝜆 + (2𝑐 − 𝑐 )𝜆 +. . .

− 1

𝜆
 

=
1

𝛼

−𝑐 𝜆 − (2𝑐 − 𝑐 )𝜆 −. . .

𝜆(1 + 𝑐 𝜆 + (2𝑐 − 𝑐 )𝜆 +. . . )
 

=
1

𝛼

−𝑐 − (2𝑐 − 𝑐 )𝜆−. . .

1 + 𝑐 𝜆 + (2𝑐 − 𝑐 )𝜆 +. . .
. 

 

Thus, we get 

              |𝑘(0)| =
| |

≤ 1                    

(2.5) 

and 

                         𝑘'(0) = |2𝑐 − 2𝑐 |.             

Furthermore, it can be seen that 

𝑏𝜑'(𝑏)

𝜑(𝑏)
= 𝜑'(𝑏) ≥ 𝐵'(𝑏) =

𝑏𝐵'(𝑏)

𝐵(𝑏)
. 

Let 

Ϝ(𝜆) =
𝑘(𝜆) − 𝑘(0)

1 − 𝑘(0)𝑘(𝜆)
. 

This function is holomorphic in 𝐸, |Ϝ(𝜆)| ≤ 1 for 

|𝑧| < 1, Ϝ(0) = 0, and |Ϝ(𝑏)| = 1 for 𝑏 ∈ 𝑇, From 

Osserman, 

2

1 + Ϝ'(0)
≤ Ϝ'(𝑏) =

1 − |𝑘(0)|

1 − 𝑘(0)𝑘(𝑏)
𝑘'(𝑏)  

≤
1 + |𝑘(0)|

1 − |𝑘(0)|

𝜑'(𝑏)

𝐵(𝑏)
−

𝜑(𝑏)𝐵'(𝑏)

𝐵(𝑏)
 

=
1 + |𝑘(0)|

1 − |𝑘(0)|

𝜑(𝑏)

𝑏𝐵(𝑏)

𝑏𝜑'(𝑏)

𝜑(𝑏)
−

𝑏𝐵'(𝑏)

𝐵(𝑏)
 

≤
1 + |𝑘(0)|

1 − |𝑘(0)|
𝜑'(𝑏) − 𝐵'(𝑏) . 

Since 

Ϝ'(𝜆) =
1 − |𝑘(0)|

1 − 𝑘(0)𝑘(𝜆)
𝑘'(𝜆), 

 

Ϝ'(0) =
𝑘'(0)

1 − |𝑘(0)|
, 

and 

Ϝ'(0) =

1
𝛼

|2𝑐 − 2𝑐 |

1 −
|𝑐 |

𝛼

= 𝛼
|2𝑐 − 2𝑐 |

𝛼 − |𝑐 |
, 

we obtain 

2

1 + 𝛼
|2𝑐 − 2𝑐 |
𝛼 − |𝑐 |

≤
1 +

|𝑐 |
𝛼

1 −
|𝑐 |
𝛼

(1 + 𝛼)

𝛼
𝑠'(𝑏) − 1 , 

2(𝛼 − |𝑐 | )

𝛼 − |𝑐 | + 𝛼|2𝑐 − 2𝑐 |

≤
𝛼 + |𝑐 |

𝛼 − |𝑐 |

(1 + 𝛼)

𝛼
𝑠'(𝑏) − 1 , 
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2(𝛼 − |𝑐 |)

𝛼 − |𝑐 | + 𝛼|2𝑐 − 2𝑐 |

≤
(1 + 𝛼)

𝛼
𝑠'(𝑏) − 1 

and 

𝑠'(𝑏) ≥
𝛼

(1 + 𝛼)
1

+
2(𝛼 − |𝑐 |)

𝛼 − |𝑐 | + 𝛼|2𝑐 − 2𝑐 |
. 

 

In the following theorem, the relation between the 

Taylor coefficients 𝑐  and 𝑐  is given for the 

function 𝑓(𝜆) = 𝜆 + 𝑐 𝜆 + 𝑐 𝜆 +. ...    

 

Theorem 4 Let 𝑓(𝜆) ∈ 𝒦(𝛼), 
( )
'( )

− 1 has no 

zeros in 𝐸 except 𝜆 = 0 and 𝑐 > 0. Suppose that 

for some 𝑏 ∈ 𝑇, 𝑓 ' has an angular limit 𝑓 '(𝑏) at 𝑏, 
'( )

( )
= . Then we take the inequality 

        |𝑐 − 𝑐 | ≤ 𝑐 𝑙𝑛 .                       

(2.6) 

Proof. Let 𝑐 > 0 and let us consider the function 

𝑘(𝜆) as in Theorem 3. Taking account of the 

equality (2.5), we denote by 𝑙𝑛 𝑘 (𝜆) the 

holomorphic branch of the logarithm which is 

normed by the following condition 

𝑙𝑛 𝑘 (0) = 𝑙𝑛
𝑐

𝛼
< 0. 

Consider the following composite function 

𝑝(𝜆) =
𝑙𝑛 𝑘 (𝜆) − 𝑙𝑛 𝑘 (0)

𝑙𝑛 𝑘 (𝜆) + 𝑙𝑛 𝑘 (0)
. 

It is obvious that 𝑝(𝑧) is a holomorphic function in 

𝐸, 𝑝(0) = 0 and |𝑝(𝜆)| < 1 for 𝜆 ∈ 𝐸. Thus, the 

function 𝑝(𝑧) satisfies assumptions of the Schwarz 

Lemma. Since 

𝑝'(𝜆) =
2 𝑙𝑛 𝑘 (0)

(𝑙𝑛 𝑘 (𝜆) + 𝑙𝑛 𝑘 (0))

𝑘'(𝜆)

𝑘(𝜆)
 

and 

𝑝'(0) =
1

2 𝑙𝑛 𝑘 (0)

𝑘'(0)

𝑘(0)
, 

we obtain 

1 ≥ 𝑝'(0) =
1

2 𝑙𝑛 𝑘 (0)

𝑘'(0)

𝑘(0)

=
−1

2 𝑙𝑛
𝑐
𝛼

1
𝛼

|2𝑐 − 2𝑐 |

|𝑐 |
𝛼

 

=
−1

𝑙𝑛
𝑐
𝛼

|𝑐 − 𝑐 |

|𝑐 |
 

and 

|𝑐 − 𝑐 | ≤ 𝑐 𝑙𝑛 .    

     

3. CONCLUSIONS 

 

In this study, the boundary behaviour of the 

bounded holomorphic function in the unit disc has 

been examined and the different versions of 

boundary Schwarz lemma have been discussed. In 

a class of analytic functions on the circle, assuming 

the existence of angular limit on the boundary 

point, the estimations below of the modulus of 

angular derivative have been obtained. 
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