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A numerical method for solving continuous population models for single and 
interacting species 

Elçin Gökmen1*, Elçin Çelik2 

Abstract 

The main purpose of this article is to suggest an approximation method for solving continuous population 
models. Using the collocation method and matrix operations, the problems are reduced into a system of 
nonlinear algebraic equations. The desired approximate solutions are obtained by solving this system via  
Maple 15. The error analysis for the proposed method is also introduced using the residual function. 
Numerical experiments are given to demonstrate the efficiency of the method. The results obtained from 
the proposed method are compared with the known results. 

Keywords: continuous population models, nonlinear differential equations and their systems, Taylor 
polynomials and series, collocation points. 

 

1. INTRODUCTION 

Differential equations and their systems have an 
importance in science and engineering since they 
have been used for modelling many problem in 
these areas [1]. Population models have been 
examined in various fields such as ecology, 
biology, medicine. The first studies on population 
models were made by Thomas Malthus (1798). 
Pierre-Francois Verhulst (1838) has made a linear 
approach to the population problem by assuming 
that the population is a continuous function of 
time. This equation is called logistic differential 
equation which is also known Verhulst-Pearl 
equations [2]. The logistic model is commonly 
written in the form: 

( )
( ) ( ) (1 ),

0 ,
(0) ,

y t
y t ry t

t bk
y 

     
 

            (1) 

where 0r  is the intrinsic growth rate and 0k 
is the carrying capacity of the population [3]. 
Eq.(1) only assumes that the growth rate of a 
population at any time t depends on the relative 
number of individuals at that time. 

If there are more than one species, these species 
interact. There are three main types of relation 
between these species. These predator-prey 
situations are competition and mutualism or 
symbiosis [4]. 

In this work we deal with predator-prey situation 
which means when the growth rate of one 
population is decreased, the other is increased. The 
first predator-prey model with afteraffect was 
proposed by Volterra [5]. This model is a system 
as follow: 
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where 1( )y t  and 2( )y t  indicate respectively the 

populations of prey and predator at time t ,  and 

1 2( ) ( )y t y t  denotes the amount of the two 

organisms encounter each other , 0a   growth 
rate of prey,  0b   the efficiency of the predator’s 
ability to capture the prey, 0c   the death rate of 
the predator, 0d   the growth rate of the predator 
[14]. 

Up to now, the decomposition method [6],  He’s 
homotopy perturbation method [7], Bessel 
collocation method [8] have been used for solving 
logistic equation numerically. Also, Biazar et al. 
[9-11] used the Adomian decomposition method 
(ADM) and power series method, Rafei et al. and 
Pamuk [6,12] used the homotopy perturbation 
method (HPM) and the decomposition method, 
Rafei et al. [13] and Yusufoglu et al.[14] used 
variational iteration method (VIM) and Yuzbasi 
used Bessel collocation method [8] to solve the 
system (2) numerically. 

In recent years, various matrix and collocation 
methods and the polynomial approximations [18-
21] have been used. In this paper, Taylor matrix 
and collocation method is modified and developed 
to obtain the solution of model (1) and (2). Our aim 
is to approach solutions of these models which are 
expressed in the truncated Taylor series forms 
respectively; 
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where ,, , 0,1,..., , 1,2n i ny y n N i   are unknown 

Taylor coefficients to be determined. 

2. APPLICATION OF THE METHOD FOR 
MODEL (1) 

During this part of the work we want to convert (1) 
or equivalently 

2( ) ( ) ( )
r

y t ry t y t
k

                                        (5)                                                                                                      

to a matrix equation. For this purpose we first 
consider the approximate solution ( )y t  and its 

derivative defined by truncated Taylor series (3). 
Then we write (3) and its derivative in the matrix 
form we obtain relations (6), (7) 

( ) ( ) ,y t t T Y                                                  (6)                                                                                                                    

( ) ( ) ,y t t  T B Y                                              (7)                                                         

where  
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Similiarly, 2( )y t  which is the nonlinear term of (1) 
can be defined by the relation 

 2 *( ) ( ) ,T T Yy t t                                          (8) 

where   
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By substituting (6), (7), (8) into Eq. (5), we reach 
the primary equation as: 

*( ) ( ) ( ) ( )T BY= T Y T T Y
r

t r t t t
k

                        (9) 

or  

*[ ( ) - ( )] ( ) ( ) 0.T B T Y+ T T Y
r

t r t t t
k

                (10) 

If it is wanted to write Eq. (10) in the compact form 
then it is obtained 

Elçin Gökmen, Elçin Çelik

A numerical method for solving continuous population models for single and interacting species

Sakarya University Journal of Science 23(3), 403-412, 2019 404



( ) ( ) ( )t t tD Y+A Y f                                       (11) 

where 

*

( ) ( ) - ( ),

( ) ( ) ( ),

( ) 0.
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t t r t

r
t t t
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As the collocation points which are defined as 

, 0,1,..., ,s

b
t s s N

N
 

                                 
(12) 

substitude into (11), we have a new system 

( ) ( ) ( ), 0,1,...,s s st t t s N D Y+A Y f              (13)  

or the matrix equation 

 *DY AY F                                                (14) 
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To obtain the solution of (1) under condition we 
get the matrix form as: 

                                                                            
(0) .T Y                                                      (15) 

We replace row matrix (15) by any row of the 
matrix (14) and we get the new system depending 
on conditions. So, we obtained to a system of 
nonlinear algebraic equations with unknown 
Taylor coefficients 0 1, , .Ny y y  

If these determined coefficients are substituted in 
(3), we reach desired approximate solution as 
follow: 

0

( ) .
N

n
N n

n

y t y t


  

Hence, when ( )Ny t  and its dervative are 

substituted into Eq. (1) the following equality is 
obtained 

( )
( ) ( ) ( ) 1 0.N

N N

y t
E t y t ry t

k
    
 


             

(16) 

that it indicates ( ) ( ).Ny t y t
 

3. RESIDUAL CORRECTION PROCEDURE 
FOR SINGLE SPECIES MODEL 

In this part of the study, it will be explained an 
error estimation based on the residual function 
[15]-[17] for Taylor collocation method. Using 
this procedure it can be estimated the optimal M  
giving minimal absolute error. To modify the 
procedure to Eq (1) first we get the residual 
function for Taylor polynomial solution as  

2( ) ( ) ( ).N N N

r
R y t ry t y t

K
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By adding R  into both sides of Eq. (1), we obtain  

2 2
( ) ( ) ( ) ( ) ( )N

r r
e t re t e t y t e t R

K K
             (17) 

where  

( ) ( ) ( )Ne t y t y t  . 

Let *
Me be the Taylor series solutions of  (17). If 

 

 

is sufficiently small, then the absolute errors can 
be estimated by * ( ).Me t  Hence, the optimal M  

which gives the minimal absolute error can be 
obtained measuring the error functions * ( )Me t  in 

any norm. 

 

*( ) ( )Me t e t  
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4. APPLICATION OF THE METHOD FOR 
MODEL (2) 

Now we consider the interacting species model (2) 
or  

 
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  (18) 

Let’s start to apply the procedure with the solution 
(4) and its first derivative, for 0,1, 2,...,n N  then 
we get the matrix forms as follows: 

( ) ( ) , 1,2i iy t t i T Y                                     (19)     

and 

( ) ( ) , 1,2T BYi iy t t i                                    (20) 
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The expressions 1 2( ) ( )y t y t  and 2 1( ) ( )y t y t  can be 

represented by the relations respectively 

1 2
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If the relations (19), (20), (21) substitute into the 
system (18), we get the following matrix system 

*
1,21 1

*
2,12 2

( ) ( ) ( ) ( ) 0,

( ) ( ) - ( ) ( ) 0.
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In relation (22) whether lineer and nonlinear parts 
are seperated then we get the relation  
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In Eq. (24), by using collocation points (12) we 
obtain the matrix equations sytem 
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In a similar way it is obtained the matrix form of 
initial conditions of (2) as:  

1 1(0)T Y                                                    (27) 

2 2(0) .T Y                                                     (28) 
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To find the solutions of (2) under these conditions 
we should replace (27) and (28) by any two rows 
of (26). So we have the required augmented 
matrix.

 

By solving this system we determine the unknown 
coefficients 1,ny  and 2,ny , ( 0,1, , )n N   and 

therefore we attain the numerical approaches as 

, ,
0

( ) , 1,2
N

n
i N i n

n

y t y t i


 
                             

(29) 

If it is wanted to check the accuracy of the 
approximate solutions,we put these solutions into 
(2) and thus equation (30) is acquired for 

[0, ].t b  

1, 1, 1, 2,( ) ( ) ( )( ( )) 0,N N N NE t y t y t a b y t     

    (30) 

 

It is expected that , ( ) 0, 1,2i NE t i   on the 

collocation points. If , ( )i Ny t coverges to ( )iy t then

, ( )i NE t  coverges to zero for [0, ].t b  

5. RESIDUAL CORRECTION PROCEDURE 
FOR INTERACTING SPECIES MODEL 

In this section, using similar procedure in Section 
3 it can be estimated the optimal M  giving 
minimal absolute error. For modifying the 
procedure to system (2), first we get the residual 
function for Taylor polynomial solution (29) as 
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where 1, 2,( ), ( )N Ny x y x denotes the approximate 

solutions (30).By adding (31) into the both side of 
equations (2), we have  
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aresufficiently small where 1
*
,Me  and 2

*
,Me  are the 

Taylor series solutions of system (33), then the 
absolute errors can be estimated via 1

*
,Me  and 2

*
,Me

.Thus the optimal M  can be defined measuring the 
error functions 1

*
,Me  and 2

*
,Me .  

Corollary. If 1, ( )Ny x  and 2, ( )Ny x  are the Taylor 

series solutions of (2), then *
1, 1,N My e  and 

*
2, 2,N My e  are also approximate solutions of 

(2)and they are defined as corrected Taylor 
polynomial solution. Error function for this 
corrected solutions are respectively 

*
1, 1, 1,M N ME e e   and *

2, 2, 2,M N ME e e  . 

6. NUMERICAL APPLICATIONS 

To show the forcefulness of the process two  
numerical examples are examined. All the 
computations and graphs are performed by a code 
written in Maple 15. 

Example 1. [6],[7] Let us first consider the 
following problem  

 ( ) ( ) 1 ( ) , 0 1

(0) 2

y t y t y t t

y

    



 

where 1, 1, 2.r k     The exact solutions of 

this equation is 
2

( ) .
2 t

y t
e


 We obtain the 

approximate solutions by the method based on 

Taylor polynomials for 3, 4, ,14.N    Table 1 

shows that comparison of the exact solution and 

the numerical solutions acquired by present 

method and the methods used in ref [6,7]. In Table 

2, it is demonstrated that the absolute error 

2, 2, 2, 1,( ) ( ) ( )( ( ) ) 0N N N NE t y t y t c y t d   
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functions for different values of N  and the error 

estimate function *
10 ( ).e t  In addition to in Figure 1, 

the absolute error function 11( )e t  and error 

estimate function *
10 ( )e t  are plotted.  

 

Table 1. Exact and numerical solutions for Example 1. 

 Exact solution                                       Present method 

it  2
( )

2 i
i t

y t
e


5 ( )iy t 8 ( )iy t  11( )iy t  

0 2 2.00000000 2.00000000 2.00000000 
0.2 1.69309410 1.69247244 1.69308560 1.69309391 
0.4 1.50412134 1.50394442 1.50411547 1.50412121 
0.6 1.37818084 1.37785840 1.37817656 1.37818075 
0.8 1.28976421 1.28997910 1.28976100 1.289764126 
1.0 1.225399673 1.218195545 1.225623964 1.225392154 

     
             HHPM [7]                                                                               DM[6] 

it  6 ( )iy t  8 ( )iy t  5 ( )iy t  8 ( )iy t  
0 2.000000000 2.000000000 2.000000000 2.000000000 
0.2 1.693280533 1.693109627 1.692448000 1.693109627 
0.4 1.523618133 1.510614146 1.470336000 1.510614146 
0.6 1.659780800 1.589181662 1.052864000 1.589181662 
0.8 3.116808533 3.723526257 -0.29324800 3.723526257 
1.0 8.908333333 17.21641865 -4.10000000 17.21641865 

 

 

Table 2. The  norms of the absolute errors, estimations of 

the absolute errors, the  norms of the corrected absolute 

errors and upper bonds of the absolute errors for Example1. 

N  3 4 5 6 

Nf y


  0.078  0.02255 0.720E-2 0.220E-2 

10
*e


 0.080 0.02253 0.722E-2 0.218E-2 

10
*

Nf y e


   0.231E-4 0.231E-4 0.231E-4 0.231E-4 

N  7 8 9 10 

Nf y


  0.716E-3 0.224E-3 0.730E-4 0.231E-4 

10
*e


 0.739E-3 0.201E-3 0.961E-4 0.153E-4 

10
*

Nf y e


   0.231E-4 0.231E-4 0.231E-4 0.231E-4 

N  11 12 13 14 

Nf y


  0.752E-5 0.238E-5 0.776E-6 0.247E-6 

10
*e


 0.379E-5 0.517E-6 0.209E-6 0.209E-6 

10
*

Nf y e


   0.372E-5 0.290E-5 0.986E-6 0.372E-7 

 

 

Figure 1. Comparison of the absolute error function for 

11N  and error estimate function for 10M  for 

Example1. 

 

 

Example 2.[6],[7] As a second problem, we 

consider the following problem 

1
1 2 1

2
2 1 2

( ) (1 ( )), (0) 1.3,

( ) ( 1 ( )), (0) 0.6.

dy
y t y t y

dt
dy

y t y t y
dt

   

    


 

After we apply the mentioned method for different 

N values as in Section 4, we compare the outputs 

from different methods as you can see in Table 3.  

In Figure 2 and Figure 3, it is plotted that the 

numerical approaches gained by our method and 

the decomposition method for 4N  . Also, we 

compare the accuracies of the approximate 

solutions in Table 4 and we show this results in 

Figure 4, Figure 5, Figure 6,Figure 7. We can see 
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from Table 4 and Figure 4-7 that larger values of 

N  yields better accuracies. 

 

Table 3. The approximate solutions of  Example 2 obtained 
from  different methods. 

                                        Present method 

it  1,4 ( )iy t 1,8 ( )iy t 2,4 ( )iy t  2,8 ( )iy t  

0 1.300000000
00 

1.30000000000 0.60000000
000 

0.6000000000
0 

0.
2 

1.402560367
47 

1.40250074928 0.64364900
004 

0.6437090909
7 

0.
4 

1.497481204
92 

1.49742150279 0.70442621
561 

0.7044582738
1 

0.
6 

1.576531213
24 

1.57645686870 0.78455663
580 

0.7845888922
7 

0.
8 

1.630024557
70 

1.62988609772 0.88557147
092 

0.8856351392
3 

1.
0 

1.646820867
99 

1.64800015244 1.00830815
245 

1.0070221569
8 

     
                                              DM[6]- HHPM [7] 

it  1,3 ( )iy t  1,4 ( )iy t  2,3 ( )iy t  2,4 ( )iy t  

0 1.300000000
00 

1.30000000000 0.60000000
0000 

0.6000000000
00 

0.
2 

1.402582400
00 

1.40257444800 0.64369520
0000 

0.6437110400
00 

0.
4 

1.498739200
00 

1.49861196800 0.70428160
0000 

0.7045350400
00 

0.
6 

1.583084800
00 

1.58244068800 0.78401040
0000 

0.7852934400
00 

0.
8 

1.650233600
00 

1.64819788800 0.88513280
0000 

0.8891878400
00 

1.
0 

1.694800000
00 

1.68983000000 1.00990000
0000 

1.0198000000
00 

 

 

Table 4. Comparison of the accuracy of solutions  given in 
Equation (31) for 

it value of  Example 2. 

                                        Present method 

it  1,4 ( )iE t 1,8 ( )iE t 2,4 ( )iE t 2,8 ( )iE t  

0 0 0 0 0 
0.2 0.152582 E-3 0.133054 

E-6 
0.185271 E-3 0.990741 

E-7 
0.4 0.223599 E-3 0.347114 

E-7 
0.265203 E-3 0.262717 

E-7 
0.6 0.382779 E-3 0.542112 

E-7 
0.445184 E-3 0.415516 

E-7 
0.8 0.907477 E-3 0.599012 

E-6 
0.103823 E-2 0.463089 

E-6 
1.0 0.0144644486 0.587349 

E-4 
0.016321765 0.455900 

E-4 

     
                                              DM[6]- HHPM [7] 

it  1,3( )iE t  
1,4 ( )iE t  2,3 ( )iE t  2,4 ( )iE t  

0 0 0 0 0 
0.2 0.15892 E-2 0.14552 E-

2 
0.31236 E-3 0.31834 E-

5 
0.4 0.012539 0.011684 0.23408 E-2 0.15680 E-

3 

0.6 0.041294 0.039170 0.68925 E-2 0.14187 E-
2 

0.8 0.094218 0.090957 0.012695 0.67535 E-
2 

1.0 0.17418 0.17098 0.014979 0.022811 

 

 
 

Figure 2. Comparison of approximate solution 1 4, ( )y t

acquired by the decomposition method and the present 
method for Example 2. 
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Figure 3. Comparison of approximate solution 2 4, ( )y t

acquired by the decomposition method and the present 
method for Example 2. 

 
 

 

Figure 4. The accuracy of Taylor series solution 1 4, ( )E t for 

Example 2. 

 

Figure 5. The accuracy of Taylor series solution 1 8, ( )E t for 

Example 2. 

 

Figure 6. The accuracy of Taylor series solution 2 4, ( )E t for 

Example 2. 
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Figure 7. The accuracy of Taylor series solution 2 8, ( )E t for 

Example 2. 

 

7. CONCLUSIONS 

In this study, we perform the Taylor matrix method 

to obtain approximate solutions of model (1) and 

(2). Since the results are readily obtainable with a 

computer program this process is quite useful. To 

estimate the absolute error  residual correction 

procedure is also improved for these models. 

Moreover, one can specify optimal N  which gives 

minimum absolute errors in any norm. In Table 1, 

the numerical outputs obtained by different values 

of N are given with the exact solution. As it can be 

seen from the values, increasing N yields more 

accurate solution. In Table 2, infinite norms of the 

absolute errors, corrected absolute errors and 

upper bounds of the absolute errors are displayed. 

From the results acquired, it is said that residual 

correction procedure estimates the absolute errors 

well. For Example 2, since the exact solutions set 

is unknown, we test the accuracies of the 

approximate solutions. As seen from Tables 3-4 

and figures, the accuracies are better for larger 

values of N . For both examples, the results are 

shown that the convergence of our method are 

better.  
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