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Generalized statistical convergence and some
sequence spaces in 2-normed spaces
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Abstract

In this work, we first define the concepts of A-statistical convergence
and A’-statistical convergence in a 2-normed space and present an
example to show the importance of generalized form of convergence
through an ideal. We then introduce some new sequence spaces in a
2-Banach space and examine some inclusion relations between these
spaces.
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1. Introduction

The idea of statistical convergence was first introduced by Fast [6] and also indepen-
dently by Buck [2] and Schoenberg [22]| for real and complex sequences, but the rapid
developments started after the papers of Salat [18], Fridy [8] and Connor [3].

Let K C N and K, = {k <n:k € K}. Then the natural density of K is defined by
0(K) = lim, n~! |Kr| if the limit exists, where | K| denotes the cardinality of K.

The number sequence x = (x) is said to be statistically convergent to the number L
provided that for every € > 0 the set K (¢) := {k € N : |z, — L| > €} has natural density
zero. In this case we write st — limxz = L.

Let X, Y be two sequence spaces and A = (anx) be an infinite matrix. If for each x € X
the series An (z) = > 7o, ankxr converges for all n and the sequence Az = (A, (z)) € Y,
then we say that A maps X into Y. By (X,Y) we denote the set of all matrices which
maps X into Y, and in addition if the limit is preserved then we denote the class of such
matrices by (X, Y)mg. A matrix A is called regular if A € (e, c)mg, where ¢ denotes the
space of all convergent sequences.
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The well-known Silverman-Toeplitz theorem asserts that A is regular if and only if
(R1) Al = sup,, >, |ank| < oo;
(R2) lim,, anr = 0, for each k;
(R3) lim,, Y-, |ank| = 1.

Following Freedman and Sember [7], we say that a set K C N has A-density if

0a(K) = lim Z Ank

keK

exists, where A = (a,i) is nonnegative regular matrix.

The idea of statistical convergence was extended to A-statistical convergence by Con-
nor [3] and also independently by Kolk [12]. A sequence z is said to be A-statistically
convergent to L if §4(K (¢)) = 0 for every € > 0. In this case we write sta — limz = L.

Let X # 0. A class J C 2% of subsets of X is said to be an ideal in X provided; (i)
0 € 7; (ii) A,B € Jimplies AUB € J; (iii) A € 3, B C A implies B € J. J is called a
nontrivial ideal if X ¢ J, and a nontrivial ideal J in X is called admissible if {z} € J for
each z € X.

Let 7 C 2% be a nontrivial ideal. Then the sequence x = (x) of real numbers is
said to be ideal convergent or J-convergent to a number L if for each ¢ > 0 the set
{keN: |z — L| >¢e} €7 (see [15]).

Note that if J is an admissible ideal in N, then usual converges implies J-convergence.

If we take J=Jy, the ideal of all finite subsets of N, then J;—convergence coincides
with usual convergence. We also note that the ideals Js = {B C N: 6 (F) =0} and J5, =
{B C N: 4 (B) =0} are admissible ideals in N, also Js-convergence and Js , -convergence
coincide with statistical convergence and A-statistical convergence respectively.

Savag et al. (see [21]) have generalized A -statistical convergence by using ideals.
Let A = (ank) be a nonnegative regular matrix. A sequence x = (zx) is said to be
A’-statistically convergent (or S (J) -convergent) to L if for any € > 0 and § > 0,

neN: Z ang >0 p € 7.
kEK (g)

In this case we shall write Sa (J) — lima = L.

Note that if we take J=J¢, then A’-statistical convergence coincides with A-statistical
convergence. Furthermore, the choice of J=J; and A = C1, the Cesaro matrix of order
one, give us J-statistical convergence introduced in [5] and [20].

Let X be a real vector space of dimension d, where 2 < d < oco. A 2-norm on X
is a function ||.,.]] : X x X — R which satisfies (i) ||z,y|| = 0 if and only if z and
y are linearly dependent; (i) [}z, ]| = lly, zll; (i) llaz gl = lof 2, y]l, @ € R; (iv)
lz,y + 2|| < ||z, y|l + ||z, z||. The pair (X, ||.,.]]) is then called a 2-normed space [9]. As
an example of a 2-normed space we may take X = R? being equipped with the 2-norm
||z, y|| ;== the area of parellelogram spanned by the vectors = and y, which may be given
explicitly by the formula

(L1 lz,yll = [v1y2 —z2tn], == (1,22), ¥y = (Y1, 92)-

Recall that (X,]|.,.]]) is a 2-Banach space if every Cauchy sequence in X is convergent
to some x in X.

The concept of statistical convergence in 2-normed spaces has been introduced and ex-
amined by Giirdal and Pehlivan [10]. Let (z,) be a sequence in 2-normed space (X, ||, .||)-
The sequence () is said to be statistically convergent to L if for every € > 0
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for each nonzero z in X. In this case we write st — lim,, ||an, z|| = ||L, z||.

Finally, we recall that a modulus f is a function from [0, c0) to [0, 00) such that (i)
f(z) =01if and only if x = 0; (ii) f(z+y) < f(z)+ f(y) for all z > 0 and y > 0; (iv) f
is increasing and (iv) f is continuous from the right at 0.

2. A’-statistical convergence in 2-normed spaces

In this section we introduce the concepts of A-statistical convergence and A’-
statistical convergence in a 2-normed space when A = (ank) is a nonnegative regular
matrix and J is an admissible ideal of N.

2.1. Definition. Let (x;) be a sequence in 2-normed space (X, ||.,.]|). Then (z) is said
to be A-statistically convergent to L if for every e > 0

m Y ank =0
k:||xp—L,z||>e
for each nonzero z in X, in other words, (xx) is said to be A-statistically convergent to

L provided that 64 ({k € N: ||z — L, z|| > €}) = 0 for every ¢ > 0 and each nonzero z
in X. In this case we write sta — limy, ||z, 2| = ||L, z]|

We remark that if we take A = C; in Definition 2.1, then A-statistical convergence
coincides with the concept of statistical convergence introduced in [10].
Now we introduce the concept of A”’-statistical convergence in a 2-normed space.

2.2. Definition. A sequence (x) in 2-normed space (X, ||, .||) is said to be A”-statistically
convergent to L provided that for every ¢ > 0 and 6 > 0

n € N: Z ang >0 p €7
killz, —L,z||>e

for each nonzero z in X. In this case we write Sa (J) — limy, ||zx, 2|| = ||L, #]|-

We shall denote the space of all A-statistically convergent and A’-statistically con-
vergent sequences in a 2-normed space (X, ||.,.||) by Sa (||.,.]|) and Sa (3,].,.|]), respec-
tively. It is clear that if 3 = Jy, then the space Sa (J, ||, .||) is reduced to Sa (||, .]]).

Example. Let X = R? be equipped with the 2-norm by the formula (1.1). Let
J C 2% be an admissible ideal, C' = {p1 < p2 < ...} €7 be an infinite set and define the
matrix A = (ank) and the sequence (zy) by

1 ;ifn=p;, (i€N), k=2p;
ank = 1 sifn#p, k=2n+1
0 ;otherwise.
and
A (0,k) ;if kis even
k (0,0) ; otherwise
respectively. Also let L = (0,0) and z = (21, 22). If z1 = 0 then
{k:||lxzx — L, z|]| >} =0

for each z in X. Then 64 ({k € N: ||ax — L, z|| > €}) = 0. Hence we have z; # 0. For
each e > 0

{k:llox — L,z > ¢} :{kk> i},

e
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hence for each § > 0 we obtain

neN: Z ank >0 p={neN:n=p;}=Cel.

killog—L,z]|>e

This means that Sa (J) — limg, ||xx, || = ||(0,0), z||, but sta — limg ||zk, || # ||(0,0), z||

since

lim Z ant =1 #0.

killzg—L,z[|2e

This example also shows that A’-statistical convergence is more general than A-statistical
convergence in a 2-normed space.

3. Some New Sequence Spaces

Following the study of Maddox [16], who introduced the notion of strongly Cesaro
summability with respect to a modulus, several authors used modulus function to con-
struct some new sequence spaces by using different methods of summability. For instance,
see [4], [19] and [1]. Also in [11, 13, 14, 17] some new sequence spaces are defined in a
Banach space by means of sequence of modulus functions F = (fx).

In this section, we introduce some new sequence spaces in a 2-Banach space by using
sequence of modulus functions and ideals. We further examine the inclusion relations
between these sequence spaces.

Let A = (ank) be a nonnegative regular matrix, J be an admissible ideal of N and
let p = (px) be a bounded sequence of positive real numbers. By s(2 — X) we denote the
space of all sequences defined over (X, ||.,.||). Throughout the paper F = (fi) is assumed
to be a sequence of modulus functions such that lim, o+ sup, fx (t) = 0 and further let
(X,]-,-]]) be a 2-Banach space. Now we define the following sequence space:

W (A5, |1.) = {o € 52~ X) : {n € N+ Sane e (lox — L, 2™ > 6} €9
&
for each § > 0 and z € X, for some L € X}.

If 2 € w’ (A, F,p,||.,.||) then z is said to be strongly (A, T, ||.,.||)-summable to L € X.
Note that if 0 < pp < sup, pr =: H, D := max(1,2771), then

(3.1)  lan + 6" < D {[ar|"* + |be|™*}
for all £ and ax, b € C.

3.1. Theorem. w’ (A, F,p,|.,.||) is a linear space.

Proof. Assume that the sequences x and y are strongly (A, F, ||.,.||)-summable to L and
L', respectively and let a, 3 € C. By using the definitions of modulus function and 2-norm
and also from ( 3.1), we have

o [fi(l(0ms + Bye) — (aL -+ ALY #D™ < DME 32 ank [f (e — L2l

DM S a [fi(lye = L2l

where My and Mg are positive numbers such that |o] < My and |B] < Mp. From the
last inequality, we conclude that ax + By € w” (A, T, p, ||, .-
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If we take fi(t) =t for all k and #, then the space w” (4,F,p, ||.,.]|) is reduced to
w’ (A,p,||.,.I) = {w €s2—X):{neN:Yan (|zx — L,2|)"* > 6} €7
k
for each § > 0 and z € X, for some L € X}.

If x € w’ (A,p,|.,.||) then we say that z is strongly (A4, |.,.||)-summable to L € X.

3.2. Lemma. Let f be any modulus function and 0 < § < 1. Then for each t > § we
have f(t) < 2f(1)6~ "t [16].

3.3. Theorem. If z is strongly (A, ||.,.||)-summable to L then x is strongly (A, F,||.,.||)-
summable to L, i.e. the inclusion

w’ (A,p, |1-I) € w’ (A, F,p, |-, ]1)
holds.
Proof. Let x = (xx) € w’ (A,p, ||.,.|). Since a modulus function is continuous at t = 0
from the right and lim,_, o+ sup,, fx(t) = 0, then for any € > 0 we can choose 0 < § < 1

such that for every t with 0 <t < 4, we have fi (t) < e (k € N). Then, from Lemma 3.2,
we have

Doanelfe (loe = L2DP™ = > awn [fi (lor — L, 2™
k=1

= killog— L,z <6

* Z ank [fx (|2 — L, 2||)]P*

killeg—L,z[|>6

(oo}

< max (Emfpk,ss“pp’“) E Ank
k=1

- max (M, Ma) 3 am (s — Ly 2]
k=1
where My = (2sup fk(l)d_l)infpk and My = (2sup fr(1)6~ )™ """, Let M := max (M1, M>)
and N := max (ai"f Pk g¥PPR) - Now by considering the inequality Y, anr < ||Al| for each
n € N, choose a o > 0 such that o — N ||A|| > 0. Then we obtain

{n eN: Zank [fr (lzx — L, 2])]* > o
3

C {n eN: zk:ank [fr (lzk — L, 2|))]* > (7—5\V/[|A|}

From the assumption we conclude that x € w” (A, F,p, |-, .||)-

3.4. Theorem. Let F = (fx) be the sequence of modulus functions such that lim;_, o infy, f’“T(t) >
0. Then w’ (A, F,p,|.,.|) Cw’ (A,p,|.,.I) -

Proof. Letx € w’ (A, F,p, |.,.||). If lims_ oo infy, fkf(t) > 0 then there exists a ¢ > 0 such

that fi (t) > ct for every t > 0 and for all k € N. Thus, for each 6 > 0 we have

{n €N S aue [fi (lax — L2 > 5}

oo
) {n € N : min (ci"fpk,csuppk) Zank (llzx — L, 2||)P* > 6} .
k=1
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Hence x € w” (A, p,||.,.||) and this compltes the proof of theorem.

Finally, we establish the relations betwen the spaces Sa (7, ||., .||) and w’ (4, F, p, ||, .|))-
3.5. Theorem. LetF = (fi) be a sequence of modulus functions such that infy, fi (t) > 0.
Then w’ (A, F,p, ||.,.[1) € Sa (3, [.,-])-

Proof. Let x € w’ (A, F,p,|.,.|) and e > 0. If infy, fi (t) > O then there exists ¢ > 0
such that fi (€) > ¢ for all k. If we write K(e) = {k: ||xzx — L, z|| > €}, then

oo
> ane i (= Ly 2] = min (™75, 076) 37 a.

k=1 kEK ()

Let C := min (cmfp" , P ”") Thus we have

- )
neEN: > an >4 C{neN:Zank[fkumk—L,zH)]p’“>C}

keK (e) k=1
for all § > 0. Since the set on the right-hand of the above inclusion belongs to J, we
conclude that x € Sa (3,]|.,.]]) . This completes the proof.

3.6. Theorem. LetF = (fi) be a sequence of modulus functions such that sup, supy, fi (t) >
0. Then Sa (3, ||.,.]1) € w” (A, F,p, [|.,-]) -

Proof. Let x € Sa(J,].,.||) and h(t) := sup fr (t), M := sup, h(t). Then for every

e > 0, we have

Doanlfe(loe = LzDP = > awn[fe (ln — L 2™

k=1 k:||xp—L,z||>e

+ D> ann [fu(llow — L, 2]))

k:||lzp—L,z||<e

< max (M‘“fp’“7Msuppk) E Ank
Killzg —Lozl|>e

-‘rh(é‘) Z Ank

ki||lzp—L,z||<e

<My > amtel|Al,

killzg—L,z||2e

where My = max (Mi“fp’“, Msuppk) and g1 is a positive number such that h(e) < €1, which
can be obtained from the condition lim,_ o+ h(t) = 0. Hence, from the last inequality we
obtain that = € w’ (A, F,p, |-, .|))-
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