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Generalized statistical convergence and some
sequence spaces in 2-normed spaces
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Abstract
In this work, we first define the concepts of A-statistical convergence
and AI-statistical convergence in a 2-normed space and present an
example to show the importance of generalized form of convergence
through an ideal. We then introduce some new sequence spaces in a
2-Banach space and examine some inclusion relations between these
spaces.
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1. Introduction
The idea of statistical convergence was first introduced by Fast [6] and also indepen-

dently by Buck [2] and Schoenberg [22] for real and complex sequences, but the rapid
developments started after the papers of Šalát [18], Fridy [8] and Connor [3].

Let K ⊆ N and Kn = {k ≤ n : k ∈ K} . Then the natural density of K is defined by
δ(K) = limn n

−1 |Kn| if the limit exists, where |Kn| denotes the cardinality of Kn.
The number sequence x = (xk) is said to be statistically convergent to the number L

provided that for every ε > 0 the set K (ε) := {k ∈ N : |xk − L| ≥ ε} has natural density
zero. In this case we write st− limx = L.

LetX,Y be two sequence spaces and A = (ank) be an infinite matrix. If for each x ∈ X
the series An (x) =

∑∞
k=1 ankxk converges for all n and the sequence Ax = (An (x)) ∈ Y ,

then we say that A maps X into Y . By (X,Y ) we denote the set of all matrices which
maps X into Y, and in addition if the limit is preserved then we denote the class of such
matrices by (X,Y )reg. A matrix A is called regular if A ∈ (c, c)reg, where c denotes the
space of all convergent sequences.
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The well-known Silverman-Toeplitz theorem asserts that A is regular if and only if
(R1) ‖A‖ = supn

∑
k |ank| <∞;

(R2) limn ank = 0, for each k;
(R3) limn

∑
k |ank| = 1.

Following Freedman and Sember [7], we say that a set K ⊂ N has A-density if

δA(K) = lim
n

∑
k∈K

ank

exists, where A = (ank) is nonnegative regular matrix.
The idea of statistical convergence was extended to A-statistical convergence by Con-

nor [3] and also independently by Kolk [12]. A sequence x is said to be A-statistically
convergent to L if δA(K (ε)) = 0 for every ε > 0. In this case we write stA − limx = L.

Let X 6= ∅. A class I ⊂ 2X of subsets of X is said to be an ideal in X provided; (i)
∅ ∈ I; (ii) A,B ∈ I implies A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A implies B ∈ I. I is called a
nontrivial ideal if X /∈ I, and a nontrivial ideal I in X is called admissible if {x} ∈ I for
each x ∈ X.

Let I ⊂ 2N be a nontrivial ideal. Then the sequence x = (xk) of real numbers is
said to be ideal convergent or I-convergent to a number L if for each ε > 0 the set
{k ∈ N : |xk − L| ≥ ε} ∈ I (see [15]).

Note that if I is an admissible ideal in N, then usual converges implies I-convergence.
If we take I=If , the ideal of all finite subsets of N, then If−convergence coincides

with usual convergence. We also note that the ideals Iδ = {B ⊂ N : δ (E) = 0} and IδA =
{B ⊂ N : δA (B) = 0} are admissible ideals in N, also Iδ-convergence and IδA -convergence
coincide with statistical convergence and A-statistical convergence respectively.

Savaş et al. (see [21]) have generalized A -statistical convergence by using ideals.
Let A = (ank) be a nonnegative regular matrix. A sequence x = (xk) is said to be
AI-statistically convergent (or SA (I) -convergent) to L if for any ε > 0 and δ > 0,n ∈ N :

∑
k∈K(ε)

ank ≥ δ

 ∈ I.

In this case we shall write SA (I)− limx = L.
Note that if we take I=If , then AI-statistical convergence coincides with A-statistical

convergence. Furthermore, the choice of I=If and A = C1, the Cesàro matrix of order
one, give us I-statistical convergence introduced in [5] and [20].

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X
is a function ‖., .‖ : X × X → R which satisfies (i) ‖x, y‖ = 0 if and only if x and
y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖; (iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R; (iv)
‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖. The pair (X, ‖., .‖) is then called a 2-normed space [9]. As
an example of a 2-normed space we may take X = R2 being equipped with the 2-norm
‖x, y‖ := the area of parellelogram spanned by the vectors x and y, which may be given
explicitly by the formula

(1.1) ‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2), y = (y1, y2).

Recall that (X, ‖., .‖) is a 2-Banach space if every Cauchy sequence in X is convergent
to some x in X.

The concept of statistical convergence in 2-normed spaces has been introduced and ex-
amined by Gürdal and Pehlivan [10]. Let (xn) be a sequence in 2-normed space (X, ‖., .‖).
The sequence (xn) is said to be statistically convergent to L if for every ε > 0

lim
n

1

n
|{n : ‖xn − L, z‖ ≥ ε}| = 0
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for each nonzero z in X. In this case we write st− limn ‖xn, z‖ = ‖L, z‖.
Finally, we recall that a modulus f is a function from [0,∞) to [0,∞) such that (i)

f(x) = 0 if and only if x = 0; (ii) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0 and y ≥ 0; (iv) f
is increasing and (iv) f is continuous from the right at 0.

2. AI-statistical convergence in 2-normed spaces

In this section we introduce the concepts of A-statistical convergence and AI-
statistical convergence in a 2-normed space when A = (ank) is a nonnegative regular
matrix and I is an admissible ideal of N.

2.1. Definition. Let (xk) be a sequence in 2-normed space (X, ‖., .‖). Then (xk) is said
to be A-statistically convergent to L if for every ε > 0

lim
n

∑
k:‖xk−L,z‖≥ε

ank = 0

for each nonzero z in X, in other words, (xk) is said to be A-statistically convergent to
L provided that δA ({k ∈ N : ‖xk − L, z‖ ≥ ε}) = 0 for every ε > 0 and each nonzero z
in X. In this case we write stA − limk ‖xk, z‖ = ‖L, z‖.

We remark that if we take A = C1 in Definition 2.1, then A-statistical convergence
coincides with the concept of statistical convergence introduced in [10].

Now we introduce the concept of AI-statistical convergence in a 2-normed space.

2.2. Definition. A sequence (xk) in 2-normed space (X, ‖., .‖) is said to beAI-statistically
convergent to L provided that for every ε > 0 and δ > 0n ∈ N :

∑
k:‖xk−L,z‖≥ε

ank ≥ δ

 ∈ I

for each nonzero z in X. In this case we write SA (I)− limk ‖xk, z‖ = ‖L, z‖.

We shall denote the space of all A-statistically convergent and AI-statistically con-
vergent sequences in a 2-normed space (X, ‖., .‖) by SA (‖., .‖) and SA (I, ‖., .‖) , respec-
tively. It is clear that if I = If , then the space SA (I, ‖., .‖) is reduced to SA (‖., .‖).

Example. Let X = R2 be equipped with the 2-norm by the formula (1.1). Let
I ⊂ 2N be an admissible ideal, C = {p1 < p2 < . . .} ∈ I be an infinite set and define the
matrix A = (ank) and the sequence (xk) by

ank =


1 ; if n = pi, (i ∈ N) , k = 2pi
1 ; if n 6= pi, k = 2n+ 1
0 ; otherwise.

and

xk =

{
(0, k) ; if k is even
(0, 0) ; otherwise

respectively. Also let L = (0, 0) and z = (z1, z2). If z1 = 0 then

{k : ‖xk − L, z‖ ≥ ε} = ∅

for each z in X. Then δA ({k ∈ N : ‖xk − L, z‖ ≥ ε}) = 0. Hence we have z1 6= 0. For
each ε > 0

{k : ‖xk − L, z‖ ≥ ε}
if k is even

=

{
k : k ≥ ε

|z1|

}
,
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hence for each δ > 0 we obtainn ∈ N :
∑

k:‖xk−L,z‖≥ε

ank ≥ δ

 = {n ∈ N : n = pi} = C ∈ I.

This means that SA (I) − limk ‖xk, z‖ = ‖(0, 0), z‖, but stA − limk ‖xk, z‖ 6= ‖(0, 0), z‖
since

lim
n

∑
k:‖xk−L,z‖≥ε

ank = 1 6= 0.

This example also shows that AI-statistical convergence is more general than A-statistical
convergence in a 2-normed space.

3. Some New Sequence Spaces
Following the study of Maddox [16], who introduced the notion of strongly Cesàro

summability with respect to a modulus, several authors used modulus function to con-
struct some new sequence spaces by using different methods of summability. For instance,
see [4], [19] and [1]. Also in [11, 13, 14, 17] some new sequence spaces are defined in a
Banach space by means of sequence of modulus functions F = (fk).

In this section, we introduce some new sequence spaces in a 2-Banach space by using
sequence of modulus functions and ideals. We further examine the inclusion relations
between these sequence spaces.

Let A = (ank) be a nonnegative regular matrix, I be an admissible ideal of N and
let p = (pk) be a bounded sequence of positive real numbers. By s(2−X) we denote the
space of all sequences defined over (X, ‖., .‖). Throughout the paper F = (fk) is assumed
to be a sequence of modulus functions such that limt→0+ supk fk (t) = 0 and further let
(X, ‖., .‖) be a 2-Banach space. Now we define the following sequence space:

wI (A,F, p, ‖., .‖) =
{
x ∈ s(2−X) :

{
n ∈ N :

∑
k

ank [fk (‖xk − L, z‖)]pk ≥ δ
}
∈ I

for each δ > 0 and z ∈ X, for some L ∈ X
}
.

If x ∈ wI (A,F, p, ‖., .‖) then x is said to be strongly (A,F, ‖., .‖)-summable to L ∈ X.
Note that if 0 < pk ≤ supk pk =: H, D := max(1, 2H−1), then

(3.1) |ak + bk|pk ≤ D {|ak|pk + |bk|pk}

for all k and ak, bk ∈ C.

3.1. Theorem. wI (A,F, p, ‖., .‖) is a linear space.
Proof. Assume that the sequences x and y are strongly (A,F, ‖., .‖)-summable to L and
L′, respectively and let α, β ∈ C. By using the definitions of modulus function and 2-norm
and also from ( 3.1), we have

∞∑
k=1

ank [fk (‖(αxk + βyk)− (αL+ βL′) , z‖)]pk ≤ DMH
α

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk

+DMH
β

∞∑
k=1

ank [fk (‖yk − L, z‖)]pk

where Mα and Mβ are positive numbers such that |α| ≤ Mα and |β| ≤ Mβ. From the
last inequality, we conclude that αx+ βy ∈ wI (A,F, p, ‖., .‖).
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If we take fk(t) = t for all k and t, then the space wI (A,F, p, ‖., .‖) is reduced to

wI (A, p, ‖., .‖) =
{
x ∈ s(2−X) :

{
n ∈ N :

∑
k

ank (‖xk − L, z‖)pk ≥ δ
}
∈ I

for each δ > 0 and z ∈ X, for some L ∈ X
}
.

If x ∈ wI (A, p, ‖., .‖) then we say that x is strongly (A, ‖., .‖)-summable to L ∈ X.

3.2. Lemma. Let f be any modulus function and 0 < δ < 1. Then for each t ≥ δ we
have f(t) ≤ 2f(1)δ−1t [16].

3.3. Theorem. If x is strongly (A, ‖., .‖)-summable to L then x is strongly (A,F, ‖., .‖)-
summable to L, i.e. the inclusion

wI (A, p, ‖., .‖) ⊂ wI (A,F, p, ‖., .‖)
holds.
Proof. Let x = (xk) ∈ wI (A, p, ‖., .‖). Since a modulus function is continuous at t = 0
from the right and limt→0+ supk fk(t) = 0, then for any ε > 0 we can choose 0 < δ < 1
such that for every t with 0 ≤ t ≤ δ, we have fk (t) < ε (k ∈ N). Then, from Lemma 3.2,
we have

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk =
∑

k:‖xk−L,z‖≤δ

ank [fk (‖xk − L, z‖)]pk

+
∑

k:‖xk−L,z‖>δ

ank [fk (‖xk − L, z‖)]pk

≤ max
(
εinf pk , εsup pk

) ∞∑
k=1

ank

+max (M1,M2)

∞∑
k=1

ank (‖xk − L, z‖)pk

whereM1 =
(
2 sup fk(1)δ

−1
)inf pk andM2 =

(
2 sup fk(1)δ

−1
)sup pk . LetM := max (M1,M2)

and N := max
(
εinf pk , εsup pk

)
. Now by considering the inequality

∑
k ank ≤ ‖A‖ for each

n ∈ N, choose a σ > 0 such that σ −N ‖A‖ > 0. Then we obtain{
n ∈ N :

∑
k

ank [fk (‖xk − L, z‖)]pk ≥ σ

}

⊂

{
n ∈ N :

∑
k

ank [fk (‖xk − L, z‖)]pk ≥
σ −N ‖A‖

M

}
From the assumption we conclude that x ∈ wI (A,F, p, ‖., .‖).

3.4. Theorem. Let F = (fk) be the sequence of modulus functions such that limt→∞ infk
fk(t)
t

>

0. Then wI (A,F, p, ‖., .‖) ⊂ wI (A, p, ‖., .‖) .
Proof. Let x ∈ wI (A,F, p, ‖., .‖). If limt→∞ infk

fk(t)
t

> 0 then there exists a c > 0 such
that fk (t) > ct for every t > 0 and for all k ∈ N. Thus, for each δ > 0 we have{

n ∈ N :

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk ≥ δ

}

⊃

{
n ∈ N : min

(
cinf pk , csup pk

) ∞∑
k=1

ank (‖xk − L, z‖)pk ≥ δ

}
.
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Hence x ∈ wI (A, p, ‖., .‖) and this compltes the proof of theorem.

Finally, we establish the relations betwen the spaces SA (I, ‖., .‖) and wI (A,F, p, ‖., .‖).

3.5. Theorem. Let F = (fk) be a sequence of modulus functions such that infk fk (t) > 0.
Then wI (A,F, p, ‖., .‖) ⊂ SA (I, ‖., .‖) .
Proof. Let x ∈ wI (A,F, p, ‖., .‖) and ε > 0. If infk fk (t) > 0 then there exists c > 0
such that fk (ε) > c for all k. If we write K(ε) = {k : ‖xk − L, z‖ ≥ ε}, then

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk ≥ min
(
cinf pk , csup pk

) ∑
k∈K(ε)

ank.

Let C := min
(
cinf pk , csup pk

)
. Thus we haven ∈ N :

∑
k∈K(ε)

ank ≥ δ

 ⊂
{
n ∈ N :

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk ≥
δ

C

}
for all δ > 0. Since the set on the right-hand of the above inclusion belongs to I, we
conclude that x ∈ SA (I, ‖., .‖) . This completes the proof.

3.6. Theorem. Let F = (fk) be a sequence of modulus functions such that supt supk fk (t) >
0. Then SA (I, ‖., .‖) ⊂ wI (A,F, p, ‖., .‖) .
Proof. Let x ∈ SA (I, ‖., .‖) and h(t) := supk fk (t), M := supt h(t). Then for every
ε > 0, we have

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk =
∑

k:‖xk−L,z‖≥ε

ank [fk (‖xk − L, z‖)]pk

+
∑

k:‖xk−L,z‖<ε

ank [fk (‖xk − L, z‖)]pk

≤ max
(
M inf pk ,M sup pk

) ∑
k:‖xk−L,z‖≥ε

ank

+h(ε)
∑

k:‖xk−L,z‖<ε

ank

≤M0

∑
k:‖xk−L,z‖≥ε

ank + ε1 ‖A‖ ,

whereM0 = max
(
M inf pk ,M sup pk

)
and ε1 is a positive number such that h(ε) < ε1, which

can be obtained from the condition limt→0+ h(t) = 0. Hence, from the last inequality we
obtain that x ∈ wI (A,F, p, ‖., .‖).
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