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Integral representations and new generating
functions of Chebyshev polynomials

Clemente Cesarano ∗

Abstract
In this paper we use the two-variable Hermite polynomials and their
operational rules to derive integral representations of Chebyshev poly-
nomials. The concepts and the formalism of the Hermite polynomials
Hn(x, y) are a powerful tool to obtain most of the properties of the
Chebyshev polynomials. By using these results, we also show how it is
possible to introduce relevant generalizations of these classes of poly-
nomials and we derive for them new identities and integral representa-
tions. In particular we state new generating functions for the first and
second kind Chebyshev polynomials.
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1. Introduction
The Hermite polynomials [1] can be introduced by using the concept and the formalism

of the generating function and related operational rules. In the following we recall the
main definitions and properties.

1.1. Definition. The two-variable Hermite Polynomials H(2)
m (x, y) of Kampé de Fériet

form [2, 3] are defined by the following formula

(1.1) H(2)
m (x, y) =

[m2 ]∑
n=0

m!

n!(m− 2n)!
ynxm−2n
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We will indicate the two-variable Hermite polynomials of Kampé de Fériet form by
using the symbol Hm(x, y) instead than H(2)

m (x, y).
The two-variable Hermite polynomials Hm(x, y) are linked to the ordinary Hermite

polynomials by the following relations

Hm

(
x,−1

2

)
= Hem(x),

where

Hem(x) = m!

[m2 ]∑
r=0

(−1)rxn−2r

r!(n− 2r)!2r

and

Hm (2x,−1) = Hm(x),

where

Hm(x) = m!

[m2 ]∑
r=0

(−1)r(2x)n−2r

r!(n− 2r)!

and it is also important to note that the Hermite polynomialsHm(x, y) satisfy the relation

(1.2) Hm(x, 0) = xm.

1.2. Proposition. The polynomials Hm(x, y) solve the following partial differential equa-
tion:

(1.3)
∂2

∂x2
Hm(x, y) =

∂

∂y
Hm(x, y).

Proof. By deriving, separately with respect to x and to y, in the (1), we obtain

∂

∂x
Hm(x, y) = mHm−1(x, y)

∂

∂y
Hm(x, y) = Hm−2(x, y).

From the first of the above relation, by deriving again with respect to x and by noting
the second identity, we end up with the (7). �

The Proposition 1 help us to derive an important operational rule for the Hermite
polynomials Hm(x, y). In fact, by considering the differential equation (7) as linear ordi-
nary in the variable y and by remanding the (6) we can immediately state the following
relation:

(1.4) Hm(x, y) = e
y ∂2

∂x2 xm.

The generating function of the above Hermite polynomials can be state in many ways,
we have in fact:
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1.3. Proposition. The polynomials Hm(x, y) satisfy the following differential difference
equation:

d

dz
Yn(z) = anYn−1(z) + bn(n− 1)Yn−2(z)(1.5)

Yn(0) = δn,0

where a and b are real numbers.

Proof. By using the generating function method, by putting:

G (z; t) =

+∞∑
n=0

tn

n!
Yn(z),

with t continuous variable,we can rewrite the (9) in the form

d

dz
G (z; t) =

(
at+ bt2

)
G (z; t)

G (0; t) = 1

that is a linear ordinary differential equation and then its solution reads

G (z; t) = exp
(
xt+ yt2

)
where we have putted az = x and bz = y. Finally, by exploiting the r.h.s of the previous
relation we find the thesis and also the relation linking the Hermite polynomials and their
generating function

(1.6) exp
(
xt+ yt2

)
=

+∞∑
n=0

tn

n!
Hn(x, y).

�

The use of operational identities, may significantly simplify the study of Hermite
generating functions and the discovery of new relations, hardly achievable by conventional
means.

By remanding that the following identity

(1.7) e
− 1

4
d2

dx2 (2x)n =

(
2x− d

dx

)n

(1)

is linked to the standard Burchnall identity [4], we can immediately state the following
relation.

1.4. Proposition. The operational definition of the polynomials Hn(x) reads:

(1.8) e
− 1

4
d2

dx2 (2x)n = Hn(x).

Proof. By exploiting the r.h.s of the (13), we immediately obtain the Burchnall identity

(1.9)
(
2x− d

dx

)n

= n!

n∑
s=0

(−1)s 1

(n− s)!s!Hn−s(x)
ds

dxs
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after using the decoupling Weyl identity [4, 5, 6], since the commutator of the operators
of l.h.s. is not zero. The derivative operator of the (15) gives a not trivial contribution
only in the case s = 0 and then we can conclude with(

2x− d

dx

)n

(1) = Hn(x)

which prove the statement. �

The Burchnall identity can be also inverted to give another important relation for the
Hermite polynomials Hn(x). We find in fact:

1.5. Proposition. The polynomials Hn(x) satisfy the following operational identity:

(1.10) Hn

(
x+

1

2

d

dx

)
=

n∑
s=0

(
n

s

)
(2x)n−s d

s

dxs
.

Proof. By multiplying the l.h.s. of the above relation by tn

n!
and then summing up, we

obtain:

+∞∑
n=0

tn

n!
Hn

(
x+

1

2

d

dx

)
= e2(x+

1
2 )(

d
dx )t−t2 .

By using the Weyl identity, the r.h.s. of the above equation reads:

e2(x+
1
2 )(

d
dx )t−t2 = e2xtet

d
dx

and from which (17) immediately follows, after expanding the r.h.s and by equating the
like t−powers. �

The previous results can be used to derive some addition and multiplication relations
for the Hermite polynomials.

1.6. Proposition. The polynomials Hn(x) satisfy the following identity, ∀ n,m ∈ N :

(1.11) Hn+m(x) =

min(n,m)∑
s=0

(−2)s
(
n

s

)(
m

s

)
s!Hn−s(x)Hm−s(x).

Proof. By using the Proposition 3, we can write:

Hn+m(x) =

(
2x− d

dx

)n(
2x− d

dx

)m

=

(
2x− d

dx

)n

Hm(x)

and by exploiting the r.h.s. of the above relation, we find:

Hn+m(x) =

n∑
s=0

(−1)s
(
n

s

)
Hn−s(x)

ds

dxs
Hm(x).

After noting that the following operational identity holds:

ds

dxs
Hm(x) =

2sm!

(m− s)!Hm−s(x)

we obtain immediately the statement. �
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From the above proposition we can immediately derive as a particular case, the fol-
lowing identity:

(1.12) H2n(x) = (−1)n2n(n!)2
n∑

s=0

(−1)s [Hs(x)]
2

2s(s!)2(n− s)! .

The use of the identity (17), stated in Proposition 4, can be exploited to obtain the
inverse of relation contained in (24). We have indeed:

1.7. Proposition. Given the Hermite polynomial Hn(x), the square [Hn(x)]
2 can be

written as:

(1.13) Hn(x)Hn(x) = [Hn(x)]
2 = 2n(n!)2

n∑
s=0

H2n(x)

2s(s!)2(n− s)! .

Proof. We can write:

[Hn(x)]
2 = e

− 1
4

d2

dx2

[
Hn

(
x+

1

2

d

dx

)
Hn

(
x+

1

2

d

dx

)]
,

by using the relation (17), we find, after manipulating the r.h.s.:

[Hn(x)]
2 = e

− 1
4

d2

dx2

[
2n(n!)2

n∑
s=0

(2x)2n

2s(s!)2(n− s)!

]
and then, from the Burchnall identity (16), the thesis. �

A generalization of the identities stated for the one variable Hermite polynomials can
be easily done for the polynomials Hn(x, y).

We have in fact:

1.8. Proposition. The following identity holds

(1.14)
(
x+ 2y

∂

∂x

)n

(1) =

n∑
s=0

(2y)s
(
n

s

)
Hn(x, y)

∂s

∂xs
(1).

Proof. By multiplying the l.h.s. of the above equation by tn

n!
and then summing up, we

find

+∞∑
n=0

tn

n!

(
x+ 2y

∂

∂x

)n

= et(x+2y ∂
∂x )(1).

By noting that the commutator of the two operators of the r.h.s. is

[
tx, t2y

∂

∂x

]
= −2t2y

we obtain

(1.15)
+∞∑
n=0

tn

n!

(
x+ 2y

∂

∂x

)n

= ext+yt2e2ty
∂
∂x (1).
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After expanding and manipulating the r.h.s. of the previous relation and by equating
the like t powers we find immediately the (28). �

By using the Proposition 7 and the definition of polynomials Hn(x, y), we can derive
a generalization of the Burchnall-type identity

(1.16) e
y ∂2

∂x2 xn =

(
x+ 2y

∂

∂x

)n

and the related inverse

(1.17) Hn

(
x− 2y

∂

∂x
, y

)
=

n∑
s=0

(−2y)s
(
n

s

)
xn−s ∂

s

∂xs
.

We can also generalize the multiplication rules obtained for the Hermite polynomials
Hn(x), stated in Proposition 5.

1.9. Proposition. Given the Kampé de Fériet Hermite polynomials Hn(x, y), we have

(1.18) Hn+m(x, y) = m!n!

min(n,m)∑
s=0

(2y)s
Hn−s(x, y)Hm−s(x, y)

(n− s)!(m− s)!s! .

Proof. By using the relations stated in the (28) and (32), we can write

Hn+m(x, y) =

(
x+ 2y

∂

∂x

)n

Hm(x, y)

and then

(1.19) Hn+m(x, y) =

n∑
s=0

(2y)s
(
n

s

)
Hn(x, y)

∂s

∂xs
Hm(x, y).

By noting that

∂s

∂xs
xm =

m!

(m− 2s)!
xm−2s

we obtain

∂s

∂xs
Hm(x, y) =

m!

(m− s)!Hm−s(x, y).

After substituting the above relation in the (36) and rearranging the terms we imme-
diately obtain the thesis. �

From the previous results, it also immediately follows:

(1.20) Hn(x, y)Hm(x, y) = n!m!

min(n,m)∑
s=0

(−2y)s Hn+m−2s(x, y)

(n− s)!(m− s)!s! .

The previous identity and the equation (34) can be easily used to derive the particular
case for n = m. We have in fact
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(1.21) H2n(x, y) = 2n(n!)2
n∑

s=0

[Hs(x, y)]
2

(s)!2(n− s)!2s

(1.22) [Hn(x, y)]
2 = (−2y)n(n!)2

n∑
s=0

(−1)sH2s(x, y)

(n− s)!(s!)22s .

Before concluding this section we want prove two other important relations satisfied
by the Hermite polynomials Hn(x, y).

1.10. Proposition. The Hermite polynomials Hn(x, y) solve the following differential
equation:

(1.23) 2y
∂2

∂x2
Hn(x, y) + x

∂

∂x
Hn(x, y) = nHn(x, y)

Proof. By using the results derived from the Proposition 7, we can easily write that:

(
x+ 2y

∂

∂x

)
Hn(x, y) = Hn+1(x, y)

and from the previous recurrence relations:

∂

∂x
Hn(x, y) = nHn−1(x, y)

we have

(
x+ 2y

∂

∂x

)(
∂

∂x

)
Hn(x, y) = nHn(x, y)

which is the thesis.
�

From this statement can be also derived an important recurrence relation. In fact, by
noting that:

(1.24) Hn+1(x, y) = xHn(x, y) + 2y
∂

∂x
Hn(x, y)

and then we can conclude with:

(1.25) Hn+1(x, y) = xHn(x, y) + 2nyHn−1(x, y).

2. Integral representations of Chebyshev polynomials
In this section we will introduce new representations of Chebyshev polynomials [7, 8,

9, 10, 11], by using the Hermite polynomials and the method of the generating function.
Since the second kind Chebyshev polynomials Un(x) reads

(2.1) Un(x) =
sin [(n+ 1) arccos(x)]√

1− x2
,

by exploiting the right hand side of the above relation, we can immediately get the
following explicit form
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(2.2) Un(x) =

[n2 ]∑
k=0

(−1)k(n− k)!(2x)n−2k

k!(n− 2k)!
.

2.1. Proposition. The second kind Chebyshev polynomials satisfy the following integral
representation [9]:

(2.3) Un(x) =
1

n!

∫ +∞

0

e−ttnHn

(
2x,−1

t

)
dt.

Proof. By noting that

n! =

∫ +∞

0

e−ttndt

we can write

(2.4) (n− k)! =
∫ +∞

0

e−ttn−kdt.

From the explicit form of the Chebyshev polynomials Un(x), given in the (49), and
by recalling the standard form of the two-variable Hermite polynomials:

Hn(x, y) = n!

[n2 ]∑
k=0

ykxn−2k

k!(n− 2k)!

we can immediately write:

Un(x) =

∫ +∞

0

e−ttn
[n2 ]∑
k=0

(−1)kt−k(2x)n−2k

k!(n− 2k)!
dt

and then the thesis. �

By following the same procedure, we can also obtain an analogous integral representa-
tion for the Chebyshev polynomials of first kind Tn(x). Since their explicit form is given
by:

(2.5) Tn(x) =
n

2

[n2 ]∑
k=0

(−1)k(n− k − 1)!(2x)n−2k

k!(n− 2k)!
,

by using the same relations written in the previous proposition, we easily obtain:

(2.6) Tn(x) =
1

2(n− 1)!

∫ +∞

0

e−ttn−1Hn

(
2x,−1

t

)
dt.

These results can be useful in several physics and engineering problems, for instance
in electromagnetic field problems and particle accelerators analysis [12, 13, 14] In the pre-
vious Section we have stated some useful operational results regarding the two-variable
Hermite polynomials; in particular we have derived their fundamental recurrence rela-
tions. These relations can be used to state important results linking the Chebyshev
polynomials of the first and second kind [7, 9].
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2.2. Theorem. The Chebyshev polynomials Tn(x) and Un(x) satisfy the following re-
currence relations:

d

dx
Un(x) = nWn−1(x)(2.7)

Un+1(x) = xWn(x)−
n

n+ 1
Wn−1(x)

and

(2.8) Tn+1(x) = xUn(x)− Un−1(x)

where

Wn(x) =
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt.

Proof. The recurrence relations for the standard Hermite polynomials Hn(x, y) stated in
the first Section, can be costumed in the form[

(2x) +

(
−1

t

)
∂

∂x

]
Hn

(
2x,−1

t

)
= Hn+1

(
2x,−1

t

)
(2.9)

1

2

∂

∂x
Hn

(
2x,−1

t

)
= nHn−1

(
2x,−1

t

)
.

From the integral representations stated in the relations (50) and (53), relevant to
the Chebyshev polynomials of the first and second kind, and by using the second of the
identities written above, we obtain

(2.10)
d

dx
Un(x) =

2n

n!

∫ +∞

0

e−ttnHn−1

(
2x,−1

t

)
dt

and

(2.11)
d

dx
Tn(x) =

n

(n− 1)!

∫ +∞

0

e−ttn−1Hn−1

(
2x,−1

t

)
dt.

It is easy to note that the above relation gives a link between the polynomials Tn(x)
and Un(x); in fact, since:

Un−1(x) =
1

(n− 1)!

∫ +∞

0

e−ttn−1Hn−1

(
2x,−1

t

)
dt

we immediately get:

(2.12)
d

dx
Tn(x) = nUn−1(x).

By applying the multiplication operator to the second kind Chebyshev polynomials,
stated in the first of the identities (56), we can write

Un+1(x) =
1

(n+ 1)!

∫ +∞

0

e−ttn+1

[
(2x) +

(
−1

t

)
∂

∂x

]
Hn

(
2x,−1

t

)
dt

that is

(2.13) Un+1(x) =
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= x
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt− n

n+ 1

2

n!

∫ +∞

0

e−ttnHn−1

(
2x,−1

t

)
dt.

The second member of the r.h.s. of the above relation suggests us to introduce the
following polynomials:

(2.14) Wn(x) =
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt

recognized as belonging to the families of the Chebyshev polynomials. Thus, from the
relation (57), we have:

(2.15)
d

dx
Un(x) = nWn−1(x)

and, from the identity (60), we get

(2.16) Un+1(x) = xWn(x)−
n

n+ 1
Wn−1(x).

Finally, by using the multiplication operator for the first kind Chebyshev polynomials,
we can write

(2.17) Tn+1(x) =
1

2n!

∫ +∞

0

e−ttn
[
(2x) +

(
−1

t

)
∂

∂x

]
Hn

(
2x,−1

t

)
dt

and then, after exploiting the r.h.s. of the above relation, we can find

(2.18) Tn+1(x) = xUn(x)− Un−1(x)

which completely prove the theorem.
�

3. Generating functions
By using the integral representations and the related recurrence relations, stated in

the previous Section, for the Chebyshev polynomials of the first and second kind, it is pos-
sible to derive a slight different relations linking these polynomials and their generating
functions [1, 2, 3, 4, 5, 7, 8, 9, 15].

We note indeed, for the Chebyshev polynomials Un(x), that by multiplying both sides
of equation (50) by ξn, |ξ| < 1 and by summing up over n, it follows that

(3.1)
+∞∑
n=0

ξnUn(x) =

∫ +∞

0

e−t
+∞∑
n=0

(tξ)n

n!
Hn

(
2x,−1

t

)
dt.

By recalling the generating function of the polynomials Hn(x, y) stated in the relation
(12) and by integrating over t, we end up with

(3.2)
+∞∑
n=0

ξnUn(x) =
1

1− 2ξx+ ξ2
.

We can now state the related generating function for the first kind Chebyshev polyno-
mials Tn(x) and for the polynomials Wn(x), by using the results proved in the previous
theorem.
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3.1. Corollary. Let x, ξ ∈ R, such that |x| < 1, |ξ| < 1; the generating functions of the
polynomials Tn(x) and Wn(x) read

(3.3)
+∞∑
n=0

ξnTn+1(x) =
x− ξ

1− 2ξx+ ξ2

and

(3.4)
+∞∑
n=0

(n+ 1)(n+ 2ξnWn+1(x) =
8(x− ξ)

(1− 2ξx+ ξ2)3
.

Proof. By multiplying both sides of the relation (2.8) by ξn and by summing up over n,
we obtain

+∞∑
n=0

ξnTn+1(x) = x

+∞∑
n=0

ξnUn(x)−
+∞∑
n=0

ξnUn−1(x)

that is
+∞∑
n=0

ξnTn+1(x) =
x

1− 2ξx+ ξ2
− ξ

1− 2ξx+ ξ2

which gives the (68).
In the same way, by multiplying both sides of the second relation stated in the (54)

by ξn and by summing up over n, we get
+∞∑
n=0

ξnUn+1(x) = x

+∞∑
n=0

ξnWn(x)−
+∞∑
n=0

n

n+ 1
ξnWn−1(x)

and then the thesis.
These results allows us to note that the use of integral representations relating Cheby-

shev and Hermite polynomials are a fairly important tool of analysis allowing the deriva-
tion of a wealth of relations between first and second kind Chebyshev polynomials and
the Chebyshev-like polynomials Wn(x). In a forthcoming paper, we will deeper inves-
tigate other generalizations for these families of polynomials, recognized as Chebyshev
polynomials, by using the instruments of integral representations.

�
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