
Hacettepe Journal of Mathematics and Statistics
Volume 44 (3) (2015), 597 – 606

Common fixed point theorems in cone Banach type
spaces

Fridoun Moradlou ∗ and Peyman Salimi †

Abstract

In this paper, we give some generalized theorems on points of coinci-
dence and common fixed points for two weakly compatible mappings
on a cone Banach type space.
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1. Introduction
In 1980, Rzepecki [15] provide a generalization of metric spaces. He defined a metric

dE on a set X by dE : X ×X → S, where E is a Banach space and S is a normal cone
in E with partial order �, and he generalized the fixed point theorems of Maia type. In
1987, Lin [9] introduced the notion of K-metric spaces and considered some results of
Khan and Imdad [7] in K-metric spaces. In 2007, Huang and Zhang [8] introduced cone
metric spaces and defined some properties of convergence of sequences and completeness
in cone metric spaces, also they proved a fixed point theorem of cone metric spaces.
Beginning around the year 2007, the fixed point theorems in cone metric spaces have
been extensively proved by a number of authors and there are many interesting results
concerning these theorems (see [1]–[3], [5], [11]–[14]).

In this paper, we propose the notion of cone Banach type spaces and prove the gener-
alization of some known results on points of coincidence and the generalization of some
common fixed point theorems for two weakly compatible mappings in cone Banach type
spaces.
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2. preliminaries
2.1. Definition. [11] Let E be a real Banach space with norm ‖.‖ and P be a subset of
E. P is called a cone if and only if the following conditions are satisfied:

(P1) P is closed, nonempty and P 6= {0};
(P1) a, b ≥ 0 and x, y ∈ P⇒ ax+ by ∈ P ;
(P3) x ∈ P and −x ∈ P⇒ x = 0.

Let P ⊂ E be a cone, we define a partial ordering � on E with respect to P by x � y
if and only if y − x ∈ P . we write x ≺ y whenever x � y and x 6= y, while x � y will
stand for y − x ∈ intP (interior of P). The cone P ⊂ E is called normal if there is a
positive real number k such that for all x, y ∈ E,

0 � x � y ⇒ ‖x‖ ≤ k‖y‖.

The least positive number satisfying the above inequality is called the normal constant
of P. It is clear that k ≥ 1. Rezapour and Hamlbarani [14] proved that existence of an
ordered Banach space E with cone P which is not normal but with intP 6= ∅.

Throughout this paper, we assume that E is a real Banach space and P is
a cone suth that intP 6= ∅.

2.2. Definition. [11]. Let X be a nonempty set. A function d : X ×X → E is said to
be a cone b-metric function on X with the constant K ≥ 1 if the following conditions
are satisfied:

(1) 0 � d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) � K

(
d(x, y) + d(y, z)

)
for all x, y, z ∈ X;

then the pair (X, d) is called the cone b-metric space (or cone metric type space (in brief
CMTS)).

2.3. Definition. [5] LetX be a vector space over R. Suppose the mapping ‖.‖P : X → E
satisfies:

(i) ‖x‖P � 0 for all x ∈ X;
(ii) ‖x‖P = 0 if and only if x = 0;
(iii) ‖x+ y‖P � ‖x‖P + ‖y‖P for all x, y ∈ X;
(iv) ‖kx‖P = |k|‖x‖P for all x ∈ X and all k ∈ R;

then ‖.‖P is called cone norm on X and the pair (X, ‖.‖P ) is called a cone normed space
(in brief CNS). Note that each CNS is cone metric space (in brief CMS). Indeed,
d(x, y) = ‖x− y‖P .

Similar to the definition of CMTS, we give the following definition:

2.4. Definition. Let X be a vector space over R. Suppose the mapping ‖.‖P : X → E
satisfies:

(i) ‖x‖P � 0 for all x ∈ X;
(ii) ‖x‖P = 0 if and only if x = 0;
(iii) ‖x+ y‖P � K

(
‖x‖P + ‖y‖P

)
for all x, y ∈ X and for constant K ≥ 1 (triangle

- type inequality);
(iv) ‖rx‖P = |r|‖x‖P for all x ∈ X and all r ∈ R;

then the pair (X, ‖.‖P ) is called a cone normed type space (in brief CNTS).

Note that each CNTS is CMTS. Indeed, d(x, y) = ‖x− y‖P .
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2.5. Example. Let Cb(X) = {f : X → C : supx∈X |f(x)| < ∞}. Define ‖.‖P :
Cb(X)→ R by

‖f‖P = 3

√
sup
x∈X
|f(x)|3.

Then ‖.‖P satisfies the following properties:
(i) ‖f‖P > 0 for all f ∈ Cb(X);
(ii) ‖f‖P = 0 if and only if f = 0;
(iii) ‖f + g‖P ≤ 3

√
4
(
‖f‖P + ‖g‖P

)
for all f, g ∈ Cb(X);

(iv) ‖rf‖P = |r|‖f‖P for all f ∈ Cb(X) and all r ∈ R.

2.6. Definition. Let (X, ||.||P ,K) be a CNTS, let {xn} be a sequence in X and x ∈ X.
Then

(i) {xn} converges to x whenever for every c ∈ E with 0 � c there is a natural
number N , such that ‖xn−x‖P � c for all n > N . It is denoted by limn→∞ xn =
x or xn → x as n→∞;

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with 0 � c there is a
natural number N , such that ‖xn − xm‖P � c for all n,m > N ;

(iii) (X, ‖.‖P ,K) is a complete cone normed type space if every Cauchy sequence is
convergent. Complete cone normed type spaces will be called cone Banach type
spaces.

2.7. Lemma. Let (X, ‖.‖P ,K) be a CNTS, P be a normal cone with normal constant
M , and {xn} be a sequence in X. Then,

(i) the sequence {xn} converges to x if and only if ‖xn − x‖P → 0, as n→∞;
(ii) the sequence {xn} is Cauchy if and only if ‖xn − xm‖P → 0 as n,m→∞;
(iii) if the sequence {xn} converges to x and the sequence {yn} converges to y, then

‖xn − yn‖P → ‖x− y‖P .

Proof. The proof is similar to proof of Lemmas 1-5 of [8], by taking d(x, y) = ‖x−y‖P . �

From now on, we assume that P is a normal cone with intP 6= ∅.

2.8. Lemma. Let {yn} be a sequence in a cone Banach type space (X, ‖.‖P ,K) such
that

d(yn, yn+1) ≤ λd(yn−1, yn),

for some 0 < λ < 1/K and all n ∈ N, where d(x, y) = ‖x− y‖P . Then {yn} is a Cauchy
sequence in (X, ‖.‖P ,K).

2.9. Definition. Let S and T be two self-mappings on a cone metric type space (X, d).
A point z ∈ X is called a coincidence point of S and T if Sz = Tz, and it is called a
common fixed point of S and T if Sz = z = Tz. Moreover, a pair of self-mappings (S, T )
is called weakly compatible on X if they commute at their coincidence points, i.e.,

z ∈ X, Sz = Tz ⇒ STz = TSz.

2.10. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) and d :
X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that F, T : C −→ C are two
mappings such that TC ⊂ FC and FC is closed and convex. If there exists some constant
1− 1

K
< r

2
< 1 such that

(2.1) d(Fy, Ty) + rd(Fx, Fy) � d(Fx, Tx),
for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover, if F and
T are weakly compatible, then F and T have a unique common fixed point.
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Proof. Let x0 ∈ C be arbitrary. we define a sequence {Fxn} in the following relation:

(2.2) Fxn+1 :=
Fxn + Txn

2
, n = 0, 1, 2, · · · .

We see that

(2.3) Fxn − Txn = 2

(
Fxn −

(Fxn + Txn
2

))
= 2(Fxn − Fxn+1),

which implies

(2.4) d(Fxn, Txn) = ||Fxn − Txn||P = 2||Fxn − Fxn+1||P = 2d(Fxn, Fxn+1),

for n = 0, 1, 2, · · · . Now, letting x = xn−1 and y = xn in (2.1), using (2.4), we can
conclude that

(2.5) 2d(Fxn, Fxn+1) + rd(Fxn−1, Fxn) � 2d(Fxn−1, Fxn).

So

(2.6) d(Fxn, Fxn+1) � (1− r

2
)d(Fxn−1, Fxn),

where 1− r
2
< 1

K
. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence in FC. Then there

exists z ∈ C such that Fxn → Fz. Also by (2.2) we can obtain Txn → Fz. So by (2.1)
we have

(2.7) d(Fz, Tz) � d(Fz, Tz) + rd(Fxn, F z) � d(Fxn, Txn).
Therefore by taking the limit as n → ∞ in (2.7), we obtain d(Fz, Tz) = 0, that is, z
is a point of coincidence of F and T . Therefore F and T have at least one point of
coincidence.

Put w = Fz = Tz. If F and T are weakly compatible mappings, then FTz = TFz,
so Fw = Tw.

Now, we show that w is a fixed point of F . Putting x = w and y = z in (2.1), we get

(2.8) d(Fz, Tz) + rd(Fw,Fz) � d(Fw, Tw).
Hence d(Fw,Fz) = 0. That is, Fw = w. Therefore Fw = Tw = w. So we conclude that
w = Fw = Tw is a common fixed point of F and T .
To prove the uniqueness of w, suppose that w1 is another common fixed point F and T .
Replacing x and y by w and w1 in (2.1), respectively, we get

(2.9) d(Fw1, Tw1) + rd(Fw,Fw1) � d(Fw, Tw).
Thus,

d(w1, w) � 0.

So w = w1. Then w is the unique common fixed point of F and T . �

2.11. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ‖.‖P ,K) and d : X×X → E be such that d(x, y) = ‖x−y‖P . Suppose that T : C → C
is a mapping for which there exists some constant 1− 1

K
< r

2
< 1 such that

d(y, Ty) + rd(x, y) � d(x, Tx),
for all x, y ∈ C. Then T has a unique fixed point.

2.12. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) such that
1 < K ≤ 2. Let d : X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that
F, T : C −→ C are two mappings such that TC ⊂ FC and FC is closed and convex. If
there exists some constant 1− 1

K
< r

2
< 1 such that

(2.10) d(Tx, Ty) + (1− 1

K
)d(Fy, Ty) + rd(Fx, Fy) � 1

2
d(Fx, Tx),
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for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover, if F and
T are weakly compatible, then F and T have a unique common fixed point.

Proof. Similar to proof of Theorem 2.10, we construct the sequence {Fxn}, therefore

Fxn − Txn−1 =
Fxn−1 + Txn−1

2
− Txn−1 =

Fxn−1 − Txn−1

2
,

which implies that

(2.11) d(Fxn, Txn−1) =
1

2
d(Fxn−1, Txn−1).

Using the triangle-type inequality, we get

(2.12) d(Fxn, Txn)−Kd(Fxn, Txn−1) � Kd(Txn−1, Txn)

It follows from (2.3) and (2.11) that

(2.13)
2

K
d(Fxn, Fxn+1)− d(Fxn, Fxn−1) � d(Txn−1, Txn).

Replacing x and y by xn−1 and xn in (2.10) and using (2.3) and (2.13), we can obtain
2

K
d(Fxn, Fxn+1)− d(Fxn−1, Fxn) + 2(1− 1

K
)d(Fxn, Fxn+1)

+ rd(Fxn−1, Fxn) � d(Fxn−1, Fxn).

Thus,

d(Fxn, Fxn+1) � (1− r

2
)d(Fxn−1, Fxn),

where 1− r
2
< 1

K
. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence in FC. Then there

exists z ∈ C such that Fxn −→ Fz. Substituting x = xn and y = z in (2.10), we get

(2.14)
(1− 1

K
)d(Fz, Tz) �d(Txn, T z) + (1− 1

K
)d(Fz, Tz) + rd(Fxn, F z)

�1

2
d(Fxn, Txn).

Therefore by taking the limit as n → ∞ in (2.14), we obtain d(Fz, Tz) = 0. Then we
conclude that z is a point of coincidence of F and T .

Let w = Fz = Tz. If F and T are weakly compatible mappings, then FTz = TFz,
so Fw = Tw.

Now, we show that w is a fixed point of F . Putting x = w and y = z in (2.10), we
have

d(Tw, Tz) + (1− 1

K
)d(Fz, Tz) + rd(Fw,Fz) � 1

2
d(Fw, Tw).

Then

(r + 1)d(Fw,w) � 0.

Therefore Fw = Tw = w. So we conclude that w = Fw = Tw is a common fixed point
of F and T .
To prove the uniqueness of w, suppose that w1 is another common fixed point of F and
T . Replacing x and y by w and w1 in (2.10), respectively, we get

(2.15) d(Tw, Tw1) + (1− 1

K
)d(Fw1, Tw1) + rd(Fw,Fw1) �

1

2
d(Fw, Tw).

Thus,

(1 + r)d(w1, w) � 0.

So w = w1. Then w is the unique common fixed point of F and T . �
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2.13. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ||.||P ,K) such that 1 < K ≤ 2 and d : X ×X → E be such that d(x, y) = ||x− y||P .
Suppose that T : C −→ C is a mapping which satisfies the condition

d(Tx, Ty) + (1− 1

K
)d(y, Ty) + rd(x, y) � 1

2
d(x, Tx),

for all x, y ∈ C, where 1− 1
K
< r

2
< 1, then T has a unique fixed point.

2.14. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) and
d : X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that F, T : C → C are
two mappings such that TC ⊂ FC and FC is closed and convex. If there exist a, b, s
satisfying

(2.16) 0 < s+ |a|K
1
2
− 1

2
sgn(a) − 2b < 2(aK−sgn(a) + b),

and

(2.17) ad(Tx, Ty) + b
(
d(Fx, Tx) + d(Fy, Ty)

)
� sd(Fx, Fy),

for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover if a > s
and F and T are weakly compatible, then F and T have a unique common fixed point.

Proof. Similar to proof of Theorem 2.10, we construct the sequence {Fxn}. We claim
that the inequality (2.17) for x = xn−1 and y = xn implies that

(2.18)
2aK−sgn(a)d(Fxn,Fxn+1)− |a|K

1
2
− 1

2
sgn(a)d(Fxn−1, Fxn)

+ 2b
(
d(Fxn−1, Fxn) + d(Fxn, Fxn+1)

)
� sd(Fxn−1, Fxn),

for all a, b, s that satisfy (2.16). To see this, replacing x and y by xn−1 and xn in (2.17),
respectively, we obtain

(2.19) ad(Txn−1, Txn) + b
(
d(Fxn−1, Txn−1) + d(Fxn, Txn)

)
� sd(Fxn−1, Fxn).

Let a ≥ 0, using (2.3), (2.13) and (2.19), we have
2a

K
d(Fxn, Fxn+1)− ad(Fxn, Fxn−1)

+ 2b
(
d(Fxn−1, Fxn) + d(Fxn, Fxn+1)

)
� sd(Fxn−1, Fxn),

which is equivalent to (2.18), since sgn(a) = 0 or 1.
Now suppose that a < 0, consider the inequality

d(Txn−1, Txn) � K
(
d(Txn−1, Fxn) + d(Fxn, Txn)

)
,

which is equivalent to

(2.20) ad(Txn−1, Txn) � Ka
(
d(Txn−1, Fxn) + d(Fxn, Txn)

)
.

It follows from (2.19) and (2.20) that

(2.21)
aK(d(Txn−1, Fxn) + d(Fxn, Txn))

+ b
(
d(Fxn−1, Txn−1) + d(Fxn, Txn)

)
� sd(Fxn−1, Fxn).

Using (2.4), (2.11) and (2.21), we get

aKd(Fxn−1, Fxn) + 2aKd(Fxn, Fxn+1)

+ 2b
(
d(Fxn−1, Fxn) + d(Fxn, Fxn+1)

)
� sd(Fxn−1, Fxn)

which is equivalent to (2.18), since sgn(a) = −1. Hence, we established our claim.
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It follows from (2.18) that

d(Fxn, Fxn+1) �
s+ |a|K

1
2
− 1

2
sgn(a) − 2b

2(aK−sgn(a) + b)
d(Fxn−1, Fxn),

where
s+ |a|K

1
2
− 1

2
sgn(a) − 2b

2(aK−sgn(a) + b)
< 1. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence

in FC. Then there exists z ∈ C such that Fxn → Fz, so Txn → Fz . Now, using (2.17),
we have

(2.22) ad(Txn, T z) + b
(
d(Fxn, Txn) + d(Fz, Tz)

)
� sd(Fxn, F z).

Thus by taking the limit as n→∞ in (2.22), we obtain

(a+ b)d(Fz, Tz) � 0.

Since aK−sgn(a) ≤ a, we get a + b > 0. Hence, d(Fz, Tz) = 0. So z is a point of
coincidence of F and T .

If F and T are weakly compatible, then FTz = TFz. Therefore Fw = Tw, where
w = Fz = Tz.

Now, we show that w is a unique common fixed point of T and F . Substituting x = w
and y = z in (2.17), we obtain

ad(Tw, Tz) + b
(
d(Fw, Tw) + d(Fz, Tz)

)
� sd(Fw,Fz),

which yields that

(a− s)d(Tw,w) � 0.

Since a > s, we have Tw = w. Therefore Fw = Tw = w. This means w is a common
fixed point of F and T .

To prove the uniqueness of w, suppose that w1 is another common fixed point of F
and T . Replacing x and y by w1 and w in (2.17), we get

ad(Tw1, Tw) + b
(
d(Fw1, Tw1) + d(Fw, Tw)

)
� sd(Fw1, Fw).

Thus,

(a− s)d(w1, w) � 0.

So w = w1. Therefore w is the unique common fixed point of F and T . �

2.15. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ‖.‖P ,K) and d : X×X → E be such that d(x, y) = ‖x−y‖P . Suppose that T : C → C
is a mapping for which there exist a, b, s such that

0 < s+ |a|K
1
2
− 1

2
sgn(a) − 2b < 2(aK−sgn(a) + b),

and

ad(Tx, Ty) + b
(
d(x, Tx) + d(y, Ty)

)
� sd(x, y),

for all x, y ∈ C, then T has at least one fixed point. Moreover, if a > s, then T has a
unique fixed point.

2.16. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) and
d : X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that F, T : C → C are
two mappings such that TC ⊂ FC and FC is closed and convex. If there exist a, b
satisfying

(2.23) 1 < b < 1 +
(2a− 1)K − 1

2K2
& a >

K + 1

2K
,
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and

(2.24) ad(Fy, Ty) + d(Fy, Tx) � bd(Fx, Tx) + 1

K
d(Fx, Fy),

for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover, if K > 1
and F and T are weakly compatible, then F and T have a unique common fixed point.

Proof. Let x0 ∈ C be arbitrary, we define a sequence {Fxn} in the following relation:

(2.25) Fxn+1 :=
(2K − 1)Fxn + Txn

2K
, n = 0, 1, 2, · · · ,

we see that

(2.26) Fxn − Txn = 2K

(
Fxn −

( (2K − 1)Fxn + Txn
2K

))
= 2K(Fxn − Fxn+1),

which implies

(2.27) d(Fxn, Txn) = 2Kd(Fxn, Fxn+1).

Similarly

Fxn−Txn−1 =
(2K − 1)Fxn−1 + Txn−1

2K
−Txn−1 = (

2K − 1

2K
)(Fxn−1−Txn−1),

then

(2.28) d(Fxn, Txn−1) = (
2K − 1

2K
)d(Fxn−1, Txn−1).

Replacing x and y by xn−1 and xn in (2.24), respectively, we get

(2.29) ad(Fxn, Txn) + d(Fxn, Txn−1) � bd(Fxn−1, Txn−1) +
1

K
d(Fxn−1, Fxn).

It follows from (2.27), (2.28) and (2.29) that

2aKd(Fxn, Fxn+1)+(2K−1)d(Fxn, Fxn−1) � 2bKd(Fxn−1, Fxn)+
1

K
d(Fxn−1, Fxn).

Therefore

d(Fxn, Fxn+1) �
(2bK + 1

K
− 2K + 1)

2aK
d(Fxn−1, Fxn),

where
(2bK + 1

K
− 2K + 1)

2aK
<

1

K
. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence

in FC. Then there exists z ∈ C such that Fxn → Fz, so Txn → Fz. Replacing x and y
by xn and z in (2.24), respectively, we get

(2.30) ad(Fz, Tz) + d(Fz, Txn) � bd(Fxn, Txn) +
1

K
d(Fxn, F z).

Then by taking the limit as n→∞ in (2.30), we obtain d(Fz, Tz) = 0. So we conclude
that z is a point of coincidence of F and T .

If F and T are weakly compatible, then FTz = TFz. Therefore Fw = Tw, where
w = Fz = Tz.

Now, we show that w is a unique common fixed point of F and T . Substituting x = w
and y = z in (2.24), we obtain

ad(Fz, Tz) + d(Fz, Tw) � bd(Fw, Tw) + 1

K
d(Fw,Fz),

which implies that

(1− 1

K
)d(w, Tw) � 0.

Hence w = Tw, therefore w is a common fixed point of F and T .
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To prove the uniqueness of w, suppose that w1 is another common fixed point of F
and T . Replacing x and y by w and w1 in (2.24), respectively, we have

ad(Fw1, Tw1) + d(Fw1, Tw) � bd(Fw, Tw) +
1

K
d(Fw,Fw1).

Thus,

(1− 1

K
)d(w,w1) � 0.

So w = w1. Therefore w is the unique common fixed point of F and T . �

2.17. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ‖.‖P ,K) and d : X×X → E be such that d(x, y) = ‖x−y‖P . Suppose that T : C → C
is a mapping for which there exist a, b satisfying

1 < b < 1 +
(2a− 1)K − 1

2K2
& a >

K + 1

2K
,

and

ad(y, Ty) + d(y, Tx) � bd(x, Tx) + 1

K
d(x, y),

for all x, y ∈ C, then T has a fixed point. Moreover, if K > 1, then T has a unique fixed
point.
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