Non-selfadjoint matrix Sturm-Liouville operators with eigenvalue-dependent boundary conditions

Murat OLGUN *

Abstract

In this paper we investigate discrete spectrum of the non-selfadjoint matrix Sturm-Liouville operator L generated in $L^{2}\left(\mathbb{R}_{+}, S\right)$ by the differential expression $$
\ell(y)=-y^{\prime \prime}+Q(x) y, \quad x \in \mathbb{R}_{+}:[0, \infty),
$$ and the boundary condition $y^{\prime}(0)-\left(\beta_{0}+\beta_{1} \lambda+\beta_{2} \lambda^{2}\right) y(0)=0$ where Q is a non-selfadjoint matrix valued function. Also using the uniqueness theorem of analytic functions we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.

2000 AMS Classification: 34B24, 34L40, 47A10.
Keywords: Eigenvalues, Spectral Singularities, Spectral Analysis, Sturm-Liouville Operator, Non-Selfadjoint Matrix Operator.

Received 07/01/2014 : Accepted 04/03/2014 Doi : 10.15672/HJMS. 2015449424

1. Introduction

The study of the spectral analysis of non self-adjoint Sturm-Liouville operators was begun by Naimark [23] in 1954. He studied the spectral analysis of non-selfadjoint differential operators with continuous and discrete spectrum. Also he investigated the existence of spectral singularities in the continuous spectrum of the non-selfadjoint differential operator. Spectral singularities are poles of the resolvent's kernel which are in the continuous spectrum and are not eigen-values [26]. General notion of the sets of spectral singularities for closed linear operators on a Banach space was given by Nagy in [22]. Let L_{0} denote the operator generated in $L^{2}\left(\mathbb{R}_{+}\right)$by the differential expression
(1.1) $\quad \ell_{0}(y)=-y^{\prime \prime}+v(x) y, \quad x \in \mathbb{R}_{+}$
and the boundary condition

$$
y^{\prime}(0)-h y(0)=0
$$

where v is a complex valued function and $h \in \mathbb{C}$.

[^0]In [23] it is shown that if

$$
\int_{0}^{\infty} \exp (\varepsilon x)|v(x)| d x<\infty
$$

for some $\varepsilon>0$, then L_{0} has a finite number of eigenvalues and spectral singularities with a finite multiplicities. Pavlov [25] established the dependence of the structure of the spectral singularities of L_{0} on the behavior of the potential function at infinity. The spectral analysis of the non-selfadjoint operator, generated in $L^{2}\left(\mathbb{R}_{+}\right)$by (1.1) and the integral boundary condition

$$
\int_{0}^{\infty} B(x) y(x) d x+\alpha y^{\prime}(0)-\beta y(0)=0
$$

where $B \in L^{2}\left(\mathbb{R}_{+}\right)$is a complex-valued function, and $\alpha, \beta \in \mathbb{C}$, was investigated in detail by Krall [15],[16].

Some problems of spectral theory of differential and some other types of operators with spectral singularities were also studied in [1],[3]-[7],[17],[18]. The spectral analysis of the non self-adjoint operator, generated in $L^{2}\left(\mathbb{R}_{+}\right)$by (1.1) and the boundary condition

$$
\frac{y^{\prime}(0)}{y(0)}=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}
$$

where $\alpha_{i} \in \mathbb{C}, i=0,1,2$ with $\alpha_{2} \neq 0$ was investigated by Bairamov et al. [8].
The all above mentioned papers related with differential and difference operators are of scalar coefficients.Spectral analysis of the selfadjoint differential and difference operators with matrix coefficients are studied in [2],[9]-[11],[14].

Let S be a n-dimensional $(n<\infty)$ Euclidian space. We denote by $L^{2}\left(\mathbb{R}_{+}, S\right)$ the Hilbert space of vector-valued functions with values in S and the norm

$$
\|f\|_{L_{2}\left(\mathbb{R}_{+}, S\right)}^{2}=\int_{0}^{\infty}\|f(x)\|_{S}^{2} d x
$$

Let L denote the operator generated in $L^{2}\left(\mathbb{R}_{+}, S\right)$ by the matrix differential expression

$$
\ell(y)=-y^{\prime \prime}+Q(x) y, \quad x \in \mathbb{R}_{+}
$$

and the boundary condition $y(0)=0$, where Q is a non-selfadjoint matrix-valued function (i.e. $Q \neq Q^{*}$). In [24], [12] discrete spectrum of the non-selfadjoint matrix SturmLiouville operator was investigated. Let us consider the BVP in $L_{2}\left(\mathbb{R}_{+}, S\right)$

$$
\begin{equation*}
-y^{\prime \prime}+Q(x) y=\lambda^{2} y, x \in \mathbb{R}_{+}, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}(0)-\left(\beta_{0}+\beta_{1} \lambda+\beta_{2} \lambda^{2}\right) y(0)=0 \tag{1.3}
\end{equation*}
$$

where Q is a non self-adjoint matrix-valued function and $\beta_{0}, \beta_{1}, \beta_{2}$ are non self-adjoint matrices with $\operatorname{det} \beta_{2} \neq 0$.

In this paper using the uniqueness theorem of analytic functions we investigate the eigenvalues and the spectral singularities of L. In particular we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities, if the condition

$$
\lim _{x \rightarrow \infty} Q(x)=0, \int_{0}^{\infty} e^{\epsilon x}\left\|Q^{\prime}(x)\right\| d x<\infty, \epsilon>0
$$

holds, where $\|$.$\| denote norm in S$. We also show that the analogue of the Pavlov condition for L is the form

$$
\lim _{x \rightarrow \infty} Q(x)=0, \int_{0}^{\infty} e^{\epsilon \sqrt{x}}\left\|Q^{\prime}(x)\right\| d x<\infty, \epsilon>0
$$

2. Jost Solution

Let us consider the matrix Sturm-Liouville equation

$$
\begin{equation*}
-y^{\prime \prime}+Q(x) y=\lambda^{2} y, x \in \mathbb{R}_{+} \tag{2.1}
\end{equation*}
$$

where Q is a non-selfadjoint matrix-valued function and

$$
\begin{equation*}
\int_{0}^{\infty} x\|Q(x)\| d x<\infty \tag{2.2}
\end{equation*}
$$

holds. The bounded matrix solution of (2.1) satisfying the condition

$$
\lim _{x \rightarrow \infty} y(x, \lambda) e^{-i \lambda x}=I, \lambda \in \overline{\mathbb{C}}_{+}:=\{\lambda: \lambda \in \mathbb{C}, \quad \operatorname{Im} \lambda \geq 0\}
$$

will be denoted by $F(x, \lambda)$. The solution $F(x, \lambda)$ is called Jost solution of (2.1). It has been shown that, under the condition (2.2), the Jost solution has the representation

$$
\begin{equation*}
F(x, \lambda)=e^{i \lambda x} I+\int_{x}^{\infty} K(x, t) e^{i \lambda t} d t \tag{2.3}
\end{equation*}
$$

where I denotes the identity matrix in S and the matrix function $K(x, t)$ satisfies

$$
\begin{equation*}
K(x, t)=\frac{1}{2} \int_{\frac{x+t}{2}}^{\infty} Q(s) d s+\frac{1}{2} \int_{x}^{\frac{x+t}{2}} \int_{t+x-s}^{t+s-x} Q(s) K(s, v) d v d s+\frac{1}{2} \int_{\frac{x+t}{2}}^{\infty} \int_{s}^{t+s-x} Q(s) K(s, v) d v d s \tag{2.4}
\end{equation*}
$$

$K(x, t)$ is continuously differentiable with respect to their arguments and

$$
\begin{align*}
\|K(x, t)\| & \leq c \alpha\left(\frac{x+t}{2}\right) \tag{2.5}\\
\left\|K_{x}(x, t)\right\| & \leq \frac{1}{4}\left\|Q\left(\frac{x+t}{2}\right)\right\|+c \alpha\left(\frac{x+t}{2}\right) \tag{2.6}\\
\left\|K_{t}(x, t)\right\| & \leq \frac{1}{4}\left\|Q\left(\frac{x+t}{2}\right)\right\|+c \alpha\left(\frac{x+t}{2}\right) \tag{2.7}
\end{align*}
$$

where $\alpha(x)=\int^{\infty}\|Q(s)\| d s$ and $c>0$ is a constant. Therefore, $F(x, \lambda)$ is analytic with respect to λ in $\mathbb{C}_{+}^{x}:=\left\{\lambda: \lambda \in \mathbb{C}_{+}, \operatorname{Im} \lambda>0\right\}$ and continuous on the real axis $([2],[17],[19])$.

We will denote the matrix solution of (2.1) satisfying the initial conditions

$$
G(0, \lambda)=I, \quad G^{\prime}(0, \lambda)=\beta_{0}+\beta_{1} \lambda+\beta_{2} \lambda^{2}
$$

by $G(x, \lambda)$. Let us define the following functions:

$$
\begin{equation*}
A_{ \pm}(\lambda)=F_{x}(0, \pm \lambda)-\left(\beta_{0}+\beta_{1} \lambda+\beta_{2} \lambda^{2}\right) F(0, \pm \lambda) \quad \lambda \epsilon \overline{\mathbb{C}}_{ \pm}, \tag{2.8}
\end{equation*}
$$

where $\overline{\mathbb{C}}_{ \pm}=\{\lambda: \lambda \in \mathbb{C}, \pm \operatorname{Im} \lambda \geq 0\}$. It is obvious that the functions $A_{+}(\lambda)$ and $A_{-}(\lambda)$ are analytic in \mathbb{C}_{+}and \mathbb{C}_{-}, respectively and continuous on the real axis.It is clear that the resolvent of L defined by the following

$$
\begin{equation*}
\mathbf{R}_{\lambda}(L) \varphi=\int_{0}^{\infty} R(x, \xi ; \lambda) \varphi(\xi) d \xi, \quad \varphi \in L^{2}\left(\mathbb{R}_{+}, S\right) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
& R(x, \xi ; \lambda)= \begin{cases}R_{+}(x, \xi ; \lambda) & , \quad \lambda \in \mathbb{C}_{+} \\
R_{-}(x, \xi ; \lambda), & \lambda \in \mathbb{C}_{-}\end{cases} \\
& R_{ \pm}(x, \xi ; \lambda)=\left\{\begin{array}{r}
-F(x, \pm \lambda) A_{ \pm}^{-1}(\lambda) G^{t}(\xi, \lambda), \\
-G(x, \lambda)\left[A_{ \pm}^{t}(\lambda)\right]^{-1} F(\xi, \pm \lambda), \\
-G \leq \xi<\infty
\end{array}\right. \tag{2.10}
\end{align*}
$$

and $G^{t}(\xi, \lambda)$ and $A_{ \pm}^{t}(\lambda)$ denotes the transpose of the matrix function $G(\xi, \lambda)$ and $A_{ \pm}(\lambda)$ respectively.

In the following we will denote the class of non self-adjoint matrix-valued valued absolutely continuous functions in \mathbb{R}_{+}by $A C\left(\mathbb{R}_{+}\right)$.
2.1. Lemma. If

$$
\begin{equation*}
Q \epsilon A C\left(\mathbb{R}_{+}\right), \quad \lim _{x \rightarrow \infty} Q(x)=0 \quad, \quad \int_{0}^{\infty} x^{3}\left\|Q^{\prime}(x)\right\|<\infty \tag{2.11}
\end{equation*}
$$

then $K_{t t}(x, t)$ exist and

$$
\begin{align*}
K_{t t}(x, t) & =-\frac{1}{8} Q^{\prime}\left(\frac{t}{2}\right)+\frac{1}{2} \int_{0}^{\infty} Q(s) K_{t}(s, t+s) d s \\
& -\frac{1}{4} Q\left(\frac{t}{2}\right) K\left(\frac{t}{2}, \frac{t}{2}\right) \tag{2.12}\\
& -\frac{1}{2} \int_{0}^{\frac{t}{2}} Q(s)\left[K_{t}(s, t-s)+K_{t}(t-x+s)\right] d s .
\end{align*}
$$

Proof. The proof of lemma direct consequently of (2.4).
From (2.5)-(2.7) and (2.12) we obtain that

$$
\begin{equation*}
\left\|K_{t t}(0, t)\right\| \leq c\left\{\left\|Q^{\prime}\left(\frac{t}{2}\right)\right\|+t\left\|Q\left(\frac{t}{2}\right)\right\|+t \alpha\left(\frac{t}{2}\right)+\alpha_{1}\left(\frac{t}{2}\right)\right\} \tag{2.13}
\end{equation*}
$$

holds, where $\alpha_{1}(t)=\int_{t}^{\infty} \alpha(s) d s$ and $c>0$ is a constant.
2.2. Lemma. Under the condition (2.11), A_{+}and A_{-}have the representations

$$
\begin{equation*}
A_{+}(\lambda)=-\beta_{2} \lambda^{2}+A \lambda+B+\int_{0}^{\infty} F^{+}(t) e^{i \lambda t} d t, \quad \lambda \in \overline{\mathbb{C}}_{+} \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
A_{-}(\lambda)=-\beta_{2} \lambda^{2}+C \lambda+D+\int_{0}^{\infty} F^{-}(t) e^{-i \lambda t} d t, \quad \lambda \in \overline{\mathbb{C}}_{-} \tag{2.15}
\end{equation*}
$$

where A, B, C, D are non self-adjoint matrices in S, and $F^{ \pm} \in L_{1}\left(\mathbb{R}_{+}\right)$.

Proof. Using (2.3), (2.4) and (2.8) we get (2.14), where

$$
\begin{align*}
A & =i-\beta_{1}-i \beta_{2} K(0,0) \\
B & =-K(0,0)-\beta_{0}-i \beta_{1} K(0,0)+\beta_{2} K_{t}(0,0), \tag{2.16}\\
F^{+}(t) & =K_{x}(0, t)-\beta_{0} K(0, t)-i \beta_{1} K_{t}(0, t)+\beta_{2} K_{t t}(0,0) .
\end{align*}
$$

From (2.5) - (2.7) and (2.13), $F^{+} \in L_{1}\left(\mathbb{R}_{+}\right)$. By similar way we obtain (2.15) and $F^{-} \in L_{1}\left(\mathbb{R}_{+}\right)$.
2.3. Theorem. $A_{+}(\lambda)$ and $A_{-}(\lambda)$ have the asymptotic behavior:
(2.17) $\quad A_{ \pm}(\lambda)=-\beta_{2} \lambda^{2}+A \lambda+B+o(1) \quad \lambda \in \overline{\mathbb{C}}_{ \pm},|\lambda| \rightarrow \infty$.

Proof. The proof is obvious from (2.5) - (2.7) and (2.13)).
We will denote the continuous spectrum of L by σ_{c}. From Theorem 2 ([22], page 303) we get that

$$
\begin{equation*}
\sigma_{c}=\mathbb{R} \tag{2.18}
\end{equation*}
$$

3. Eigenvalues and Spectral Singularities of L

Let us suppose that

$$
\begin{equation*}
f_{ \pm}(\lambda):=\operatorname{det} A_{ \pm}(\lambda) \tag{3.1}
\end{equation*}
$$

We denote the set of eigenvalues and spectral singularities of L by $\sigma_{d}(L)$ and $\sigma_{s s}(L)$, respectively. By the definition of eigenvalues and spectral singularities of differential operators we can write

$$
\begin{align*}
& \sigma_{d}(L)=\left\{\lambda: \lambda \in \mathbb{C}_{+}, f_{+}(\lambda)=0\right\} \cup\left\{\lambda: \lambda \in \mathbb{C}, \quad f_{-}(\lambda)=0\right\} \tag{3.2}\\
& \sigma_{s s}(L)=\left\{\lambda: \lambda \in \mathbb{R} \backslash\{0\}, f_{+}(\lambda)=0\right\} \cup\left\{\lambda: \lambda \in \mathbb{R} \backslash\{0\}, f_{-}(\lambda)=0\right\} \tag{3.3}
\end{align*}
$$

[22], [23], [26]. It is clear that $\sigma_{s s}(L) \subset \mathbb{R}$.
3.1. Definition. The multiplicity of a zero of f_{+}in $\overline{\mathbb{C}}_{+}\left(\right.$or f_{-}in $\left.\overline{\mathbb{C}}_{-}\right)$is defined as the multiplicity of the corresponding eigenvalue and spectral singularity of L.

In order to investigate the quantitative properties of the eigenvalues and the spectral singularities of L, we need to discuss the quantitative properties of the zeros of f_{+}and f_{-}in $\overline{\mathbb{C}}_{+}$and $\overline{\mathbb{C}}_{-}$, respectively. Assume that

$$
M_{1}^{ \pm}=\left\{\lambda: \lambda \in \mathbb{C}_{ \pm}, f_{ \pm}(\lambda)=0\right\}
$$

and

$$
M_{2}^{ \pm}=\left\{\lambda: \lambda \in \mathbb{R}, f_{ \pm}(\lambda)=0\right\} .
$$

From (3.3) and (3.4), we get

$$
\begin{equation*}
\sigma_{d}(L)=M_{1}^{+} \cup M_{1}^{-}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{s s}(L)=M_{2}^{+} \cup M_{2}^{-}-\{0\} . \tag{3.5}
\end{equation*}
$$

3.2. Theorem. Under the condition (2.11)
i) The set $\sigma_{d}(L)$ is bounded and has at most countable number of elements and its limit points can lie only in a bounded subinterval of the real axis.
ii) The set $\sigma_{\text {ss }}(L)$ is bounded and $\mu\left(\sigma_{\text {ss }}(L)\right)=0$, where $\mu\left(\sigma_{\text {ss }}(L)\right)$ denotes the linear Lebesque measure of $\sigma_{s s}(L)$.

Proof. Using (2.5) and (3.1) we get that the function $f_{ \pm}$is analytic in \mathbb{C}_{+}continuous on the real axis and

$$
\begin{equation*}
f_{ \pm}(\lambda)=-\lambda^{2} \operatorname{det} \beta_{2}+O(\lambda), \lambda \in \overline{\mathbb{C}}_{ \pm},|\lambda| \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Equation (3.6) shows the boundedness of the sets $\sigma_{d}(L)$ and $\sigma_{s s}(L)$. From the analyticity of the function $f_{ \pm}$in $\mathbb{C}_{ \pm}$we obtain that $\sigma_{d}(L)$ has at most countable number of elements and its limit points can lie only in a bounded subinterval of the real axis. By the boundary value uniqueness theorem of analytic functions, we find that $\mu\left(\sigma_{s s}(L)\right)=0$, [13].

We will denote the sets of limit points of M_{1}^{+}and M_{2}^{+}by M_{3}^{+}and M_{4}^{+}respectively and the set of all zeros of A_{+}with infinite multiplicity in $\overline{\mathbb{C}}_{+}$by M_{5}^{+}. Analogously define the sets M_{3}^{-}, M_{4}^{-}and M_{5}^{-}.

It is explicit from the boundary uniqueness theorem of analytic functions that [13]

$$
\begin{gather*}
M_{1}^{ \pm} \cap M_{5}^{ \pm}=\varnothing, \quad M_{3}^{ \pm} \subset M_{2}^{ \pm}, \quad M_{4}^{ \pm} \subset M_{2}^{ \pm} \tag{3.7}\\
M_{5}^{ \pm} \subset M_{2}^{ \pm}, \quad M_{3}^{ \pm} \subset M_{5}^{ \pm}, \quad M_{4}^{ \pm} \subset M_{5}^{ \pm} \\
\text {and } \mu\left(M_{3}^{ \pm}\right)=\mu\left(M_{4}^{ \pm}\right)=\mu\left(M_{5}^{ \pm}\right)=0
\end{gather*}
$$

3.3. Theorem. If

$$
\begin{equation*}
Q \epsilon A C\left(\mathbb{R}_{+}\right), \quad \lim _{x \rightarrow \infty} Q(x)=0 \quad, \quad \int_{0}^{\infty} e^{\epsilon x}\left\|Q^{\prime}(x)\right\| d x<\infty, \quad \epsilon>0 \tag{3.8}
\end{equation*}
$$

the operator L has a finite number of eigenvalues and spectral singularities and each of them is of finite multiplicity.
Proof. By (2.5), (2.13), (2.14) and (3.8) we observe that, the function A_{+}has an analytic continuation to the half plane $\operatorname{Im} \lambda>-\frac{\varepsilon}{4}$. So, the limit points of zeros of A_{+}in $\overline{\mathbb{C}}_{+}$can not lie in \mathbb{R}. From analyticity of A_{+}for $\operatorname{Im} \lambda>-\frac{\varepsilon}{4}$, we obtain that all zeros of A_{+} in $\overline{\mathbb{C}}_{+}$have a finite multiplicity. We obtain similar results for A_{-}. Consequently by (3.4) and (3.5) the sets $\sigma_{d}(L)$ and $\sigma_{s s}(L)$ have a finite number of elements with a finite multiplicity.

Now let us suppose that hold, the conditions which is weaker than (3.8).

3.4. Theorem. If

$$
\begin{equation*}
Q \epsilon A C\left(\mathbb{R}_{+}\right), \quad \lim _{x \rightarrow \infty} Q(x)=0 \quad, \sup _{x \in \mathbb{R}_{+}}\left[\exp (\varepsilon \sqrt{x})\left\|Q^{\prime}(x)\right\|\right]<\infty, \quad \varepsilon>0 \tag{3.9}
\end{equation*}
$$

holds, then $M_{5}^{+}=M_{5}^{-}=\phi$.
Proof. From (3.1) and (3.9) we have f_{+}is analytic in \mathbb{C}_{+}and all of its derivatives are continuous on the $\overline{\mathbb{C}}_{+}$.For sufficiently large $P>0$ we have

$$
\begin{equation*}
\left|\frac{d^{m}}{d \lambda^{m}} f_{+}(\lambda)\right| \leq T_{m}, \quad m=0,1,2, \ldots, \lambda \in \overline{\mathbb{C}}_{+},|\lambda|<P \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{m}:=2^{m} c \int_{0}^{\infty} t^{m} e^{-(\varepsilon / 2) \sqrt{t}} d t, m=0,1,2, \ldots \tag{3.11}
\end{equation*}
$$

where $c>0$ is a constant. Since the function f_{+}is not equal to zero identically, using Pavlov's Theorem [25] we get that M_{5}^{+}satisfies

$$
\begin{equation*}
\int_{0}^{a} \ln G(s) d \mu\left(M_{5}^{+}, s\right)>-\infty \tag{3.12}
\end{equation*}
$$

where $G(s)=\inf _{m} \frac{T_{m} s^{m}}{m!}, \mu\left(M_{5}^{+}, s\right)$ is the linear Lebesque measure of s-neighborhood of M_{5}^{+}and $a>0$ is a constant .

We obtain the following estimates for T_{m}

$$
\begin{equation*}
T_{m} \leq B b^{m} m!m^{m} \tag{3.13}
\end{equation*}
$$

where B and b are constants depending on c and ε. Substituting (3.13) in the definition of $G(s)$, we arrive at

$$
G(s)=\inf _{m} \frac{T_{m} s^{m}}{m!} \leq B \exp \left(-e^{-1} b^{-1} s^{-1}\right)
$$

Now by (3.12), we get

$$
\begin{equation*}
\int_{0}^{a} s^{-1} d \mu\left(M_{5}^{+}, s\right)<\infty \tag{3.14}
\end{equation*}
$$

Consequently (3.14) holds for an arbitrary s if and only if $\mu\left(M_{5}^{+}, s\right)=0$ or $M_{5}^{+}=\phi$. In a similar way we can show $M_{5}^{-}=\phi$ II
3.5. Theorem. Under the condition (3.9) the operator L has a finite number of eigenvalues and spectral singularities and each of them is of a finite multiplicity.

Proof. We have to show that the functions f_{+}and f_{-}have a finite number of zeros with a finite multiplicities in $\overline{\mathbb{C}}_{+}$and $\overline{\mathbb{C}}_{-}$, respectively. We prove only for f_{+}.

It follows from (3.7) and Theorem 3.4 that $M_{3}^{+}=M_{4}^{+}=\phi$. So the bounded set M_{1}^{+} and M_{1}^{+}have no limit points, i.e. the function f_{+}has only finite number of zeros in $\overline{\mathbb{C}}_{+}$. Since $M_{5}^{+}=\phi$, these zeros are of finite multiplicity.

References

[1] Adivar, M. and Bairamov, E. Difference equations of second order with spectral singularities, J. Math. Anal. Appl. 277 (2003), 714-721.
[2] Agranovich, Z. S. and Marchenko, V. A. The Inverse Problem of Scattering Theory, Gordon and Breach, 1965.
[3] Bairamov, E., Cakar, O. and Celebi, A. O. Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, J. Math. Anal. Appl. 216 (1997), 303-320.
[4] Bairamov, E., Cakar, O. and Krall, A. M. An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations 151 (1999), 268-289.
[5] Bairamov, E., Cakar, O. and Krall, A. M. Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr. 229 (2001) 5-14.
[6] Bairamov, E. and Celebi, A. O. Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, Quart. J. Math. Oxford Ser. (2) 50 (1999), 371-384.
[7] Bairamov, E. and Coskun, C. The Structure of the Spectrum a System of Difference Equations, Appl. Math. Lett. 18 (2005), 384-394.
[8] Bairamov, E. and Yokus, N. Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions, Abstract and Applied Analysis, 2009, (2009) 1-8.
[9] Carlson, R. An inverse problem for the matrix Schrödinger equation, J. Math. Anal. Appl. 267 (2002), 564-575.
[10] Clark, S. and Gesztesy, F. Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas and Borg-type theorems for Dirac operators, Trans Amer. Math. Soc. 354 (2002) 3475-3534.
[11] Clark, S., Gesztesy, F. and Renger, W. Trace formulas and Borg-type theorems for matrixvalued Jacobi and Dirac finite difference operators, J. Differential Equations 219 (2005), 144-182.
[12] Coskun, C. and Olgun, M. Principal functions of non-selfadjoint matrix Sturm-Liouville equations, Journal of Computational and Applied Mathematics, 235 (2011).
[13] Dolzhenko, E. P. Boundary value uniqueness theorems for analytic functions, Math. Notes 25 (1979), 437-442.
[14] Gesztesy, F., Kiselev, A. and Makarov, K. A. Uniqueness results for matrix-valued Schrödinger, Jacobi and Dirac-type operators, Math. Nachr. 239 (2002), 103-145.
[15] Krall, A. M. The adjoint of a differential operator with integral boundary conditions, Proc. Amer. Math. Soc. 16 (1965), 738-742.
[16] Krall, A. M. A nonhomogeneous eigenfunction expansion, Trans. Amer. Math. Soc, 117 (1965), 352-361.
[17] Krall, A. M., Bairamov, E. and Cakar, O. Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differentional Equations, 151 (1999), 252-267.
[18] Krall, A. M., Bairamov, E. and Cakar, O. Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr. 231 (2001), 89-104.
[19] Levitan, B. M. Inverse Sturm-Liouville Problems, VSP, Zeist, (1987).
[20] Lyance, V. E. A differential operator with spectral singularities, I, II, AMS Translations 2 (60) 1967, 185-225, 227-283.
[21] Marchenko, V. A. Sturm-Liouville Operators and Applications, Birkhauser Verlag, Basel, (1986).
[22] Nagy, B. Operators with spectral singularities. J. Operator Theory 15, no 2, (1986), 307-325.
[23] Naimark, M. A. Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operators of second order on a semi-axis, AMS Translations 2(16) 1960, 103-193.
[24] Olgun, M. and Coskun, C. Non-selfadjoint matrix Sturm-Liouville operators with spectral singularities, Applied Mathematics and Computations, 216 (8) (2010).
[25] Pavlov, B. S. On a non-selfadjoint Schrödinger operator. II. (Russian) 1967 Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian) pp. 133-157 Izdat. Leningrad. Univ., Leningrad.
[26] Schwartz, J. T. Some non-selfadjoint operators, Comm. Pure and Appl. Math. 13 (1960), 609-639.

[^0]: *Ankara University, Faculty of Sciences Department of Mathematics Ankara, TURKEY
 Email: olgun@ankara.edu.tr

