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On the univalence of an integral operator

Dorina Răducanu ∗

Abstract
In this paper the method of Loewner chains is used to derive a fairly
general and flexible univalence criterion for an integral operator. Two
examples involving Bessel and hypergeometric functions are given. Our
results include a number of known or new univalence criteria.
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1. Introduction
Let Ur = {z ∈ C : |z| < r, 0 < r ≤ 1} be the open disk of radius r centered at the

origin and let U = U1 be the open unit disk.
Denote by A the class of analytic functions in U which satisfy the usual normalization

f(0) = f ′(0)− 1 = 0.
Let S be the subclass of A consisting of univalent functions.
There are known numerous criteria which ensure that a function f ∈ A is in the class

S. In Theorem 1.1 some of these criteria are listed.

1.1. Theorem. Let f ∈ A. Then, each of the following three conditions implies that
f ∈ S:

(1.1) (1− |z|2)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, z ∈ U;

(1.2)
∣∣∣∣c|z|2 + (1− |z|2)

zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U

for some c ∈ C, |c| ≤ 1, c 6= −1;

(1.3)

∣∣∣∣∣|z|2
[

(c+ 1)f ′(z)e
−
z∫
0
a(τ)dτ

− 1

]
+ z(1− |z|2)a(z)

∣∣∣∣∣ ≤ 1, z ∈ U
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for some c ∈ C, |c| ≤ 1, c 6= −1 and for a(z) analytic function in U.

The univalence criterion given in (1.2) (see [1]) is an extension of Becker’s univalence
criterion (see [3], [4]) given in (1.1). The univalence criterion (1.3) was obtained by D.
Tan (see [19]).

An extension of Becker’s criterion, due to N. N. Pascu ensures the univalence of an
integral operator.

1.2. Theorem. ([12]) Let f ∈ A and let α ∈ C with <α > 0. If

(1.4)
1− |z|2<α

<α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, z ∈ U

then, the integral operator

(1.5) Fα(z) =

α z∫
0

τα−1f ′(τ)dτ

1/α

is analytic and univalent in U.

During the time many authors (see [5], [6], [7], [8], [9], [11], [18], etc.) have obtained
numerous and various conditions which guarantee the univalence of a function in the
class A or the univalence of an integral operator.

In this paper we are mainly interested on the integral operator

(1.6) Fα,β(z) =

α z∫
0

τα−1(f ′(τ))βdτ

1/α

where the function f belongs to the class A and the parameters α and β are complex
numbers such that the integral exists. Here and in the sequel every many-valued function
is taken with the principal branch.

For the integral operator Fα,β(z) we establish a fairly general and flexible univalence
criterion which contains a number of known or new results.

2. Univalence criterion
Before proving our main result we need a brief summary of the theory of Loewner

chains.
A function L(z, t) : U × [0,∞) → C is said to be a Loewner chain or a subordination

chain if:
(i) L(z, t) is analytic and univalent in U for all t ≥ 0.
(ii) L(z, t) ≺ L(z, s) for all 0 ≤ t ≤ s < ∞, where the symbol ” ≺ ” stands for

subordination.
The following result due to Pommerenke is often used to obtain univalence criteria.

2.1. Theorem. ([15], [16]) Let L(z, t) = a1(t)z + . . . be an analytic function in Ur
(0 < r ≤ 1) for all t ≥ 0. Suppose that:

(i) L(z, t) is a locally absolutely continuous function of t ∈ [0,∞), locally uniform
with respect to z ∈ Ur.

(ii) a1(t) is a complex valued continuous function on [0,∞) such that a1(t) 6= 0,
lim
t→∞

|a1(t)| =∞ and {
L(z, t)

a1(t)

}
t≥0

is a normal family of functions in Ur.
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(iii) There exists an analytic function p : U× [0,∞) → C satisfying <p(z, t) > 0 for
all (z, t) ∈ U× [0,∞) and

(2.1) z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
, z ∈ Ur , a.e t ≥ 0.

Then, for each t ≥ 0, the function L(z, t) has an analytic and univalent extension to the
whole disk U, i.e L(z, t) is a Loewner chain.

Our main result contains sufficient conditions for the univalence of the integral oper-
ator Fα,β(z) defined by (1.6).

2.2. Theorem. Let a(z) be an analytic function in U and let f ∈ A. Consider three
complex numbers α, β and c such that <α > 0, β 6= 0 and |c| ≤ 1, c 6= −1. Suppose that:

(2.2)

∣∣∣∣∣(c+ 1)(f ′(z))βe
−
z∫
0
a(τ)dτ

− 1

∣∣∣∣∣ ≤ 1, z ∈ U

and

(2.3)

∣∣∣∣∣|z|2α
[

(c+ 1)(f ′(z))βe
−
z∫
0
a(τ)dτ

− 1

]
+ z

1− |z|2α

α
a(z)

∣∣∣∣∣ ≤ 1, z ∈ U \ {0} .

Then, the integral operator

Fα,β(z) =

α z∫
0

τα−1(f ′(τ))βdτ

1/α

is univalent in U, i.e. is in the class S.

Proof. Define the function

f1(z, t) = α

e−tz∫
0

τα−1(f ′(τ))βdτ z ∈ U, t ≥ 0.

Since f ∈ A, e−tz ∈ U for all t ≥ 0 and z ∈ U, it follows that

f1(z, t) =
(
e−tz

)α
+

∞∑
n=2

bn
(
e−tz

)n+α−1

where bn ∈ C, n ≥ 2. Consider the function f2(z, t) such that

f1(z, t) = zαf2(z, t) z ∈ U, t ≥ 0.

It is easy to check that f2(z, t) is analytic in U for all t ≥ 0 and

f2(z, t) = e−αt +

∞∑
n=2

bne
−t(n+α−1)zn−1.

Since the function a(z) is analytic in U it follows that the function f3(z, t) defined by

f3(z, t) =
(
eαt − e−αt

)
e

e−tz∫
0

a(τ)dτ

is analytic in U for all t ≥ 0.
Then, the function f4(z, t) given by

f4(z, t) = f2(z, t) +
1

c+ 1
f3(z, t) z ∈ U, t ≥ 0

is also analytic in U.
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We have

f4(0, t) = f2(0, t) +
1

c+ 1
f3(0, t) =

eαt

c+ 1
(1 + ce−2αt).

The conditions <α > 0 and |c| ≤ 1, c 6= −1 yield f4(0, t) 6= 0 for all t ≥ 0. Thus, there
exists an open disk Ur1 (0 < r1 ≤ 1) in which f4(z, t) 6= 0 for all t ≥ 0. Therefore, we
can choose an analytic branch of [f4(z, t)]1/α, which will be denoted by f5(z, t).

Making use of the previous results, we obtain that the function

L(z, t) = zf5(z, t)

or

L(z, t) =

α e−tz∫
0

τα−1(f ′(τ))βdτ +
1

c+ 1

(
eαt − e−αt

)
zαe

e−tz∫
0

a(τ)dτ


1/α

is analytic in Ur1 for all t ≥ 0.
We have L(z, t) = a1(t)z + . . . for z ∈ Ur1 and t ≥ 0, where

a1(t) = et
(

1 + ce−2αt

c+ 1

)1/α

, t ≥ 0.

From <α > 0 and |c| ≤ 1, c 6= −1 we obtain a1(t) 6= 0 and lim
t→∞

|a1(t)| =∞.

Let r2 ∈ (0, r1] and let K = {z ∈ C : |z| ≤ r2}. Since the function L(z, t) is analytic
in Ur1 , there existsM > 0 such that |L(z, t)| ≤Met for z ∈ K and t ≥ 0. Also, for t ≥ 0,
it is easy to see that there exists N > 0 such that |a1(t)| > Net. It follows that∣∣∣∣L(z, t)

a1(t)

∣∣∣∣ ≤ M

N
, for z ∈ K and t ≥ 0.

Thus, {L(z, t)/a1(t)}t≥0 is a normal family of functions in Ur1 .

Elementary calculations show that
∂L

∂z
(z, t) is analytic in Ur1 . It follows that

∣∣∣∣∂L∂z (z, t)

∣∣∣∣
is bounded on [0, T ] for any fixed T > 0 and z ∈ Ur3 (0 < r3 ≤ r1). Therefore, the func-
tion L(z, t) is locally absolutely continuous on [0,∞) locally uniform with respect to
z ∈ Ur1 .

Consider the function p(z, t) defined by

p(z, t) = z
∂L

∂z
(z, t)/

∂L

∂t
(z, t).

In order to prove that the function p(z, t) has an analytic extension in U and <p(z, t) >
0 for all t ≥ 0, we will show that the function w(z, t) given by

w(z, t) =
p(z, t)− 1

p(z, t) + 1
z ∈ Ur1 , t ≥ 0

has an analytic extension in U and |w(z, t)| < 1, for all z ∈ U and t ≥ 0.
Lengthy but elementary calculations give

w(z, t) = e−2tα

(c+ 1)(f ′(e−tz))βe
−
e−tz∫
0

a(τ)dτ

− 1

+
1

α
(1− e−2tα)e−tza(e−tz).

It is easy to check that w(z, t) is an analytic function in U. We have w(0, t) = ce−2tα

and thus

(2.4) |w(0, t)| = |c|e−2t<α < 1, for all t > 0.
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For t = 0 we obtain

w(z, 0) = (c+ 1)(f ′(z))βe
−
z∫
0
a(τ)dτ

− 1, z ∈ U.

Inequality (2.2) from the hyphothesis, yields

(2.5) |w(z, 0)| < 1 z ∈ U.

Let t > 0 and let z 6= 0. Since |e−tz| ≤ e−t < 1 for all z ∈ Ū = {z ∈ C : |z| ≤ 1}, it
follows that w(z, t) is analytic in Ū. Making use of the maximum modulus principle we
obtain that, for each fixed t > 0, there exists θ ∈ R such that :

|w(z, t)| < max
|z|=1

|w(z, t)| = |w(eiθ, t)|.

Denote u = e−teiθ. Then, |u| = e−t and thus

|w(eiθ, t)| =

∣∣∣∣∣|u|2α
[

(c+ 1)(f ′(u))βe
−
u∫
0
a(τ)dτ

− 1

]
+

1− |u|2α

α
ua(u)

∣∣∣∣∣ .
Inequality (2.3), from the hyphothesis, shows that

(2.6) |w(eiθ, t)| ≤ 1.

Combining (2.4), (2.5) and (2.6) we immediately get |w(z, t)| < 1 for all z ∈ U and
t ≥ 0. Therefore, the function p(z, t) has an analytic extension in U and <p(z, t) > 0 for
(z, t) ∈ U× [0,∞).

Since all the conditions of Theorem 2.1 are satisfied we can conclude that the function
L(z, t) has an analytic and univalent extension in U for all t ≥ 0. For t = 0, we have
L(z, 0) = Fα,β(z) and thus, the function Fα,β(z) given by (1.6) is analytic and univalent
in U. With this the proof is complete. �

Remark. The univalence condition (1.3) can be derived from Theorem 2.2 for α =
β = 1.

3. Specific univalence criteria
Many new or known univalence criteria can be generated with Theorem 2.2 and specific

choiches of the functions a(z) and f(z). In this section some of these univalence criteria
are listed.

1. Consider first

a(z) = β
f ′′(z)

f ′(z)
, z ∈ U, f ∈ A.

Then, making use of Theorem 2.2 we immediately obtain the following result.

3.1. Theorem. Let f ∈ A and let α, β, c be complex numbers such that <α > 0, β 6= 0
and |c| ≤ 1, c 6= −1. If

(3.1)
∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U

then the integral operator Fα,β(z) defined by (1.6) is in the class S.

Remark.
(i) For β = 1, Theorem 3.1 reduces to a result obtained by V. Pescar [13].
(ii) Setting α = β = 1 in Theorem 3.1, we obtain the univalence criterion given in

(1.2).
(iii) With c = 0 and β = 1, inequality (3.1) specializes to
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(3.2)
∣∣∣∣1− |z|2αα

zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U.

Using the next inequality

(3.3)
∣∣∣∣1− |z|2αα

∣∣∣∣ ≤ 1− |z|2<α

<α
in (3.2) we get the univalence condition (1.4) which guarantees the univalence of the
integral operator Fα(z) given by (1.5).

Let gν : U→ C be the normalized Bessel function of the first kind (see [2]) with Taylor
expansion

gν(z) = z +

∞∑
n=1

(−1)nzn+1

4nn!(ν + 1) . . . (ν + n)
.

For ν =
1

2
we have g 1

2
(z) =

√
z sin

√
z.

The next result follows from Theorem 3.1 with f(z) = gν(z).

3.2. Corollary. Let ν > 0 and let α, β, c be complex numbers such that 0 < |β| ≤
2(4ν2 + 9ν + 3)

4ν + 9
<α and |c| ≤ 1, c 6= −1. Then the function

(3.4) Fα,β,ν(z) =

α z∫
0

τα−1(g′ν(τ))βdτ

1/α

, z ∈ U

is in the class S. In particular, if 0 < |β| ≤ 17

11
<α and |c| ≤ 1, c 6= −1, then the function

Fα,β, 1
2
(z) =

α z∫
0

τα−1

(
sin
√
τ +
√
τ cos

√
τ

2
√
τ

)β
dτ

1/α

is in S.

Proof. Replace f(z) = gν(z) in left-hand side of (3.1). Making use of the triangle in-
equality and (3.3) we have ∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

zf ′′(z)

f ′(z)

∣∣∣∣
=

∣∣∣∣c|z|2α +
β

α
(1− |z|2α)

zg′′ν (z)

g′ν(z)

∣∣∣∣
≤ |c||z|2<α +

|β|
<α (1− |z|2<α)

∣∣∣∣zg′′ν (z)

g′ν(z)

∣∣∣∣ .
Since 0 < |β| ≤ 2(4ν2 + 9ν + 3)

4ν + 9
<α, |c| ≤ 1, c 6= −1 and making use of∣∣∣∣zg′′ν (z)

g′ν(z)

∣∣∣∣ ≤ 4ν + 9

2(4ν2 + 9ν + 3)
, z ∈ U, ν > 0

(see [6]), we obtain that

|c||z|2<α +
|β|
<α (1− |z|2<α)

∣∣∣∣zg′′ν (z)

g′ν(z)

∣∣∣∣
≤ |z|2<α +

|β|
<α (1− |z|2<α)

4ν + 9

2(4ν2 + 9ν + 3)
≤ |z|2<α + 1− |z|2<α = 1.
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It follows that inequality (3.1) holds true and therefore, the function Fα,β,ν(z) defined

by (3.4) is in S. The particular case follows from the first part by setting ν =
1

2
. �

2. Let g ∈ A. Choosing

f(z) =

z∫
0

g(τ)

τ
dτ, z ∈ U

in Theorem 2.2 we obtain easily a univalence criterion for another well known integral
operator.

3.3. Theorem. Let g ∈ A and let α, β, c be complex numbers such that <α > 0, β 6= 0
and |c| ≤ 1, c 6= −1. Suppose that∣∣∣∣∣(c+ 1)

(
g(z)

z

)β
e
−
z∫
0
a(τ)dτ

− 1

∣∣∣∣∣ ≤ 1, z ∈ U

and ∣∣∣∣∣|z|2α
[

(c+ 1)

(
g(z)

z

)β
e
−
z∫
0
a(τ)dτ

− 1

]
+

1− |z|2α

α
za(z)

∣∣∣∣∣ ≤ 1, z ∈ U \ {0} .

Then the integral operator

(3.5) Gα,β(z) =

α z∫
0

τα−1

(
g(τ)

τ

)β
dτ

1/α

, z ∈ U

is in the class S.

3. Consider a(z) defined by

a(z) = β

(
g′(z)

g(z)
− 1

z

)
, z ∈ U, g ∈ A.

Then, making use of Theorem 3.2 we get the following result.

3.4. Corollary. Let g ∈ A and let α, β, c ∈ C with <α > 0, β 6= 0 and |c| ≤ 1, c 6= −1. If

(3.6)
∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣ ≤ 1, z ∈ U

then the function Gα,β(z) defined by (3.5) is in the class S.

Suppose that the function g in Corollary 3.2 is in S. Then we have the following result
which shows that the integral operator Gα,β(z) preserves univalency.

3.5. Corollary. Let g ∈ S and let α, β, c ∈ C with c 6= −1, 0 < |β| ≤ min
{<α

2
, 1
4

}
and

<α > 0. If

(3.7) |c| ≤

 1− 2|β|
<α , <α ∈ (0,

1

2
)

1− 4|β|, <α ∈ [
1

2
,∞)

then the function Gα,β(z) is in S.

Proof. Making use of the triangle inequality in left-hand side of (3.6) we obtain∣∣∣∣c|z|2α +
β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣
≤ |c||z|2<α +

|β|
<α (1− |z|2<α)

[∣∣∣∣zg′(z)g(z)

∣∣∣∣+ 1

]
.
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Let g ∈ S. Then ∣∣∣∣zg′(z)g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ U.

It follows that

(3.8)
∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣ ≤ |c|+ 2|β|
<α

1− |z|2<α

1− |z| .

Denote x = |z| and a = <α. Consider the function φ : [0, 1)→ R defined by

φ(x) =
1− x2a

1− x .

It is easy to check that

(3.9) φ(x) ≤

 1, a ∈ (0,
1

2
)

2a, a ∈ [
1

2
,∞).

Combining (3.8) and (3.9) we have

∣∣∣∣c|z|2α +
β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣ ≤
 |c|+

2|β|
<α , <α ∈ (0,

1

2
)

|c|+ 4|β|, <α ∈ [
1

2
,∞)

Inequality (3.7) from hypothesis shows that the condition (3.6) is satisfied and thus,
making use of Corollary 3.2 we obtain that the function Gα,β(z) is in S. With this the
proof is complete. �

3.6. Corollary. Let α, β, c ∈ C with c 6= −1, 0 < |β| ≤ min
{<α

2
, 1
4

}
,<α > 0. If

inequality (3.7) holds true, then the function Kα,β(z) = z [2F1(α, 2β; 1 + α; z)]1/α is in
the class S. The symbol 2F1(a, b; c; z) denotes the well known hypergeometric function.

Proof. The Koebe function k(z) =
z

(1− z)2 is in S. Applying Corollary 3.3 we obtain

that the function

Kα,β(z) :=

α z∫
0

τα−1

(
k(τ)

τ

)β
dτ

1/α

=

α z∫
0

τα−1 (1− τ)−2β dτ

1/α

is also in S. With the substitution τ = uz the function Kα,β(z) becomes

Kα,β(z) = z

α 1∫
0

uα−1(1− uz)−2βdu

1/α

= z [2F1(α, 2β; 1 + α; z)]1/α .

Thus, the proof is completed. �

Remark. Similar results with the one given in Corollary 3.3 can be found in [9], [14].

4. Let g1, . . . , gm ∈ A and δ1, . . . , δm ∈ C \ {0}. Setting

f(z) =

z∫
0

m∏
k=1

(
gk(τ)

τ

) δk
β

dτ
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in Theorem 2.2 or Theorem 3.1 we can easily obtain various univalence criteria for the
integral operator

Gδ1,...,δm(z) =

α z∫
0

τα−1
m∏
k=1

(
gk(τ)

τ

)δk
dτ

1/α

which has been studied by many authors (see [2], [5], [6], [8], [18], etc.)
From the previous examples, it is clear that one can generate many univalence criteria

with Theorem 2.2 and suitable choices of the functions a(z) and f(z).
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