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GCED and reciprocal GCED matrices

Zahid Raza ∗ † Seemal Abdul Waheed ‡

Abstract
We have given structure theorems for a GCED (greatest common exponential divi-
sor) and Reciprocal GCED matrix. We have also calculated the value of the determi-
nant of these matrices. The formulae for the inverse and determinant of GCED and
Reciprocal GCED matrices defined on an exponential divisor closed set have been
determined.
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1. Introduction
Let S = {x1, x2, . . . , xn} be a finite ordered set of distinct positive integers. The matrix (S) where

sij = (xi, xj) =greatest common divisor of xi and xj , is called the greatest common divisor(GCD) matrix
on the set S. A set S = {x1, x2, . . . , xn} is said to be factor closed if for every xi ∈ S, and d | xi then
d ∈ S.

In 1876, H.J. Smith [7] proved that the determinant of a GCD matrix on S = {1, 2, . . . , n} is equal
to ϕ(1)ϕ(2) · · ·ϕ(n) where ϕ is Euler’s totient function. The result holds if S is a factor closed set.
The structure theorems for Reciprocal GCD matrices and LCM (least common multiple) matrices were
determined by S.J. Beslin [2]. The structures of Power GCD matrix, Power LCM matrix, Reciprocal LCM
matrix, GCD Reciprocal LCM matrix, GCUD (greatest common unitary divisor) Reciprocal LCUM (least
common unitary multiple) matrices have been determined [1, 3, 5, 9]. Research has also been extended to
divisibility properties of such matrices and their applications [4, 6]. It is worth to note that the structures
of most of the above mentioned matrices have been determined on factor closed sets, gcd closed sets, lcm
closed sets or unitary divisor closed sets or on sets contained in factor closed sets. This has motivated the
authors to follow the same direction.
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We recall that an integer d =
t∏
i=1

pi
ai is said to be an exponential divisor of m =

t∏
i=1

pi
bi , if ai|bi for

every 1 ≤ i ≤ t and is denoted by d|em. This notion was introduced by M. V. Subrarao [8]. Note that
unlike divisor and unitary divisor, 1 is not an exponential divisor for every m > 1. By convention 1|e1.

The smallest exponential divisor of m > 1 is its square free kernel κ(m) =
r∏
i=1

pi [10].

Two integers n and m have common exponential divisor if and only if they have the same prime factors.

Two integers m =
r∏
i=1

pi
bi and n =

r∏
i=1

pi
ci are exponentially co-prime if (bi, ci) = 1 for every 1 ≤ i ≤ r.

We denote the GCED (greatest common exponential divisor) of two integers m and n by (m,n)e. By
convention (1, 1)(e) = 1 and (1,m)(e) does not exist for every m > 1.

A set S = {x1, x2, x3, . . . , xn} is said to be an exponential divisor closed set if the exponential divisor
of every element of S belongs to S. For example the set {12, 18, 36} is not an exponential divisor closed
set. But, {6, 12, 18, 36} is an exponential divisor closed set.

Similarly, a set S = {x1, x2, x3, . . . , xn} is said to be GCED closed if (xi, xj)(e) ∈ S for every xi, xj ∈ S.
Note that {6, 12, 18, 36} is also a GCED closed set.
The exponential convolution of two arithmetic functions f and g is given as

(f � g)(n) =
∑

k1l1=m1

· · ·
∑

krlr=mr

f(p1
k1p2

k2 . . . pr
kr )g(p1

l1p2
l2 . . . pr

lr ),

where n = p1
m1p2

m2 . . . pr
mr .

The inverse with respect to � of the constant function 1 is called the exponential analogue of Möbius
function and is denoted by µ(e). It should be noted that the sets considered in section 2 are such that the
GCED of every two elements exists.

2. Structure of GCED matrix
Let T = {x1, x2, x3, . . . , xn} be an ordered set of distinct positive integers greater than 1. The n × n

matrix T(e) = (tij)(e) having tij = (xi, xj)(e) as its ijth entry is referred as the GCED (greatest common
exponential divisor) matrix on the set T , where (xi, xj)(e) is the greatest common exponential divisor of
xi and xj . Let R = {y1, y2, y3, . . . , ym} which is ordered by y1 < y2 < y3 < . . . < ym be a minimal
exponential divisor-closed set containing T . We refer R the exponential closure of the set T . It is easy to
see that GCED matrices are symmetric. We always assume that x1 < x2 < x3 < · · · < xn in T .

We define arithmetic function g(n) as follows:

(2.1) g(n) =
∑

a1b1=c1

∑
a2b2=c2

. . .
∑

arbr=cr

p1
a1p2

a2 · · · prarµ(e)(p1
b1p2

b2 · · · prbr ),

where n = p1
c1p2

c2 · · · prcr .

2.1. Theorem. Let R = {y1, y2, . . . , ym} be the exponential closure of the set T = {x1, x2, . . . , xn}, where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn.

Define the n×m matrix C = (cij) by

cij =

{
1, yj |exi
0, otherwise

and the m×m diagonal matrix by

Ψ = diag(g(y1), g(y2), . . . , g(ym)).

Then,
T(e) = CΨCt.

Proof. The ijth entry of CΨCt is equal to

(CΨCt)ij =

n∑
k=1

cikg(yk)cjk =
∑

yk|exi,yk|exj

g(yk) =
∑

yk|e(xi,xj)(e)

g(yk),
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where the function g is defined in Equation 2.1.
By Möbius Inversion Exponential formula, we have,∑

d|en

g(d) = n.

Finally, we get,
(CΨCt)ij = (xi, xj)(e).

2.2. Theorem. Let R = {y1, y2, . . . , ym} be the exponential closure of the set T = {x1, x2, . . . , xn} where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn. Then

detT(e) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))
2g(yk1)g(yk2) . . . g(ykn),

where C(k1,k2,...,kn) is the sub matrix of C consisting of the k1th, k2th, . . . , knth columns of C.

Proof. By Theorem 2.1, we have, T(e) = (CΨ
1
2 )(CΨ

1
2 )t. Thus we can write E = CΨ

1
2 which leads to

T(e) = EEt. By applying Cauchy-Binet formula, we get

det(T )(e) =
∑

1≤k1<k2<...<kn≤m

detE(k1,k2,...,kn) detEt(k1,k2,...,kn)

=
∑

1≤k1<k2<...<kn≤m

(detE(k1,k2,...,kn))
2,

where E(k1,k2,...,kn) is the sub matrix of E consisting of the k1th, k2th, . . . , knth columns of E.

detE(k1,k2,...,kn) =
√
g(yk1)g(yk2) . . . g(ykn) detC(k1,k2,...,kn).

Hence,

detT(e) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))
2g(yk1)g(yk2) . . . g(ykn).

2.3. Corollary. Let T = {x1, x2, . . . , xn} be a finite ordered set of distinct positive integers. If T = R,
then the determinant of GCED matrix T(e) defined on T is given as:

detT(e) =

n∏
k=1

g(xk).

Proof. Note that C is a lower triangular matrix with diagonal (1, 1, . . . , 1)n. This implies that detC = 1.
Since the determinant of a diagonal matrix is equal to the product of its diagonal entries, hence the desired
outcome achieved.

2.4. Corollary. If T(e) is an n × n GCED matrix on a finite ordered set of distinct integers denoted by
T = {x1, x2, . . . , xn}, then the trace is given as:

trT(e) =

n∑
k=1

xi.

2.5. Lemma. Let T(e) = (tij)(e) is an n×n GCED matrix defined on an exponential divisor closed set T .
Consider n×n matrix C = (cij) as defined in Theorem 2.1. Then, the n×n matrix W = (wij) defined by

wij =

{
µ(e)( xi

xj
), xj |exi

0, otherwise

is the inverse of C.
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Proof. The ijth entry of CW is given by

(CW )ij =

n∑
k=1

cikwkj =
∑

xk|exi,xj |exk

µ(e)(
xk
xj

) =
∑

xd|e
xi
xj

µ(e)(xd) =

{
1, if xi = xj
0, otherwise

If xi
xj

is not an integer then no xd divides xi
xj
. If xi = xj then, 1|e1 and µ(e)(1) = 1.

2.6. Theorem. Let T(e) be an n×n GCED matrix on an exponential divisor closed set. Then, its inverse
matrix (A)(e) = (aij)(e) is given as

(aij)(e) =
∑

xi|(e)xk,xj |(e)xk

µ(e) xd
xi
µ(e) xd

xj

g(xd)
.

Proof. Since T(e) = (CΨCt) and Lemma 2.5 suggests that, C−1 = W , therefore

(T )−1
(e) = (CΨCt)−1 = W tΨ−1W,

where ijth entry of (T )−1
(e) is given as

(aij)(e) =
∑

xi|(e)xd,xj |(e)xd

µ(e) xd
xi
µ(e) xd

xj

g(xd)
.

Hence, the required result.

3. Structure of Reciprocal GCED matrix
Let T = {x1, x2, x3, . . . , xn} be an ordered set of positive integers greater than 1. The n × n matrix

T (e) = (tij)(e) having tij = 1
(xi,xj)(e)

as its ijth entry on T is called a Reciprocal GCED matrix. It is easy
to note that Reciprocal GCED matrices are symmetric. We always assume that x1 < x2 < x3 < · · · < xn.

We define arithmetic function f(n) as follows:

(3.1) f(n) =
∑

a1b1=c1

∑
a2b2=c2

. . .
∑

arbr=cr

1

p1a1p2a2 · · · prar
µ(e)(p1

b1p2
b2 · · · prbr ),

where n = p1
c1p2

c2 · · · prcr .

3.1. Theorem. Let R = {y1, y2, . . . , ym} be an exponential closure of the set T = {x1, x2, . . . , xn}, where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn. Define the n×m matrix C = (cij) by

cij =

{
1, yj |exi
0, otherwise

and the m×m diagonal matrix by

Ξ = diag(f(y1), f(y2), . . . , f(ym)).

Then,
T (e) = CΞCt.

Proof. The ijth entry of CΞCt is equal to

(CΞCt)ij =

n∑
k=1

cikf(yk)cjk =
∑

yk|exi,yk|exj

f(yk) =
∑

yk|e(xi,xj)(e)

f(yk),

where f is defined in Equation 3.1. By Möbius Inversion Exponential formula,∑
d|en

g(d) =
1

n
.
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Finally we get,

(CΞCt)ij =
1

(xi, xj)(e)
.

3.2. Theorem. Let R = {y1, y2, . . . , ym} be an exponential closure of the set T = {x1, x2, . . . , xn}, where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn. Then

detT (e) =
∑

1≤k1<k2<···<kn≤m

(detC(k1,k2,...,kn))
2f(yk1)f(yk2) . . . f(ykn),

where C(k1,k2,...,kn) is the sub matrix of C consisting of the k1th, k2th, . . . , knth columns of C.

Proof. The proof can be done on similar lines as Theorem 2.2.

3.3. Corollary. Let T = {x1, x2, . . . , xn} be a finite ordered set of distinct positive integers. If T = R,
then the determinant of Reciprocal GCED matrix T (e) defined on T is given as:

detT (e) =
n∏
k=1

f(xk).

Proof. Note that C is a lower triangular matrix with diagonal (1, 1, . . . , 1)n. This implies that detC = 1.
The result is further proved by using the fact that the determinant of a diagonal matrix is equal to the
product of its diagonal entries.

3.4. Corollary. If T (e) is an n×n Reciprocal GCED matrix on a set T = {x1, x2, . . . , xn}, then the trace
is given as:

trT (e) =

n∑
k=1

1

xi
.

3.5. Theorem. Let T (e) be an n × n Reciprocal GCED matrix on an exponential divisor closed set T .
Then, its inverse matrix A(e) = (aij)(e) is given as:

(aij)(e) =
∑

xi|(e)xk,xj |(e)xk

µ(e) xd
xi
µ(e) xd

xj

f(xd)
.

Proof. Since T (e) = (CΞCt) and by Lemma 2.5, C−1 = W , therefore

(T )−1
(e) = (CΞCt)−1 = W tΞ−1W,

where ijth entry of (T )−1
(e) is given as

(aij)(e) =
∑

xi|(e)xk,xj |(e)xk

µ(e) xd
xi
µ(e) xd

xj

f(xd)
.

Hence, the required result.

4. Examples
4.1. Example. Let T = {12, 18, 36}. The GCED matrix T(e) on T is given as:

T(e) =

12 6 12
6 18 18
12 18 36

 .
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Note that T = {12, 18, 36} is not an exponential divisor closed set. Its exponential closure is R =
{6, 12, 18, 36}. The 3× 4 matrix (C)(e) is

C =

1 1 0 0
1 0 1 0
1 1 1 1

 .
By Theorem 2.2, we know that,

detT(e) =
∑

1≤k1<k2<...<kn≤m

(detCk1,k2,...,kn)2g(yk1)g(yk2) . . . g(ykn).

So,

detT(e) =

∣∣∣∣∣∣
1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣
2

g(6)g(12)g(18) +

∣∣∣∣∣∣
1 1 0
1 0 0
1 1 1

∣∣∣∣∣∣
2

g(6)g(12)g(36)+

∣∣∣∣∣∣
1 0 0
1 1 0
1 1 1

∣∣∣∣∣∣
2

g(6)g(18)g(36) +

∣∣∣∣∣∣
1 0 0
0 1 0
1 1 1

∣∣∣∣∣∣
2

g(12)g(18)g(36)

where, g(6) = 6, g(12) = 6, g(18) = 12 and g(36) = 12.
Hence, the determinant is given as:

detT(e) = (6)(6)(12) + (6)(6)(12) + (6)(12)(12) + (6)(12)(12) = 2592.

The Reciprocal GCED matrix T (e) on T is given as:

T (e) =


1
12

1
6

1
12

1
6

1
18

1
18

1
12

1
18

1
36

 .
By Theorem 3.2,

detT (e) =
∑

1≤k1<k2<...<kn≤m

(detCk1,k2,...,kn)2f(yk1)f(yk2) . . . f(ykn).

So,

detT (e) =

∣∣∣∣∣∣
1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣
2

f(6)f(12)f(18) +

∣∣∣∣∣∣
1 1 0
1 0 0
1 1 1

∣∣∣∣∣∣
2

f(6)f(12)f(36)+

∣∣∣∣∣∣
1 0 0
1 1 0
1 1 1

∣∣∣∣∣∣
2

f(6)f(18)f(36) +

∣∣∣∣∣∣
1 0 0
0 1 0
1 1 1

∣∣∣∣∣∣
2

f(12)f(18)f(36),

where,
f(6) = 1

6
µ(e)((2)(3)) = 1

6
, f(12) = 1

(2)(3)
µ(e)((22)(3)) + 1

(22)(3)
µ(e)((2)(3)) = −1

12

f(18) = 1
(2)(3)

µ(e)((32)(2)) + 1
(2)(32)

µ(e)((2)(3)) = −1
9

and
f(36) = 1

(2)(3)
µ(e)((22)(32)) + 1

(22)(3)
µ(e)((32)(2)) + 1

(2)(32)
µ(e)((22)(3)) +

1
(22)(32)

µ(e)((2)(3)) = 1
18
. Hence,

detT (e) =
1

3888
.
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4.2. Example. Let T = {2, 4, 16}. This set is an exponential divisor closed, so we apply the Corollary to
Theorem 2.2 directly to calculate the determinant. The GCED matrix defined on T is

T(e) =

2 2 2
2 4 4
2 4 16

 ,
where, g(2) = 2µ(e)(2) = 2, g(4) = 2µ(e)(22) + 22µ(e)(2) = 2, and g(16) = 2µ(e)(24) + 22µ(e)(22) +

24µ(e)(2) = 2(0) + 4(−1) + 16 = 12. Thus,

detT(e) =

3∏
k=1

g(xk) = g(2)g(4)g(16) = (2)(12)(12) = 48.

The Reciprocal GCED matrix T (e) on T is given as

T (e) =


1
2

1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
16

 ,
where, f(2) = 1

2
, f(4) = −1

4
and f(16) = −3

16
. Thus,

detT (e) =

3∏
k=1

f(xk) = (
1

2
)(
−1

4
)(
−3

16
) =

3

128
.

4.3. Example. Let T = {2, 4, 16}. The 3× 3 GCED matrix T(e) defined on T is

T(e) =

2 2 2
2 4 4
2 4 16

 .
By Theorem 2.6, we know that (T )−1

(e) = (aij) where,

a11 =
∑

2|exk
µ(e)(

xk
2

)µ(e)(
xk
2

)

g(xk)
= µ(e)(22)µ(e)(22)

g(2)
+ µ(e)(22)µ(e)(22)

g(4)
+ µ(e)(24)µ(e)(24)

g(16)
= 1,

a12 = µ(e)(22)µ(e)(2)
g(4)

+ µ(e)(24)µ(e)(22)
g(16)

= −1
2
, and a13 = µ(e)(24)µ(e)(2)

g(16)
= 0.

Similarly, one can calculate and verify the following values
a22 = 7

12
, a23 = −1

12
and a33 = 1

12
. So, the inverse of the GCED matrix T(e) is

(T )−1
(e) =


1 −1

2
0

−1
2

7
12

−1
12

0 −1
12

1
12

 .
The 3× 3 Reciprocal GCED matrix on T is given as

T (e) =


1
12

1
6

1
12

1
6

1
18

1
18

1
12

1
18

1
36

 .
The inverse of the Reciprocal GCED matrix T (e) is calculated to be

(T )−1
(e) =


−2 4 0
4 −28

3
16
3

0 16
3

−16
3

 .
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