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Approximation of generalized left derivations in
modular spaces
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Abstract
In this paper, we define modular spaces, and introduce some properties
of them. Moreover, we present a fixed point method to prove super-
stability of generalized left derivations from an algebra into a modular
space.
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1. Introduction

Let A be an algebra over the real or complex field F and let X be an A-module. An
additive mapping d : A → X is said to be a left derivation if the functional equation
d(xy) = xd(y) + yd(x) holds for all x, y ∈ A. Moreover, if d(αx) = αd(x) is valid for all
x ∈ A and for all α ∈ F, then d is called a linear left derivation. An additive mapping
D : A → X is said to be a generalized left derivation if there exists a left derivation
d : A → X such that D(xy) = xD(y) + yd(x) holds for all x, y ∈ A. Furthermore,
if D(αx) = αD(x) is valid for all x ∈ A and for all α ∈ F, then D is called a linear
generalized left derivation.

In 1940, Ulam [21] posed the first stability problem of functional equations, concerning
the stability of group homomorphisms, was solved in the case of the additive mapping
by Hyers [4] in the next year. Subsequently, Aoki [1] extended Hyers’ theorem for ap-
proximately additive mappings and for approximately linear mappings was presented by
Rassias [18]. The stability result concerning derivations between operator algebras was
first obtained by Semrl [20]. Also Badora [2] present the Hyers-Ulam stability and the
superstability of derivations. The equation is called superstable if each its approximate
solution is an exact solution. Various stability and superstability results for derivations
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have been investigated by a number of mathematicians [3, 5, 11, 12, 16, 17, 19]. In this
paper, we define modular spaces, and introduce some properties of them. Moreover, we
prove the superstability of generalized left derivations from an algebra with unit into
a modular space by using a fixed point method. The theory of modular spaces were
founded by Nakano [14] and were intensively developed by Luxemburg [9], Koshi and
Shimogaki [7] and Yamamuro [22] and their collaborators. In the present time the theory
of modulars and modular spaces is extensively applied, in particular, in the study of
various Orlicz spaces [15] and interpolation theory [8, 10], which in their turn have broad
applications [13].

1.1. Definition. Let X be an arbitrary vector space.
(a) A functional ρ : X→ [0,∞] is called a modular if for arbitrary x, y ∈ X,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by
(iii)

′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

If ρ is a modular, the corresponding modular space is the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .

Let ρ be a convex modular, the modular space Xρ can be equipped with a norm called
the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}
.

A function modular is said to be satisfy the ∆2–condition if there exists κ > 0 such
that ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

1.2. Definition. Let {xn} and x be in Xρ. Then
(i) the sequence {xn}, with xn ∈ Xρ, is ρ–convergent to x and we write xn

ρ−→ x if
ρ(xn − x)→ 0 as n→∞.
(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn−xm)→ 0 as n,m→∞.
(iii) A subset S of Xρ is called ρ–complete if and only if any ρ–Cauchy sequence is ρ–
convergent to an element of S.

We call the modular ρ has the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn) whenever
the sequence {xn} is ρ–convergent to x.

1.3. Remark. Note that ρ(.x) is an increasing function for each x ∈ X. Suppose
0 < a < b, and put y = 0 in property (iii) of Definition 1.1, then ρ(ax) = ρ

(
a
b
bx
)
≤ ρ(bx)

for all x ∈ X. Moreover, if ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x)
and also ρ(x) ≤ 1

2
ρ(2x) for all x ∈ X.

1.4. Example. An example of a modular space with ∆2–condition is the Orlicz space.
Let τ be a function defined on the interval [0,∞) such that τ(0) = 0, τ(α) > 0 for α > 0
and τ(α)→∞ as α→∞. Also assume that τ is convex, nondecreasing and continuous.
The function τ is called an Orlicz function. The Orlicz function τ satisfies the ∆2–
condition if there exists κ > 0 such that τ(2α) ≤ κτ(α) for all α > 0. Let (Ω,M, µ) be a
measure space. Let L0(µ) be the space of all measurable real–valued (or complex–valued)
functions on Ω. For every f ∈ L0(µ), we define the Orlicz modular ρτ (f) as

ρτ (f) =

∫
Ω

τ(|f |)dµ.
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The associated modular function space with respect to this modular is called an Orlicz
space, and will be denoted by Lτ (Ω, µ) or briefly Lτ . In other words,

Lτ = {f ∈ L0(µ)| ρτ (λf)→ 0 as λ→ 0}

or equivalently as

Lτ = {f ∈ L0(µ)| ρτ (λf) <∞ for some λ > 0}.

It is known that the Orlicz space Lτ is ρτ–complete. Moreover, (Lτ , ‖.‖ρτ ) is a Banach
space, where the Luxemburg norm ‖.‖ρτ is defined as follows

‖f‖ρτ = inf

{
λ > 0 :

∫
Ω

τ

(
|f |
λ

)
dµ ≤ 1

}
.

2. Main results
Throughout this paper, A and X denote a Banach algebra with unit and a unital

A-module respectively. Also Xρ denotes a ρ–complete modular space where ρ is a con-
vex modular on X with the Fatou property such that satisfies the ∆2–condition with
0 < κ ≤ 2. In this section, we present the superstability of generalized left derivations
from a Banach algebra into a complete modular space.

2.1. Theorem. Let d : A→ Xρ be a mapping with d(0) = 0 such that

(2.1) ρ (d(x+ y)− d(x)− d(y)) ≤ ϕ(x, y)

for all x, y ∈ A, where ϕ : A×A→ [0,∞) is a given mapping that

ϕ(2x, 2x) ≤ 2Lϕ(x, x)

and

(2.2) lim
n→∞

ϕ(2nx, 2ny)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1. Then there exist a unique additive mapping
D : A→ Xρ and a convex modular function ρ̃ such that

(2.3) ρ̃(D − d) ≤ 1

2(1− L)
.

Proof. Consider the set
B = {δ : A→ Xρ, δ(0) = 0}

we define the function ρ̃ on B as follows,

(2.4) ρ̃(δ) = inf{c > 0 : ρ(δ(x)) ≤ cϕ(x, x)}.

Then ρ̃ is convex modular. It is enough to show that ρ̃ satisfies the following condition

ρ̃(αδ + βγ) ≤ αρ̃(δ) + βρ̃(γ) (α, β ≥ 0, α+ β = 1).

Given ε > 0, then there exist c1 > 0 and c2 > 0 such that

c1 ≤ ρ̃(δ) + ε, ρ(δ(x)) ≤ c1ϕ(x, x)

and
c2 ≤ ρ̃(γ) + ε, ρ(γ(x)) ≤ c2ϕ(x, x).

For α, β ≥ 0 such that α+ β = 1, we get

ρ(αδ(x) + βγ(x)) ≤ αρ(δ(x)) + βρ(γ(x)) ≤ (αc1 + βc2)ϕ(x, x),

hence

ρ̃(αδ + βγ) ≤ αρ̃(δ) + βρ̃(γ) + (α+ β)ε.
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Consequently ρ̃(αδ + βγ) ≤ αρ̃(δ) + βρ̃(γ). Moreover, ρ̃ satisfies the ∆2–condition with
0 < κ < 2. For this, let {δn} be a ρ̃–Cauchy sequence in Eρ̃ and given ε > 0. There exists
a positive integer n0 ∈ N such that ρ̃(δn − δm) ≤ ε for all n,m ≥ n0. Then by definition
of the modular ρ̃, we have

(2.5) ρ (δn(x)− δm(x)) ≤ εϕ(x, x)

for all x ∈ A and n,m ≥ n0. Let x be a point of A, (2.5) implies that {δn(x)} is a
ρ–Cauchy sequence in Xρ. Since Xρ is ρ–complete, so {δn(x)} is ρ–convergent in Xρ, for
each x ∈ A. Therefore we can define a function δ : A→ Xρ by

δ(x) = lim
n→∞

δn(x)

for any x ∈ A. Letting m→∞, then (2.5) implies that

ρ̃(δn − δ) ≤ ε

for all n ≥ n0. Since ρ has the Fatou property, thus {δn} is ρ̃–convergent sequence in
Bρ̃. Therefore Eρ̃ is ρ̃–complete.

Now, we define the function T : Eρ̃ → Bρ̃ as follows

Tδ(x) :=
1

2
δ(2x)

for all δ ∈ Bρ̃. Let δ, γ ∈ Bρ̃ and let c ∈ [0,∞] be an arbitrary constant with ρ̃(δ−γ) ≤ c.
We have

ρ(δ(x)− γ(x)) ≤ cϕ(x, x)

for all x ∈ A. The last inequality implies that

ρ

(
δ(2x)

2
− γ(2x)

2

)
≤ 1

2
ρ(δ(2x)− γ(2x)) ≤ 1

2
cϕ(2x, 2x) ≤ Lcϕ(x, x)

for all x ∈ A. Hence, ρ̃(Tδ − Tγ) ≤ Lρ̃(δ − γ), for all δ, γ ∈ Bρ̃. Therefore T is a ρ̃–strict
contraction. We show that the ρ̃–strict mapping T satisfies the conditions of Theorem
3.4 of [6]. Letting x = y in (2.12), we get

(2.6) ρ(d(2x)− 2d(x)) ≤ ϕ(x, x)

for all x ∈ A. Replacing x by 2x in (2.6) we get

ρ(d(4x)− 2d(2x)) ≤ ϕ(2x, 2x)

for all x ∈ A. Since ρ is convex modular and satisfies the ∆2–condition, for all x ∈ A we
have

ρ

(
d(4x)

2
− 2d(x)

)
≤ 1

2
ρ(d(4x)− 2d(2x)) +

1

2
ρ(2d(2x)− 4d(x))

≤ 1

2
ϕ(2x, 2x) +

κ

2
ϕ(x, x).

Moreover,

ρ

(
d(22x)

22
− d(x)

)
≤ 1

2
ρ

(
2
d(4x)

22
− 2d(x)

)
≤ 1

22
ϕ(2x, 2x) +

κ

22
ϕ(x, x).

for all x ∈ A. By induction we obtain

(2.7) ρ

(
d(2nx)

2n
− d(x)

)
≤ 1

2n

n∑
i=1

κn−iϕ(2i−1x, 2i−1x) ≤ 1

2(1− L)
ϕ(x, x)



645

for all x ∈ A. Now we claim that δρ̃(d) = sup {ρ̃ (Tn(d)− Tm(d)) ;n,m ∈ N)} < ∞. It
follows from (2.7) that

ρ

(
d(2nx)

2n
− d(2mx)

2m

)
≤ 1

2
ρ

(
2
d(2nx)

2n
− 2d(x)

)
+

1

2
ρ

(
2
d(2mx)

2m
− 2d(x)

)
≤ κ

2
ρ

(
d(2nx)

2n
− d(x)

)
+
κ

2
ρ

(
d(2mx)

2m
− d(x)

)
≤ 1

1− Lϕ(x, x),

for every x ∈ A and n,m ∈ N, which implies that

ρ̃ (Tn(d)− T
m(d)) ≤ 1

1− L,

for all n,m ∈ N. Therefore δρ̃(d) < ∞. [6, Lemma 3.3] shows that {Tn(d)} is ρ̃–
convergent to D ∈ Bρ̃. Since ρ has the Fatou property, (2.7) gives ρ̃(TD − d) <∞.

If we replace x by 2nx in (2.6), then

ρ̃
(
d(2n+1x)− 2d(2nx)

)
≤ ϕ(2nx, 2nx),

for all x ∈ A. Hence

ρ

(
d(2n+1x)

2n+1
− d(2nx)

2n

)
≤ 1

2n+1
ρ
(
d(2n+1x)− 2d(2nx)

)
≤ 1

2n+1
ϕ(2n, 2nx)

≤ 1

2n+1
2nLnϕ(x, x) ≤ Ln

2
ϕ(x, x) ≤ ϕ(x, x)

for all x ∈ A, therefore ρ̃(T(D)−D) <∞. It follows from [6, Theorem 3.4] that ρ̃–limit
D of {Tn(d)} is fixed point of map T. If we replace x by 2nx and y by 2ny in (2.12), then
we obtain

ρ (d(2n(x+ y))− d(2nx)− d(2ny)) ≤ ϕ(2nx, 2ny)

for all x, y ∈ A. Hence,

ρ

(
d(2n(x+ y))

2n
− d(2nx)

2n
− d(2ny)

2n

)
≤ 1

2n
ρ (d(2n(x+ y))− d(2nx)− d(2ny))

≤ ϕ(2nx, 2ny)

2n

for all x, y ∈ A. Taking the limit, we deduce that D(x+y) = D(x)+D(y) for all x, y ∈ A,
that is, D is additive. Now, let D∗ be another fixed point of T, then

ρ̃(D −D∗) ≤ 1

2
ρ̃(2T(D)− 2d) +

1

2
ρ̃(2T(D∗)− 2d)

≤ κ

2
ρ̃(T(D)− d) +

κ

2
ρ̃(T(D∗)− d) ≤ κ

2(1− L)
<∞.

Since T is ρ̃–strict contraction, we get

ρ̃(D −D∗) = ρ̃(T(D)− T(D∗)) ≤ Lρ̃(D −D∗),

which implies that ρ̃(D −D∗) = 0 or D = D∗, since ρ̃(D −D∗) < ∞. This proves the
uniqueness of D. Also it follows from inequality (2.7) that

ρ̃(D − d) ≤ 1

2(1− L)
.

This completes the proof. �

We now investigate the superstability of a generalized left derivation from a unital
algebra into a modular space.
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2.2. Theorem. Let d : A → Xρ be a mapping with d(0) = 0. If there exists a mapping
g : A→ Xρ such that

(2.8) ρ (d(x+ y + zw)− d(x)− d(y)− zd(w)− wg(z)) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A, where ϕ : A×A×A×A→ [0,∞) is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.9) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1, then d is a generalized left derivation and g is
a left derivation.

Proof. Letting z = w = 0 in (2.8), then d satisfies (2.12) and so the Theorem 2.1 shows
that there exists a unique additive mapping D : A→ Xρ for which satisfies

ρ̃(D − d) ≤ 1

2(1− L)
,

where ρ̃ is the convex modular defined in (2.4). Now, we prove that d is a generalized
left derivation and g is a left derivation. Substituting x = y = 0 in (2.8), we get

(2.10) ρ (d(zw)− zd(w)− wg(z)) ≤ ϕ(0, 0, z, w),

for all z, w ∈ A. Moreover, if we replace z and w with 2nz and 2nw in (2.10), respectively,
and then divide both sides by 22n, we deduced that

ρ

(
d(22nzw)

22n
− z d(2nw)

2n
− wg(2nz)

2n

)
≤ ϕ(0, 0, 2nz, 2nw)

22n
,

for all z, w ∈ A. Letting n→∞, we obtain

D(zw)− zD(w) = lim
n→∞

w
g(2nz)

2n
,

for all z, w ∈ A. Suppose that w = e, hence it follows

lim
n→∞

g(2nz)

2n
= D(z)− zD(e),

for all z ∈ A. If γ(z) = D(z)− zD(e), then by the additivity of D, we get

γ(z+w) = D(z+w)−(z+w)D(e) = (D(z)−zD(e))+(D(w)−wD(e)) = γ(z)+γ(w),

for all z, w ∈ A. Therefore γ is additive.
Suppose ∆(z, w) = d(zw) − zd(w) − wg(z), for all z, w ∈ A. The inequality given in

(2.10) implies that

lim
n→∞

∆(2nz, w)

2n
= 0,

for all z, w ∈ A. Thus we get

D(zw) = ρ̃ lim
n→∞

d(22nzw)

2n
= lim
n→∞

2nzd(w) + wg(2nz) + ∆(2nz, w)

2n

= zd(w) + lim
n→∞

wg(2nz)

2n
= zd(w) + wγ(z),

for all z, w ∈ A. Since γ is additive, we have

2nzd(w) + 2nwγ(z) = D(2nz.w) = D(z.2nw) = zd(2nw) + 2nwγ(z),
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for all z, w ∈ A. Therefore zd(w) = z 1
2n
d(2nw), for all z, w ∈ A. By letting n→∞, we

obtain zd(w) = zD(w). If z = e, we have d = D. Consequently we get

(2.11) d(zw) = zd(w) + wγ(z),

for all z, w ∈ A. Now, we verify that γ is a left derivation. Using the fact that d satisfies
(2.11), we have

γ(xy) = d(xy)− xyd(e) = xd(y) + yγ(x)− xyd(e)

= x(d(y)− yd(e)) + yγ(x) = xγ(y) + yγ(x),

for all x, y ∈ A, which means that γ is a derivation and hence d is a generalized left
derivation.

Finally, we show that g is a left derivation. If we replace w by 2nw in (2.10) and then
divide both sides by 22n, we obtain

ρ

(
d(2nzw)

2n
− z d(2nw)

2n
− 2nw

g(z)

2n

)
≤ ϕ(0, 0, 2nz, w)

2n
,

for all z, w ∈ A. Passing the limit as n→∞, we get

d(zw)− zd(w)− wg(z) = 0,

for all z, w ∈ A. Therefore d(zw) = zd(w) + wg(z), for all z, w ∈ A, and hence if w = e,
then g(z) = d(z) − zd(e) = γ(z), for all z ∈ A. Since γ is a left derivation, hence g is a
left derivation and this completes the proof. �

The similar way as in the proof of Theorem 2.2, we get the following result for a
generalized derivation.

2.3. Theorem. Let d : A → Xρ be a mapping with d(0) = 0. If there exists a mapping
g : A→ Xρ such that

(2.12) ρ (d(x+ y + zw)− d(x)− d(y)− zd(w)− g(z)w) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A, where ϕ : A×A×A×A→ [0,∞) is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.13) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1, then d is a generalized derivation and g is a
derivation.

With the help of Theorem 2.1, the following result can be derived for a linear gener-
alized left derivation.

2.4. Theorem. Let A be a unital algebra and let X be a unital A-module and Xρ a
ρ–complete modular space. Suppose d : A → Xρ satisfies the condition d(0) = 0 and an
inequality of the form

(2.14) ρ (d(αx+ βy + zw)− αd(x)− βd(y)− zd(w)− wg(z)) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A and all α, β ∈ U = {z ∈ C : |z| = 1}, where ϕ : A×A×A×A→ [0,∞)
is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.15) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0
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for all x, y ∈ A and a constant 0 < L < 1. Then d is a linear generalized left derivation
and g is a linear left derivation.

Proof. We consider α = β = 1 ∈ U in (2.14) and then d satisfies the inequality (2.8). It
follows from Theorem 2.3 that d is a generalized left derivation and g is a left derivation.
It is enough to prove that d and g are linear. By the proof of Theorem 2.2 we know that

(2.16) d(x) = ρ̃− lim
n→∞

T
n(d)(x) = ρ̃− lim

n→∞

1

2n
d(2nx).

Letting w = 0 in (2.14), we have

(2.17) ρ (d(αx+ βy)− αd(x)− βd(y)) ≤ ϕ(x, y, 0, 0),

for all x, y ∈ A and all α, β ∈ U. If we replace x and y with 2nx and 2ny in (2.16),
respectively, and then divide both sides by 2n, we see that

(2.18) ρ

(
1

2n
d(α2nx+ β2ny)− 1

2n
αd(2nx)− 1

2n
βd(2ny)

)
≤ 1

2n
ϕ(2nx, 2ny, 0, 0)→ 0,

for all x, y ∈ A and all α, β ∈ U, as n→∞. Hence, we get

(2.19) d(αx+ βy) = αd(x) + βd(y),

for all x, y ∈ A and all α, β ∈ U. Now the proof of [5, Theorem 2.3] implies that

(2.20) d(αx+ βy) = αd(x) + βd(y),

for all x, y ∈ A and all α, β ∈ C. �

Employing the similar way as in the proof of Theorem 2.3 and Theorem 2.4, we get
the next corollary for a linear generalized derivation.

2.5. Corollary. Let A be a unital algebra and let X be a unital A-module and Xρ a
ρ–complete modular space. Suppose d : A → Xρ satisfies the condition d(0) = 0 and an
inequality of the form

(2.21) ρ (d(αx+ βy + zw)− αd(x)− βd(y)− zd(w)− g(z)w) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A and all α, β ∈ U = {z ∈ C : |z| = 1}, where ϕ : A×A×A×A→ [0,∞)
is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.22) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1. Then d is a linear generalized derivation and
g is a linear derivation.

2.6. Remark. Let A be a normed algebra and let B be a Banach algebra. It is known
that every normed space is modular space with the modular ρ(x) = ‖x‖ and κ = 2. A
typical example of ϕ in the above results is ϕ(x, y) = ε+ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p),
such that ε, θ ≥ 0 and p ∈ [0, 1).
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