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Approximation of generalized left derivations in
modular spaces

Tayebe Lal Shateri *

Abstract

In this paper, we define modular spaces, and introduce some properties
of them. Moreover, we present a fixed point method to prove super-
stability of generalized left derivations from an algebra into a modular
space.
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1. Introduction

Let A be an algebra over the real or complex field F and let X be an A-module. An
additive mapping d : A — X is said to be a left derivation if the functional equation
d(zy) = zd(y) + yd(z) holds for all z,y € A. Moreover, if d(az) = ad(z) is valid for all
x € A and for all a € F, then d is called a linear left derivation. An additive mapping
D : A — X is said to be a generalized left derivation if there exists a left derivation
d : A — X such that D(zy) = zD(y) + yd(z) holds for all z,y € A. Furthermore,
if D(az) = aD(x) is valid for all x € A and for all a € F, then D is called a linear
generalized left derivation.

In 1940, Ulam [21] posed the first stability problem of functional equations, concerning
the stability of group homomorphisms, was solved in the case of the additive mapping
by Hyers [4] in the next year. Subsequently, Aoki [1] extended Hyers’ theorem for ap-
proximately additive mappings and for approximately linear mappings was presented by
Rassias [18]. The stability result concerning derivations between operator algebras was
first obtained by Semrl [20]. Also Badora [2] present the Hyers-Ulam stability and the
superstability of derivations. The equation is called superstable if each its approximate
solution is an exact solution. Various stability and superstability results for derivations
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have been investigated by a number of mathematicians [3, 5, 11, 12, 16, 17, 19]. In this
paper, we define modular spaces, and introduce some properties of them. Moreover, we
prove the superstability of generalized left derivations from an algebra with unit into
a modular space by using a fixed point method. The theory of modular spaces were
founded by Nakano [14] and were intensively developed by Luxemburg [9], Koshi and
Shimogaki [7] and Yamamuro [22] and their collaborators. In the present time the theory
of modulars and modular spaces is extensively applied, in particular, in the study of
various Orlicz spaces [15] and interpolation theory [8, 10], which in their turn have broad
applications [13].

1.1. Definition. Let X be an arbitrary vector space.

(a) A functional p : X — [0, 00] is called a modular if for arbitrary z,y € X,
(i) p(z) =0 if and only if z = 0,

(ii) p(azx) = p(x) for every scaler a with |a| =1,

(iii) p(ax + By) < p(x) + p(y) if and only if a + 5 =1 and o, 8 > 0,

(b) if (iii) is replaced by

(iii)/ plax + By) < ap(z) + Bp(y) if and only if a + 8 =1 and o, 8 > 0,
then we say that p is a convex modular.

If p is a modular, the corresponding modular space is the vector space X, given by
Xp={zeX: pAz)—0as— 0}.

Let p be a convex modular, the modular space X, can be equipped with a norm called
the Luxemburg norm, defined by

2|l :inf{)\ >0: p(;) < 1}.

A function modular is said to be satisfy the As—condition if there exists k > 0 such
that p(2z) < kp(z) for all z € X,.

1.2. Definition. Let {z,} and x be in X,. Then

(i) the sequence {z,}, with z, € X,, is p-convergent to  and we write z, — x if
p(xn —xz) = 0 as n — oco.

(ii) The sequence {z, }, with z, € X,, is called p—Cauchy if p(zp, —xm) — 0 as n,m — oo.
(iii) A subset 8 of X, is called p—complete if and only if any p—Cauchy sequence is p-
convergent to an element of S.

We call the modular p has the Fatou property if p(z) < liminf, _, o p(z,) whenever
the sequence {z,} is p—convergent to x.

1.3. Remark. Note that p(.z) is an increasing function for each x € X. Suppose
0 < a < b, and put y = 0 in property (iii) of Definition 1.1, then p(ax) = p ($bz) < p(bx)
for all z € X. Moreover, if p is a convex modular on X and |a| < 1, then p(az) < ap(z)
and also p(z) < 1p(2z) for all z € X.

1.4. Example. An example of a modular space with As—condition is the Orlicz space.
Let 7 be a function defined on the interval [0, c0) such that 7(0) = 0,7(a) > 0 for a > 0
and 7(a) — 00 as a — co. Also assume that 7 is convex, nondecreasing and continuous.
The function 7 is called an Orlicz function. The Orlicz function 7 satisfies the As—
condition if there exists k£ > 0 such that 7(2a) < k7(a) for all @ > 0. Let (2,90, 1) be a
measure space. Let L°(i1) be the space of all measurable real-valued (or complex—valued)
functions on Q. For every f € L°(u), we define the Orlicz modular p, (f) as

pe(f) = / (I/1)dp
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The associated modular function space with respect to this modular is called an Orlicz
space, and will be denoted by L7 (£, u) or briefly L™. In other words,

LT ={feLw| pr(Af) = 0asx—0}
or equivalently as
L™ ={f e L’(u)| p-(\f) < oo for some A > 0}.

It is known that the Orlicz space L” is pr—complete. Moreover, (L7, ||.||,,) is a Banach
space, where the Luxemburg norm ||.||,, is defined as follows

£, :inf{A S0 [ (%) i< 1}.

2. Main results

Throughout this paper, A and X denote a Banach algebra with unit and a unital
A-module respectively. Also X, denotes a p—complete modular space where p is a con-
vex modular on X with the Fatou property such that satisfies the As—condition with
0 < k < 2. In this section, we present the superstability of generalized left derivations
from a Banach algebra into a complete modular space.

2.1. Theorem. Letd: A — X, be a mapping with d(0) = 0 such that
2.1)  pldlz+y) —dz) —d(y)) < e(z,y)
for all x,y € A, where p: A x A — [0,00) is a given mapping that
(22,22) < 2L (z, 7)
and
(22) 1im PE0ZW
n—o0o on
for all x;y € A and a constant 0 < L < 1. Then there exist a unique additive mapping
D: A — X, and a convex modular function p such that
L
20—-1)

Proof. Consider the set

(23) pD-d)<

B={:A—>X,, 6(0)=0}
we define the function p on B as follows,
(2.4)  p(%) =inf{c > 0: p(é(x)) < cp(z,z)}.
Then p is convex modular. It is enough to show that p satisfies the following condition
plad + By) < ap(d) +Bp(y) (@B 20, a+B=1).
Given € > 0, then there exist ¢; > 0 and c2 > 0 such that
o <F0) +e p6(a)) < crpla,a)
and
2 <p(y) +e, p(v(@)) < c2pp(x, ).
For o, 8 > 0 such that a + 8 =1, we get
p(ad(z) + By(@)) < ap(6(x)) + Bp(1(x)) < (acr + Bea)p(w, @),

hence

plasd + Bv) < ap(d) + Bp(7) + (a + Be.
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Consequently p(ad + Bv) < ap(d) + Bp(7y). Moreover, p satisfies the As—condition with
0 < k < 2. For this, let {0, } be a p-Cauchy sequence in £; and given € > 0. There exists
a positive integer no € N such that p(d, — dm) < € for all n,m > ng. Then by definition
of the modular p, we have

(25)  p(6a(a) — 6u(2)) < ep(a,2)

for all z € A and n,m > ng. Let z be a point of A, (2.5) implies that {,(z)} is a
p—Cauchy sequence in X,. Since X, is p—complete, so {d,(z)} is p—convergent in X, for
each x € A. Therefore we can define a function 6 : A — X, by

0(z) = lim 0, (x)

n—00

for any = € A. Letting m — oo, then (2.5) implies that
p(én —0) <e

for all n > ng. Since p has the Fatou property, thus {4, } is p—convergent sequence in
B5. Therefore 5 is p—complete.
Now, we define the function 7 : €5 — B as follows

To(x) = %5(21:)

for all § € B;. Let 6,7 € B; and let ¢ € [0, 0o] be an arbitrary constant with p(d—v) < c.
We have

p(0(z) —v(z)) < co(z, )
for all z € A. The last inequality implies that

0(2z)  ~v(2x) 1

) (T _ T) < Lp(6(21) —7(22)) < Lep(20.20) < Lep(a.x)

for all x € A. Hence, p(T6 — Tv) < Lp(d — ), for all 4,y € Bj. Therefore T is a p-strict
contraction. We show that the p-strict mapping T satisfies the conditions of Theorem
3.4 of [6]. Letting z = y in (2.12), we get

(26)  pld(2e) — 2d(2)) < p(z,2)
for all z € A. Replacing = by 2z in (2.6) we get
pld(dz) — 2d(22)) < p(2,22)

for all z € A. Since p is convex modular and satisfies the As—condition, for all =z € A we

have
) (@ - 2d(as)> < gold(dr) — 2d(22)) + 5 p(2d(2) ~ 4d())
< %@(2x, 2z) + gnp(x, x).
Moreover,
) (d(;x) _ d(a:)) < %p <2d(242x) _ zd(x)) < ?12<p(2x,2x) + 2%@(:5756).

for all z € A. By induction we obtain

2.7 »p (d(ZZm) - d(x)) < ZL” K2 e, 2 ) < ﬁgﬁ(m,x)

i=1
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for all z € A. Now we claim that d5(d) = sup {p (T7"(d) — T™(d)) ;n,m € N)} < oco. It

follows from (2.7) that
, (d(z”x) ) d(g%)) L (2d ) ‘L <2d 9 s ))
5o (1820 - i )) + 50 (2220 - aw)

2n 2m
< ;o).

IN

for every x € A and n,m € N, which implies that
1

p(T"(d)—T"(d)) < ——

P (@)~ T"(@) < T
for all n,m € N. Therefore §5(d) < oco. [6, Lemma 3.3] shows that {T"(d)} is p—
convergent to D € B;. Since p has the Fatou property, (2.7) gives p(TD — d) < co.

If we replace z by 2"z in (2.6), then

p(d2"z) — 2d(2"2)) < ¢(2"z,2"2),

for all z € A. Hence

p (d(2n+13:) _ d(2"a:)) < 1 o (d(2n+1$€) —2d(2"7)) <

2n+1 n — 2n+1

p(2",2"z)

1
2n+1

L
2"L"p(z, ) < 7(,0(3},1’) < o(z, )

<
— 2n+1
for all z € A, therefore p(T(D) — D) < oco. It follows from [6, Theorem 3.4] that p-limit
D of {T™(d)} is fixed point of map T. If we replace = by 2"z and y by 2"y in (2.12), then
we obtain
p(d(2"(x +y)) — d(2"x) — d(2"y)) < p(2"z,2"y)
for all z,y € A. Hence,

p (1 AT B < Lot ) - ) - d(2)

2n 2n 2n - 2n
< p(2",2"y)
< on
for all z,y € A. Taking the limit, we deduce that D(z+y) = D(xz)+D(y) for all z,y € A,
that is, D is additive. Now, let D* be another fixed point of T, then

F(D — D) < SH(ET(D) — 2d) + L p(27(D°) — 2d)

K K K
< —p(T(D) — —p(T(D*) —d) < —— .
< §AT(D) =)+ 5AT(DY) = d) € gy <o
Since T is p-strict contraction, we get
F(D — D*) = B(T(D) — T(D")) < LF(D — D),

which implies that p(D — D*) = 0 or D = D", since p(D — D*) < oo. This proves the
uniqueness of D. Also it follows from inequality (2.7) that

~ 1

—d) < .

p(D—d) < 50-1)

This completes the proof. O

We now investigate the superstability of a generalized left derivation from a unital
algebra into a modular space.



646

2.2. Theorem. Letd: A — X, be a mapping with d(0) = 0. If there exists a mapping

g:A— X, such that

(2.8)  pld(@+y+2w) —d(z) — d(y) — zd(w) —wg(2)) < ¢(z,y, 2, w)

for all z,y,z,w € A, where ¢ : A x A X A X A — [0,00) is a given mapping such that
»(2z,22,0,0) < 2Lp(z,z,0,0)

and
gn on on gn
(2.9)  1im £E29.00 o 9(0.0.2%5w) 0 9(0,0,2,2%0)
n— o0 2n n— o0 2n n— o0 2m

for all x,y € A and a constant 0 < L < 1, then d is a generalized left derivation and g is
a left derivation.

Proof. Letting z = w = 0 in (2.8), then d satisfies (2.12) and so the Theorem 2.1 shows
that there exists a unique additive mapping D : A — X, for which satisfies

_

2(1-1L)’

where p is the convex modular defined in (2.4). Now, we prove that d is a generalized
left derivation and g is a left derivation. Substituting x = y = 0 in (2.8), we get

(2.10)  p(d(zw) — zd(w) —wg(2)) < ¢(0,0, 2, w),

for all z,w € A. Moreover, if we replace z and w with 2"z and 2"w in (2.10), respectively,
and then divide both sides by 22", we deduced that

2n n n n n
p(d(2 2w) 7Zd(2 w) 7wg(2 z)) < ©(0,0,2"2, 2™ w)

D —d) <

22n on on — 22n ?

for all z,w € A. Letting n — oo, we obtain

D(zw) — zD(w) = lim wg(Q"z)

n—oo on ’

for all z,w € A. Suppose that w = e, hence it follows

lim 9(2"z) = D(z) — zD(e),

n—oo on
for all z € A. If v(z) = D(z) — zD(e), then by the additivity of D, we get
V(z4w) = D(z+w)—(24w)D(e) = (D(2)—2D(e))+(D(w)—wD(e)) = v(2)+~(w),

for all z,w € A. Therefore ~ is additive.
Suppose A(z,w) = d(zw) — zd(w) — wg(z), for all z,w € A. The inequality given in
(2.10) implies that
lim A(2"z,w)
n— oo 2n

=0,

for all z,w € A. Thus we get

2n n n n
D(zw) = 7 lim d(2 nzw) — lim 2" zd(w) +wg(§nz) + A2z, w)
n—o0 n—oo
. wg(2z)
= zd(w) + lim —on = zd(w) + wy(z),
n— oo

for all z,w € A. Since ~ is additive, we have

2"zd(w) + 2"wy(z) = D(2"z.w) = D(2.2"w) = 2d(2"w) 4+ 2" wv(z),
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for all z,w € A. Therefore zd(w) = z5-d(2"w), for all z,w € A. By letting n — oo, we
obtain zd(w) = zD(w). If z = e, we have d = D. Consequently we get
(2.11)  d(zw) = zd(w) + wy(z),

for all z,w € A. Now, we verify that v is a left derivation. Using the fact that d satisfies
(2.11), we have

V(zy) = d(zy) — zyd(e) = zd(y) + yy(z) — zyd(e)
= z(d(y) — yd(e)) +yy(z) = 2v(y) + yy(2),
for all z,y € A, which means that + is a derivation and hence d is a generalized left
derivation.
Finally, we show that g is a left derivation. If we replace w by 2"w in (2.10) and then
divide both sides by 22", we obtain
d2"zw)  d2"w) . 9(z) ©(0,0,2"z,w)
_ _ I )« A2 S )
p ( on z on 2w on — omn ’
for all z,w € A. Passing the limit as n — oo, we get
d(zw) — zd(w) —wg(z) =0,

for all z,w € A. Therefore d(zw) = zd(w) + wg(z), for all z,w € A, and hence if w = e,
then g(z) = d(z) — zd(e) = (%), for all z € A. Since 7 is a left derivation, hence g is a
left derivation and this completes the proof. O

The similar way as in the proof of Theorem 2.2, we get the following result for a
generalized derivation.

2.3. Theorem. Let d: A — X, be a mapping with d(0) = 0. If there exists a mapping

g: A — X, such that

(2.12) p(d(x+y+ zw) —d(z) — d(y) — zd(w) — g(z)w) < o(z,y, z,w)

for all z,y,z,w € A, where ¢ : A x A X A X A — [0,00) is a given mapping such that
@(2'%7 2335 03 0) S ZLSO(:E? €z, 07 O)

and
(2.13) lim 90(2 z,2 y7070) — lim 90(0>O72 Z7w) — lim 90(070’372 w)
n—oo

on n— oo an n— oo 2n

=0

for all z,y € A and a constant 0 < L < 1, then d is a generalized derivation and g is a
derivation.

With the help of Theorem 2.1, the following result can be derived for a linear gener-
alized left derivation.

2.4. Theorem. Let A be a unital algebra and let X be a unital A-module and X, a

p—complete modular space. Suppose d : A — X, satisfies the condition d(0) = 0 and an

inequality of the form

(2.14)  p(d(az + By + zw) — ad(x) — Bd(y) — zd(w) — wg(z)) < o(z,y, z, w)

forallz,y,z,w € Aand alla, B € U= {2z € C: |z| =1}, where p : AXAXAXA — [0, 00)

is a given mapping such that
»(2z,22,0,0) < 2Lp(z,x,0,0)

and

(2.15)  lim 2E®29.000

n— oo 2n n—00 2n n—00 2n
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forall z,y € A and a constant 0 < L < 1. Then d is a linear generalized left derivation
and g is a linear left derivation.

Proof. We consider « = 8 =1 € U in (2.14) and then d satisfies the inequality (2.8). It
follows from Theorem 2.3 that d is a generalized left derivation and g is a left derivation.
It is enough to prove that d and g are linear. By the proof of Theorem 2.2 we know that

(2.16) d(z) = 5 — lim T°(d)(x) = 5— lim Qind(z%).

n—00 n—00

Letting w = 0 in (2.14), we have

(2.17)  p(d(az + By) — ad(x) — Bd(y)) < ¢(z,y,0,0),

for all z,y € A and all o, € U. If we replace z and y with 2"z and 2"y in (2.16),

respectively, and then divide both sides by 2", we see that

(2.18) p (%d(o&"m 42"y — Q%ad(m) - %w(z"y)) < 2%@(2%, 2"4.0,0) = 0,

for all z,y € A and all a, 8 € U, as n — co. Hence, we get

(219)  d(az + By) = ad(z) + Bd(y),

for all z,y € A and all o, 8 € U. Now the proof of [5, Theorem 2.3] implies that

(2.20)  d(ax + By) = ad(z) + Bd(y),

for all z,y € A and all o, 8 € C. O
Employing the similar way as in the proof of Theorem 2.3 and Theorem 2.4, we get

the next corollary for a linear generalized derivation.

2.5. Corollary. Let A be a unital algebra and let X be a unital A-module and X, a
p—complete modular space. Suppose d : A — X, satisfies the condition d(0) = 0 and an
inequality of the form

(2.21)  p(d(az + By + z2w) — ad(z) — Bd(y) — zd(w) — g(z)w) < ¢(z,y, 2, w)

forallz,y,z,w € Aand alla, € U= {z € C: |z| =1}, where p : AXAXAXA — [0, 00)
is a given mapping such that

»(2z,22,0,0) < 2Lp(z,x,0,0)

and

n—o0o on n—o0o on n—oo an

=0

forall z,y € A and a constant 0 < L < 1. Then d is a linear generalized derivation and
g 1S a linear derivation.

2.6. Remark. Let A be a normed algebra and let B be a Banach algebra. It is known
that every normed space is modular space with the modular p(z) = ||z|| and Kk = 2. A
typical example of ¢ in the above results is p(z,y) = € + 0(||=||” + [|y||” + || 2||” + |w|?),
such that €,6 > 0 and p € [0,1).
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