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Efficient exponential ratio estimator for estimating
the population mean in simple random sampling
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Abstract
This paper proposes, with justification, two exponential ratio estima-
tors of population mean in simple random sampling without replace-
ment. Their biases and mean squared error are derived and compared
with existing related ratio estimators. Analytical and numerical results
show that at optimal conditions, the proposed ratio estimators are al-
ways more efficient than the regression estimator and some existing
estimators under review.
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1. Introduction
In Sample Surveys, auxiliary information are always used to improve the precision

of estimates of population parameters. This can be done at either estimation or selec-
tion stage or both stages. The commonly used estimators, which make use of auxiliary
variables, include ratio estimator, regression estimator, product estimator and difference
estimator. The classical ratio estimator is preferred when there is a high positive correla-
tion between the variable of interest, Y and the auxiliary variable, X with the regression
line passing through the origin. The classical product estimator, on the other hand is
mostly preferred when there is a high negative correlation between Y and X while the
linear regression estimator is most preferred when there is a high positive correlation
between the two variables and the regression line of the study variable on the auxiliary
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variable has intercept on Y axis. Ratio estimation has gained relevance in Estimation
theory because of its improved precision in estimating the population parameters. It has
been widely applied in Agriculture to estimate the mean yield of crops in a certain area
and in Forestry, to estimate with high precision, the mean number of trees or crops in a
forest or plantation. Other areas of relevance include Economics and Population studies
to estimate the ratio of income to family size.

According to [13], regression estimator, in spite of its lesser practicability, seems to
be holding a unique position due to its sound theoretical basis. The classical ratio and
product estimators even though considered to be more useful in many practical situation
have efficiencies which does not exceed that of the linear regression. As a result of this
limitation, most authors have carried out several researches towards the modification of
the existing ratio, product or classes of ratio and product estimators of the population
mean in simple random sampling without replacement to improve efficiency. Among
authors, who have carried out researches in this direction are [9], [10], [11], [25], [14], [15]
, [5], [2], [3], [1], [20], [21], [22], [23], [15], [16], [4], [19] and [28].

So far, only the estimators proposed by [17], which is a modification of those of [9] and
[10] is more efficient than the linear regression estimator.. This paper therefore proposes
ratio estimators using an exponential ratio estimator, whose efficiencies would be better
than regression estimator, [5] and compared with other ratio estimators including [17].
Authors like [6], [7],[13] and [18] extended related works of ratio estimators to stratified
sampling.

This work reviews some related existing estimators, proposes new improved estimators
and derive their properties. Their efficiencies are used to compare with other existing
estimators and empirical results used to validate every theoretical claim.

2. Review of some related existing Estimators
Consider a finite population Π = {π1, π2, . . . , πN} of size N. Let Y and X be the study

and auxiliary variables with population means Ȳ and X̄ respectively. It is assumed that
information on the population mean X̄ of the auxiliary variable is known and Yi, Xi ≥ 0
(since the survey variables are generally non-negative). Let a sample of size n be drawn
by simple random sampling without replacement (SRSWOR) from the population Π and
the sample means ȳ and x̄ of the study and auxiliary variables obtained respectively.
Given the above population, a summary of some related existing estimators with their
Mean Squared Errors (MSE’s) are given below:

Table 1: Existing related estimators with their MSEs
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S/N Estimators MSE

1 ȳ ,
unbiased sample mean Ȳ 2λC2

y

2 ȳR = ȳ
x̄
X̄,

Classical Ratio Ȳ 2λ[C2
y − 2ρCyCx + C2

x]

3 ȳ< = ȳ exp

[
(X̄−x̄)
(X̄+x̄)

]
Bahl and Tuteja [1]

Ȳ 2λ[C2
y +

C2
x

4
(1− 4k)]

4 ȳGS =
[
ω∗1 ȳ + ω∗2

(
X̄ − x̄

)] (
ηX̄+δ
ηx̄+δ

)
Gupta and Shabbir [5]

Ȳ 2[1− ν1]

5 ȳGS = ψ∗1 ȳ
(
ηX̄+δ
ηx̄+δ

)
+ ψ∗2

(
X̄ − x̄

) (
ηX̄+δ
ηx̄+δ

)2

Singh and Solanki [17]
Ȳ 2[1− ν2]

6 ȳreg = ȳ + b
(
X̄ − x̄

)
,

Regression Estimator Ȳ 2λC2
y(1− ρ2)

7 t(α,ζ) = ȳ{2−
(
x̄
X̄

)α
exp

[
ζ(x̄−X̄)
(X̄+x̄)

]
}

Solanki et al [25]
Ȳ 2λ{C2

y + (2α+ζ)
4

C2
x[(2α+ ζ) + 4k]}

where
Cx = Sx

X̄
be the coefficient of variation of the auxiliary variable,

Cy =
Sy

Ȳ
be the coefficient of variation of the study variable,

ρ= Sxy

SxSy
be the correlation coefficient between the auxiliary and study variables

k =
ρCy

Cx
and f = n

N
, the sampling fraction; where

Sx
2 = (N − 1)−1

N∑
i=1

(
xi − X̄

)2
,

population variance of the auxiliary variable;

Sy
2 = (N − 1)−1

N∑
i=1

(
yi − Ȳ

)2
,

population variance of the study variable;

Sxy = (N − 1)−1
N∑
i=1

(
xi − X̄

) (
yi − Ȳ

)
,

population covariance between the auxiliary and study variables;

X̄ = N−1
N∑
i=1

xi, population mean of the auxiliary variable

Ȳ = N−1
N∑
i=1

yi, population mean of the study variable

x̄ = n−1
n∑
i=1

xi, sample mean of the auxiliary variable,

ȳ = n−1
n∑
i=1

yi, sample mean of the study variable,
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α1 =
{

1 + λ
[
C2
y + τC2

x (3τ − 4k)
]}
, α2 = λC2

x, α3 = λC2
x (k − 2τ) ,

α4 =
[
1− λτC2

x (k − τ)
]
, α5 = λτC2

x

τ =
ηX̄(

ηX̄ + δ
) .

A =
{

1 + λ
[
C2
x + τC2

x (3τ − 4k)
]}
, B = λC2

x, C = λC2
x (3τ − k) ,

D =
[
1 + λτC2

x (τ − k)
]
, E = 2λτC2

x

ω∗ =
(α2α4 + α3α5)

(α1α2 − α2
3)

, ω∗ =
R (α1α5 + α3α4)

(α1α2 − α2
3)

,

R =
Ȳ

X̄
, ν1 =

(
α2α

2
4 + 2α3α4α5 + α1α

2
5

)
(α1α2 − α2

3)

ψ∗1 =
(BD− CE)

(AB− C2)
, ψ2 =

(AE− CD)

(AB− C2)
, ν2 =

(
BD2 − 2CDE +AE2

)
(AB− C2)

ω∗1 , ω
∗
2 , ψ∗1 and ψ∗2 are optimum values of ω1, ω2, ψ1 and ψ2 respectively, η (η 6= 0),

α, δ and ζ are suitably chosen constants or functions of the known parameters such as
standard deviation Sx, moment ratios β1(x), β2(x), Coefficient of Variation, Cx, and
Correlation Coefficient ρY,X between the variables Y and X, and so on.

[17] made corrections on the Mean Squared Error(MSE) of the class of estimators
proposed by [5] to obtain the correct expression of the MSE. The corrected version would
be used in this study. They went further to compare the efficiency of the estimators of
[5] with those proposed by [9], [10], [11] and found that a class of estimators proposed by
[5] was more efficient than those of [9], [10], [11]. [17] proceeded to propose a new class
of modified estimators from that of [5]. These estimators were more efficient than those
of [5], [9], [10], [15] and the regression estimator. In this paper, two alternative ratio
estimators which are more efficient than the linear regression estimators are proposed
with justification.

3. Proposed Estimator I
The first ratio estimator is proposed as

(3.1) ȳpr1 = θ1ȳ + θ2

(
X̄ − x̄

)
exp

[(
X̄ − x̄

)
/
(
X̄ + x̄

)]
θ1 and θ2 are suitably chosen scalars, such that θ1 > 0 and −∞ < θ2 <∞.

3.1. The bias and Mean Squared Error of the proposed estimator. The pro-
posed estimator in terms of e’s, is expressed as

(3.2) x̄ = X̄ (1 + ex) ȳ = Ȳ (1 + ey)

where ex = x̄− X̄/X̄ ey = ȳ − Ȳ )/Ȳ .

(3.3)
E[ex] = E[ey] = 0, E[ex]2 =

1− f
n

Cx
2;E[ey]2 =

(1− f
n

Cy
2;

E[exey] =
(1− f)

n
ρ CxCy =

(1− f)

n
kCx

2.

(3.4) ȳpr1 = Ȳ

[
θ1 + θ1ey − θ2

X̄

Ȳ

[
1− ex

2

(
1 +

ex
2

)−1

+
e2
x

2

(
1 +

ex
2

)−2

+ . . .

]]
.

It is assumed that |ex| < 1; |ey| < 1 so that
(
1 + ex

2

)−1 and
(
1 + ex

2

)−2 can be
expanded.
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Expanding equation (3.4) by Taylor series approximation and neglecting terms of e’s
having powers greater than two, we have:
ȳpr1 = Ȳ

[
θ1 + θ1ey − θ2mex[1− (ex/2)

(
1− ex/2 + e2

x/4
)

+ e2
x/8]

]
where m = X̄/Ȳ , leading to

(3.5) ȳpr1 − Ȳ = Ȳ

{
(θ1 − 1) + θ1ey − θ2mex + θ2m

e2
x

2

}
.

Therefore, the Bias of the estimator is given as

(3.6) B(ȳ)pr1 = E[ȳpr1 − Ȳ ] = Ȳ [(θ1 − 1) + θ2mλ
Cx

2

2
]

The MSE of ȳpr1 to first degree approximation is obtained by squaring equation (3.5)
and ignoring powers of ‘e’ greater than two and taking the expectation of the square as
follows:(
ȳpr1 − Ȳ

)2
= Ȳ 2

[
(θ1 − 1)2 + θ2 (θ2 − 1)me2

x + θ2
1e

2
y − 2θ1θ2meyex + θ2

2m
2e2
x

]
= Ȳ 2

[
θ2

1 − 2θ1 + 1 + θ1θ2me
2
x − θ2me

2
x + θ2

1e
2
y − 2θ1θ2meyex + θ2

2m
2e2
x

]
= Ȳ 2

[
1 + θ2

1

(
1 + e2

y

)
− 2θ1 − 2θ1θ2m

(
eyex − e2x

2

)
− 2θ2m

e2x
2

+ θ2
2m

2e2
x

]
.

(3.7)

MSE (ȳpr1) = E
(
ȳpr1 − Ȳ

)2
= Ȳ 2[1 + θ2

1

(
1 + λC2

y

)
− 2θ1−

− 2θ1θ2mλC2
x

(
k − 1

2

)
− 2θ2mλ

C2
x

2
+ θ2

2m
2λC2

x]

= Ȳ 2[1 + θ2
1γ1 − 2θ1 − 2θ1θ2mγ2 − 2θ2mγ3 + θ2

2m
2γ4]

where γ1 = 1 + λC2
y , γ2 = C2

xλ
(
k − 1

2

)
, γ3 =

λC2
x

2
, γ4 = λC2

x

3.2. Optimal conditions for MSE of proposed estimator I. To obtain the op-
timum values of θ1 and θ2 that would minimize the MSE of the estimator, the partial
derivative of (3.7) is taken with respect to θ1 and θ2 respectively and equated to zero as
shown below:

(3.8)
∂MSE (ȳpr1)

∂θ1
= 2θ1γ1 − 2θ2mγ2 − 2 = 0⇒ θ1γ1 − θ2mγ2 = 1

(3.9)
∂MSE (ȳpr1)

∂θ2
= −2θ1mγ2 − 2mγ3 + 2θ2m

2γ4 = 0⇒ −θ1mγ2 + θ2m
2γ4 = mγ3

Solving equations (3.8) and (3.9) simultaneously gives the optimal values of θ1 and θ2 as

(3.10) θ∗1 = (γ4 + γ2γ3)/(γ1γ4 − γ2
2)

(3.11) θ∗2 = R(γ2 + γ1γ3)/(γ1γ4 − γ2
2)

where R = Ȳ /X̄
Substituting equations (3.10) and (3.11) in (3.7) gives the minimum MSE as:

(3.12) MSEmin (ȳpr1) = Ȳ 2 {1− [(γ4 + 2γ2γ3 + γ1γ
2
3)/(γ1γ4 − γ2

2)]
}

which leads to

(3.13) MSEmin (ȳpr1) = Ȳ 2[1− q1]

where q1 = (γ4 +2γ2γ3 +γ1γ
2
3)/(γ1γ4 − γ2

2). These results can be summarized in theorem
I below:
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3.1. Theorem. If θ1 → θ∗1 and θ2 → θ∗2 such that θ∗1 > 0 and − ∞ < θ∗2 < ∞ the
proposed estimator will have a Mean Squared Error,
MSE (ȳpr1)≥Ȳ 2

{
1− [(γ4 + 2γ2γ3 + γ1γ

2
3)/(γ1γ4 − γ2

2)]
}
,

with strict equality holding if θ1 = θ∗1 andθ2 = θ∗2 .

3.3. Some special cases of proposed estimator I.

Case I: When θ1 = 1. The proposed estimator becomes

(3.14) ȳpr11 = ȳ + θ2

(
X̄ − x̄

)
exp

[
(X̄ − x̄)/

(
X̄ + x̄

)]
,

which is obtained by setting θ1 = 1 in (3.7). The optimum value of θ2 that
would make the MSE a minimum is:

(3.15) θ
′
2 =

γ2 + γ3

mγ4
= B

where B is the regression coefficient. Substitution of equation (3.15) into (3.7)
with θ1 = 1, gives the minimum MSE as

(3.16) MSEmin (ȳpr11) = λȲ 2C2
y(1− ρ2)

Remark I: It should be noted here that equation (3.16) gives the same expres-
sion as the Variance of the linear regression estimator

(3.17) ȳreg = ȳ + b(X̄ − x̄)

where b is the sample regression coefficient. Therefore, when θ1 = 1 and θ2 is
optimal, the proposed estimator I has the same efficiency as the simple linear
regression estimator.

Case II: When θ1 = 1 and θ2 = 1. The proposed estimator reduces to

(3.18) ȳpr12 = ȳ +
(
X̄ − x̄

)
exp[(X̄ − x̄)/(X̄ + x̄)

with MSE given as

(3.19) MSE (ȳpr12) = λȲ 2[C2
y −mC2

x (2k −m)]

Case III: When θ1 = 1, θ2 = 0 The proposed estimator reduces to unbiased sam-
ple mean estimator ȳ, with Variance given as:

(3.20) V (ȳpr13) = λȲ 2C2
y

These cases are specific members of the family of the proposed estimator I obtained by
varying the values of θ1 and θ2. Table 2 gives a summary of some members of this
proposed family of estimators.
Table 2: Some members of the family of proposed estimator I and their MSE’s.

S/N Estimator θ1 θ2 MSE

1 ȳ + θ2(X̄ − x̄) exp

[
(X̄−x̄)
(X̄+x̄)

]
1 γ2+γ3

mγ4
= b λȲ 2C2

y(1− ρ2)

2 ȳ +
(
X̄ − x̄

)
exp[

(X̄−x̄)
(X̄+x̄)

] 1 1 Ȳ 2[C2
y −mC2

x (2k −m)]

3 ȳ 1 0 λȲ 2C2
y

4 θ∗1 ȳ + θ∗2(X̄ − x̄) exp

[
(X̄−x̄)
(X̄+x̄)

]
θ∗1 θ∗2 Ȳ 2

{
1− [

γ4+γ1γ
2
3+2γ2γ3

γ1γ4−γ22
]
}
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4. Proposed estimator II
The second proposed estimator takes the form

(4.1) ȳpr2 = ϕ1ȳ + ϕ2

(
X̄ − x̄

)
exp[2(X̄ − x̄)/(X̄ + x̄)]

Where ϕ1 and ϕ2 are suitable scalars and ϕ1 > 0,−∞ < ϕ2 < ∞. Expressing (4.1) in
terms of e’s gives

(4.2) ȳpr2 = Ȳ

{
ϕ1 + ϕ1ey − ϕ2m[1− e1

(
1 +

ex
2

)−1

+
e2
x

2

(
1 +

ex
2

)−2

+ . . .]

}
.

The first degree approximation of equation (4.2) is obtained as: ȳpr2 = Ȳ [ϕ1 + ϕ1ey −
ϕ2mex

(
1− ex + e2

x

)
]

= Ȳ [ϕ1 + ϕ1ey − ϕ2mex + ϕ2me
2
x]

(4.3) ȳpr2 − Ȳ = Ȳ [(ϕ1 − 1) + ϕ1ey − ϕ2mex + ϕ2me
2
x]

The Bias of ȳpr2 is obtained from equation (4.3) as:

(4.4) B (ȳpr2) = E
(
ȳpr2 − Ȳ

)
= Ȳ

[
(ϕ1 − 1) + ϕ2mλC2

x

]
.

Squaring equation (4.3) and ignoring powers of ‘e’ greater than two, we have:

(4.5)

(ȳpr2 − Ȳ )
2

= Ȳ 2[(ϕ1 − 1)2 + 2ϕ2 (ϕ1 − 1)me2
x

+ ϕ2e
2
y − 2ϕ1ϕ2meyex + ϕ2

2m
2e2
x]

= Ȳ 2[1 + ϕ2
1

(
1 + e2

y

)
− 2ϕ1 − 2ϕ1ϕ2m

(
eyex − e2

x

)
− 2ϕ2me

2
x + ϕ2

2m
2e2
x]

Its MSE is obtained by taking the expectation of equation (4.5) as shown below:

(4.6)

MSE (ȳpr2) = E(ȳpr2 − Ȳ )
2

= Ȳ 2 [1 + ϕ2
1

(
1 + λC2

y

)
−2ϕ1 − 2ϕ1ϕ2mλC2

x (k − 1)− ϕ2mλC2
x + ϕ2

2m
2λC2

x

]
= Ȳ 2[ϕ2

1γ1 − 2ϕ1 − 2ϕ1ϕ2mγ5 − 2ϕ2mγ4 + ϕ2
2m

2γ4]

where γ5 = λC2
x(k − 1)

4.1. Optimality conditions for estimator II. To investigate the optimal conditions
for estimator II, let

∂MSE(ȳpr2)

∂ϕ1
=
∂MSE(ȳpr2)

∂ϕ2
= 0

so that,

(4.7) ϕ1γ1 − ϕ2mγ5 = 1

(4.8) −ϕ1mγ5 + ϕ2m
2γ4 = mγ4.

Solving equations (4.7) and (4.8) simultaneously give the optimal values of ϕ1 and ϕ2 as:

(4.9) ϕ?1 = (γ4 + γ4γ5)/(γ1γ4 − γ2
5)

(4.10) ϕ?2 = R(γ5 + γ1γ4)/
(
γ1γ4 − γ2

5

)
.

Substituting equations (4.9) and (4.10) in (4.6) yields the minimum MSE of the estimator
as:

(4.11) MSE (ȳpr2) = Ȳ 2{1−
[
(γ4 + 2γ4γ5 + γ1γ

2
4)/(γ1γ4 − γ2

5)
]
} = Ȳ 2[1− q2]

where,

q2 = (γ4 + 2γ4γ5 + γ1γ
2
4)/(γ1γ4 − γ2

5)

These results are summarized in the following theorem.
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4.1. Theorem. If ϕ1 → ϕ?1 and ϕ2 → ϕ?2 such that ϕ?1 > 0 and −∞ < ϕ?2 < ∞, the
proposed estimator will have a Mean Squared Error of
MSE (ȳpr2)≥Ȳ 2

{
1− [(γ4 + 2γ4γ5 + γ1γ

2
4)/(γ1γ4 − γ2

5)]
}
,

with strict equality holding if ϕ1 = ϕ?1 and ϕ2 = ϕ?2.

4.2. Some special cases of proposed estimator II. Some special cases of ȳpr2 with
varying values of ϕ1 and ϕ2 and MSEs are given in Table 3.
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Table 3: Some types of estimator II and their MSEs
S/N Estimator ϕ1 ϕ2 MSE

1 ȳ + ϕ2(X̄ − x̄) exp

[
2(X̄−x̄)
(X̄+x̄)

]
1 γ4+γ5

mγ4
= b λȲ 2C2

y(1− ρ2)

2 ȳ +
(
X̄ − x̄

)
exp[

2(X̄−x̄)
(X̄+x̄)

] 1 1 Ȳ 2[C2
y −mC2

x (2k −m)]

3 ȳ 1 0 λȲ 2C2
y

4 ϕ?1ȳ + ϕ?2(X̄ − x̄) exp

[
2(X̄−x̄)
(X̄+x̄)

]
ϕ?1 ϕ?2 Ȳ 2

{
1− [

γ4+γ1γ
2
4+2γ4γ5

γ1γ4−γ25
]
}

5. Efficiency Comparison
In this section, the MSE of some existing ratio estimators are compared with the

optimal MSE of the proposed estimators.

5.1. Unbiased simple random sample mean, ȳ. The Variance of the simple random
mean expressed in terms of γ′s is:

(5.1) V (ȳ) = Ȳ 2(γ1 − 1)

Therefore, for the proposed estimator I to be more efficient than the simple sample
random mean, ȳ, V (ȳ)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [γ1 + q1 − 2] > 0

(5.2) ⇒ [γ1 + q1 − 2] > 0.

Also for ȳpr1 to be more efficient than ȳ

V (ȳ)−MSE (ȳpr2) > 0

⇒ Ȳ 2 [γ1 + q2 − 2] > 0

(5.3) ⇒ [γ1 + q2 − 2] > 0.

If equations (5.2) and (5.3) hold, then the proposed estimators would be more efficient
than the simple random sample mean.

5.2. Classical ratio estimator, ȳR. The MSE of ȳR expressed in terms of γ′s is given
by: For estimator I,

(5.4) MSE (ȳR) = Ȳ 2[γ1 − 2γ2 − 1]

And for estimator II

(5.5) MSE (ȳR) = Ȳ 2[γ1 − 2γ4 − γ5 − 1]

Therefore, for the proposed estimator ȳpr1 to be more efficient than the classical ratio
estimator,

MSE (ȳR)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [γ1 − 2γ2 − 2 + q1] > 0

(5.6) ⇒ [(γ1 + q1)− 2 (γ2 + 1)] > 0

Similarly, for ȳpr2 to be more efficient than ȳR

MSE (ȳR)−MSE (ȳpr2) > 0

⇒ [γ1 − 2γ4 − γ5 − 2 + q2] > 0

(5.7) ⇒ [(γ1 + q2)− 2 (γ4 + 1)− γ5] > 0

Therefore, for the proposed estimators to be more efficient than the classical ratio esti-
mator, equations (5.6) and (5.7) must hold.
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5.3. Regression Estimator, ȳreg. The Variance of the regression estimator expressed
in terms of γ′s is given as: For estimator I

(5.8) V (ȳreg) = Ȳ 2{γ1 − [(γ2 + γ3)2/γ4]− 1}
and for estimator II

(5.9) V (ȳreg) = Ȳ 2[γ1 − [(γ4 + γ5)2/γ4]− 1]

Therefore, for the proposed estimators to be more efficient than the regression estimator,

V (ȳreg)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [γ1 − [(γ2 + γ3)2/γ4]− 1− (1− q1)
]
> 0

⇒ Ȳ 2 [γ1 − [(γ2 + γ3)2/γ4]− 2 + q1
]
> 0

(5.10) ⇒ [γ4 (γ1 − 1)− γ2(γ2 + γ3)]2/γ4

(
γ1γ4 − γ2

2

)
> 0

(5.10) holds if [ γ4

(
γ1γ4 − γ2

2

)
> 0]. Therefore,

γ4

(
γ1γ4 − γ2

2

)
> 0

⇒ γ1γ
2
4 − γ2

2γ4 > 0

⇒ λ2C4
x

(
1 + λC2

y

)
− λ2C4

x

(
k − 1

2

)2
> 0

⇒ 1 + λC2
y >

(
k − 1

2

)2

⇒ Var (ȳ) + Ȳ 2 >
1

C2
x

[MSE (ȳ<) + Ȳ 2λC2
y(ρ2 − 1)]

(5.11) ⇒ Var (ȳ) + Ȳ 2 >
1

C2
x

[MSE (ȳ<)− Ȳ 2λC2
y(1− ρ2)]

Clearly, from equation (5.11), MSE (ȳ<), the Mean Square Error of [1] is smaller than
Var (ȳ) , the Variance of the simple random sample mean. Also, the second term in the
bracket on the right hand side of equation (5.11) is the Variance of regression estimator,
which is smaller than V (ȳ). Therefore, the expression on the left hand side of equation
(5.11) is always greater than that of the right hand side. Hence, equation (5.11) holds.
It follows therefore that [γ4

(
γ1γ4 − γ2

2

)
> 0 ] and the numerator of (5.10) is a square,

which implies that (5.10) holds. Hence, the proposed estimator I is always more efficient
than classical regression estimator.
Also,

V (ȳreg)−MSE (ȳpr2) > 0

⇒ Ȳ 2 [γ1 − [(γ4 + γ5)2/γ4]− 1− (1− q2)
]
> 0

⇒ Ȳ 2 [γ1 − [(γ4 + γ5)2/γ4]− 2 + q2
]
> 0

(5.12) ⇒ [γ4 (γ1 − 1)− γ5(γ5 + γ4)]2/γ4

(
γ1γ4 − γ2

5

)
> 0

Similarly, for (5.12) to be satisfied,

γ4

(
γ1γ4 − γ2

5

)
> 0

⇒ γ1γ
2
4 − γ2

5 > 0

⇒ 1 + λC2
y > (k − 1)2

⇒ Ȳ 2 + Var (ȳ) >
1

C2
x

[MSE (ȳR) + Ȳ 2λC2
y(ρ2 − 1)]

(5.13) ⇒ Ȳ 2 + Var (ȳ) >
1

C2
x

[MSE (ȳR)− Ȳ 2λC2
y(1− ρ2)]

From (5.13), we observe that MSE (ȳR) , the Mean Square Error of the classical ratio
estimator is always smaller than Var (ȳ) , the variance of simple random sample mean.
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In addition, the second term in the bracket of the right hand side of (5.13) is the Variance
of the classical regression estimator. Therefore the expression on the left hand side of
equation (44) is greater than that of the right hand side. Hence, equation (44) holds and
the numerator of (5.12) is positive, which implies that (43) always holds.
Remark II Since equations (5.10) and (5.12) are all greater than zero, then the proposed
estimators are always more efficient than the regression estimator. Moreover, since the
regression estimator is more efficient than the simple random sample mean, classical ratio
estimator, estimators of [14], [9] and [10], and any other ratio estimators, it follows that
the proposed estimators are more efficient than these estimators. The above remark is
summarized in the following theorem.

5.1. Theorem. If θ1, θ2, ϕ1 ϕ2 attain or almost attain their optimal values in the pro-
posed estimators, then the proposed estimators are always more efficient than the regres-
sion estimator.

5.4. Gupta and Shabbir [5] estimator, ȳGS. The proposed estimators would be
better than the Gupta and Shabbir’s class of estimators if:

MSE (ȳGS)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [(1− ν1)− (1− q1)] > 0

(5.14) ⇒ [q1 − ν1] > 0

MSE (ȳGS)−MSE (ȳpr2) > 0

(5.15) ⇒ [q2 − ν1] > 0

5.5. Singh and Solanki [17] estimator, ȳSS. The proposed estimators would be
more efficient than Singh and Solanki’s class of estimators if:

MSE (ȳSS)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [(1− ν2)− (1− q1)] > 0

(5.16) ⇒ [q1 − ν2] > 0

and

MSE (ȳSS)−MSE (ȳpr2) > 0

⇒ Ȳ 2 [(1− ν2)− (1− q2)] > 0

(5.17) ⇒ [q2 − ν2] > 0
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6. Empirical Study
To investigate our theoretical results, as well as, test the optimality and efficiency

performances of our proposed estimators over other existing ones considered in this study,
we make use of data of the following populations.

Population I:

N = 200, n = 50, Ȳ = 500, X̄ = 25, Cy = 15, Cx = 2, ρ = 0.90, β2 (x) = 50

[ Kadilar and Cingi [11] ]
Population II:

N = 106, n = 20, Ȳ = 2212.59, X̄ = 27421.70, Cy = 5.22, Cx = 2.10,

ρ = 0.86, β2 (x) = 34.57

[ Kadilar and Cingi,[9, 10] ]
Population III:

N = 104, n = 20, Ȳ = 625.37, X̄ = 13.93, Cy = 1.866, Cx = 1.653,

ρ = 0.865, β2 (x) = 17.516

[ Kadilar and Cingi [11] ]
Population IV:

N = 923, n = 180, Ȳ = 436.4345, X̄ = 11440.5, Cy = 1.7183, Cx = 1.8645,

ρ = 0.9543, β2 (x) = 18.7208

[ Koyuncu and Kadilar, [12] ]
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Table 4: Optimum values ( θ∗1 , θ∗2 , MSEs and PREs of some Gupta and Shabbir[5] estimators and the proposed estimators.

Estimators Population I Population II Population III Population IV
θ∗1 θ∗2 MSE PRE θ∗1 θ∗2 MSE PRE θ∗1 θ∗2 MSE PRE θ∗1 θ∗2 MSE PRE

ȳGS1 0.60 76.61 95396.05 884.471 0.74 0.09 1043368.08 518.642 0.96 2.41 13321.23 412.828 0.999 -0.005 224.356 1121.019
ȳGS2 0.59 76.48 95304.34 885.322 0.74 0.09 1043366.16 518.643 0.96 0.87 13316.65 412.970 0.999 -0.005 224.356 1121.019
ȳGS3 059 76.49 95308.27 885.285 0.74 0.09 1043366.29 518.643 0.96 0.98 13316.98 412.960 0.999 -0.005 224.356 1121.019
ȳGS4 0.60 76.71 95468.42 883.800 0.74 0.09 1043369.73 518.641 0.96 3.10 13323.21 412.766 0.999 -0.005 224.356 1121.019
ȳGS5 0.60 76.59 95386.75 884.557 0.74 0.09 1043367.79 518.642 0.96 2.19 13320.59 412.848 0.999 -0.005 224.356 1121.019
ȳGS6 0.59 76.48 95303.94 885.325 0.74 0.09 1043366.14 518.643 0.96 0.85 13316.58 412.972 0.999 -0.005 224.356 1121.019
ȳGS7 0.59 76.48 95304.34 885.322 0.74 0.09 1043366.03 518.643 0.96 0.83 13316.52 412.974 0.999 -0.005 224.356 1121.019
ȳGS8 0.60 76.73 95485.97 883.638 0.75 0.09 1049814.73 515.457 0.96 4.25 13326.36 412.669 0.999 -0.001 224.357 1121.014
ȳGS9 0.59 76.48 95303.94 885.325 0.74 0.09 1043366.03 518.643 0.96 0.81 13316.47 412.975 0.999 -0.005 224.356 1121.019
ȳGS10 0.59 76.47 95300.40 885.358 0.74 0.09 1043366.03 518.643 0.96 0.70 13316.13 412.986 0.999 -0.005 224.356 1121.019
ȳreg - - 160312.5 526.316 - - 1409113.09 384.025 - - 13846.05 397.180 - - 224.625 1119.677
ȳpr1 0.58 83.08 72692.31 1160.7 0.71 0.13 713838.3 758.06 0.92 42.13 11051.73 497.60 0.99 6.23 212.519 1183.458
ȳpr2 0.56 4.23 45870.36 1839.4* 0.65 1.73 240765.7 2247.6* 0.87 0.98 6819.164 806.5* 0.99 0.35 183.147 1373.254*
ȳ - - 843750 100.000 - - 5411348.28 100.000 - - 54993.75 100.000 - - 2515.074 100.000



702Table 5: Optimum values ( ϕ∗1, ϕ∗2, MSEs and PREs of some Singh and Solanki [17] estimators and the proposed estimators

Estimator Population I Population II Population III Population IV
ϕ∗1 ϕ∗2 MSE PRE ϕ∗1 ϕ∗2 MSE PRE ϕ∗1 ϕ∗2 MSE PRE ϕ∗1 ϕ∗2 MSE PRE

ȳSS1 0.53 3.98 45246.7 1864.791 0.50 1.57 202185.29 2676.43 0.94 0.13 12986.83 423.458 1.00 -0.12 224.527 1120.166
ȳSS2 0.53 3.98 44081.39 1914.073 0.50 1.57 202185.29 2676.82 0.94 0.09 13116.65 419.267 1.00 -0.12 224.527 1120.166
ȳSS3 0.53 3.98 44131.01 1911.921 0.50 1.57 202155.53 2676.80 0.94 0.10 13107.25 419.567 1.00 -0.12 224.527 1120.166
ȳSS4 0.53 3.98 46177.73 1827.179 0.50 1.57 202157.65 2676.09 0.94 0.15 12931.31 412.766 1.00 -0.12 224.527 1120.166
ȳSS5 0.53 3.98 45127.48 1869.703 0.50 1.57 202210.82 2676.49 0.94 0.12 13005.06 425.276 1.00 -0.12 224.527 1120.166
ȳSS6 0.53 3.98 44076.42 1914.289 0.50 1.57 202180.85 2676.83 0.94 0.09 13118.60 422.864 1.00 -0.12 224.527 1120.166
ȳSS7 0.53 3.98 44081.39 1914.073 0.50 1.57 202155.27 2676.82 0.94 0.09 13116.65 419.204 1.00 -0.12 224.527 1120.166
ȳSS8 0.53 3.98 46405.23 1818.222 0.54 1.52 202155.53 1817.35 0.94 0.17 12844.01 419.267 0.99 -0.03 224.510 1120.250
ȳSS9 0.53 3.98 44076.42 1914.289 0.50 1.57 297759.98 2676.85* 0.94 0.09 13121.61 428.167 1.00 -0.12 224.527 1120.166
ȳSS10 0.53 3.98 44031.68 1916.234* 0.50 1.57 202153.61 2676.85* 0.94 0.09 13131.21 419.108 1.00 -0.12 224.527 1120.166
ȳreg - - 160312.5 526.316 - - 1409113.542 384.025 - - 13846.05 397.180 - - 224.625 1119.677
ȳpr1 0.58 83.08 72692.31 1160.7 0.71 0.13 713838.3 758.06 0.92 42.13 11051.73 497.60 0.99 6.23 212.519 1183.458
ȳpr2 0.56 4.23 45870.36 1839.4 0.65 1.73 240765.7 2247.6 0.87 0.98 6819.164 806.5* 0.99 0.35 183.147 1373.254*
ȳ - - 843750 100.000 - - 5411348.28 100.000 - - 54993.75 100.000 - - 2515.074 100.000

*indicates the largest PRE
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7. Discussion

The ratio-type class of estimators considered in Tables (IV) and (V) was adapted
from the work of [17], where he made corrections on the MSE of the general class of
[5] estimators. It is observed from Table (IV) that the proposed estimator (I) fares
better at optimum condition than the unbiased sample mean, regression estimator
and [5] class of estimators in all the four populations. This is evident on the larger
Percent Relative Efficiencies (PREs) and the smaller Mean Squared Errors of the
proposed estimator (I) than those of sample mean, regression and estimators of
[5]. On the other hand, the proposed estimator (II) becomes more efficient than
the simple random sample mean, regression estimator, the class of estimators of
[5] and proposed estimator (I) in the four populations. This is evident on the
fact that the proposed estimator (II) has the largest PRE in the four populations
considered in this study. This therefore, shows that the proposed estimators are
more efficient than any other proposed estimators that have less efficiency than the
regression estimator and estimators of [5]. Table (V) clearly shows that [17] and
our proposed estimators fare better than the class of estimators of [5], regression
estimator and simple random sample mean in all the populations considered in this
study. A clear difference is also observed between the class of estimators of [17]
and the proposed estimators. In populations (I) and (II), estimator of [17], (ȳSS10)
fares better than the proposed estimators. Also, [17] estimator (ȳSS9) is equally
efficient with (ȳSS10) and more efficient than the proposed estimators. On the
other hand, the proposed estimators (I) and (II) fares better than [17] estimators
in populations (III) and (IV), but the proposed estimator (II) is most efficient
in the populations (III) and (IV). This indicates that the proposed estimators
using exponential estimator may fare in some populations better than [17] class of
estimators, while [17] may be more efficient than the proposed estimators in some
other populations. On the whole, the proposed estimators have shown significant
efficiencies in the four populations considered in this study. It can also be deduced
that the proposed estimators always fare better than the usual regression estimator
and [5].

8. Conclusion

From the above result and discussion, It can be concluded that the two proposed
estimators at optimal condition are each more efficient that the general regression
estimator which have always been preferred because of its minimum MSE. The
two proposed estimators are also more efficient than most of the exiting ratio
estimators, thus providing better alternative estimators in practical situations.
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