
INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

15

Controlling A Robotic Arm Using Handwritten

Digit Recognition Software

Ali Cetinkaya*‡, Onur Ozturk**, Ali Okatan***

* Technology Transfer Office, Istanbul Gelisim University, Avcılar, Istanbul, Turkey.

** School of Management, Faculty of Engineering, University College London (UCL), Euston, London, UK.

*** Department of Computer Engineering, Faculty of Engineering, Istanbul Gelisim University, Avcılar, Istanbul, Turkey.

(alcetinkaya@gelisim.edu.tr, onur.ozturk.16@ucl.ac.uk, aokatan@gelisim.edu.tr)

‡ Corresponding Author: Ali Cetinkaya, Technology Transfer Office, Istanbul Gelisim University, Avcılar, Istanbul, Turkey.

Tel: +90 212 422 70 00 / 7187. alcetinkaya@gelisim.edu.tr

Received: 21.09.2018 Accepted:30.1.2019

Abstract- Repetitive tasks in the manufacturing industry is becoming more and more commonplace. The ability to write down

a number set and operate the robot using that number set could increase the productivity in the manufacturing industry. For this

purpose, our team came up with a robotic application which uses MNIST data set provided by Tensor flow to employ deep

learning to identify handwritten digits.

The system is equipped with a robotic arm, where an electromagnet is placed on top of the robotic arm. The movement of the

robotic arm is triggered via the recognition of handwritten digits using the MNIST data set. The real time image is captured via

an external webcam. This robot was designed as a prototype to reduce repetitive tasks conducted by humans.

Keywords MNIST Handwritten Digit Recognition, Deep Learning, Embedded System Robotic Arm Control

1. Introduction

The MNIST dataset was created using two datasets from

the US National Institute of Standards and Technology

(NIST). Training data set includes handwritten digits from

approximately 250 people, where half of these people are high

school students and the other half is the employees of the

Census Bureau. The data set consists of 60,000 training digits

and 10,000 test digits. Having such a huge number of data

allows the software to identify handwritten digits of many

types of handwriting. Furthermore, this allows our system to

be used by many people due to the inclusiveness of the

training and test data sets [1].

Keras is a high-level neural networks API, written in

Python and capable of running on top of TensorFlow, CNTK,

or Theano [2]. Keras was developed with ease of

experimentation and speed in mind, therefore it is highly

favoured by researchers. In our system, we used Keras API to

create a 7-layer Convolution Neural Network (CNN) [3][4].

The layers were convolution, pooling, convolution,

convolution, pooling, activation and identification

respectively. The compilation of 15 epochs, which gives out

99.4% accuracy, takes around 40 minutes per epoch on a CPU-

only computer.

Today, developments in robotics are concentrated in a

number of areas. These areas are mainly about the imaging

systems of robots, artificial intelligence and machine learning.

In robotic imaging systems, it is the process of capturing and

defining the images of objects and finding the coordinates of

the specified objects. This is the process of performing the

action of the robot according to coordinates after the defined

movement [10, 12]. In terms of human health, there are

situations where it is not possible to work in dangerous

environments. For this purpose, the robot arm was operated by

the sensors placed on the human arm [11]. In the studies

developed on image processing, image classification and

image extraction are the most important processes. At this

point, that accuracy affects the success of the study [13]. The

images taken from the camera define the color and shape of

the object. The system applies the center-based calculation,

filtering and color segmentation algorithm to locate the target

and the position of the robot arm [14].

The image recognition software was designed in

OpenCV3, whereas the embedded system was designed in

Arduino. The hardware system is shown in Fig. 1.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

16

Fig. 1. Hardware layout of the system

Robot Kinematics is a geometrical study of the structure

of a robot and independent of dynamic effects such as force

and torque. The results of these kinematic investigations are

obtained from the robots regarding the position, speed and

acceleration of the joints and the final limb. The analysis of

the robot requires knowledge of many branches of science,

such as Mathematics, Mechanics and electronics [15, 16].

The robotic system is capable of operating for pre-defined

actions in Arduino. There are four actions defined in Arduino

being: moving the arm forwards, turning on the electromagnet,

moving the arm backwards and turning off the electromagnet.

The numbers to be identified to get into action for each

operation is 2, 3, 4 and 5 respectively.

2. Hardware

Power source 12V is the required voltage for the system

to work. The city grid provides the robot with 220V of

electricity, therefore the power source is responsible for

converting the 220V to 12V for the robot to work.

Servo engines present in the system to accurately control

the robotic arm. These servo engines are capable of moving

between 0 – 180 degrees however, during this experiment, the

angles never exceeded 30 and 150 respectively, in order not to

damage the servos. Furthermore, having three servos present

in the robot alleviates the need for using the servo engines at

their maximum capacity; using three servos in parallel gives

the arm extended movement space.

The servo engine controller receives the movement

signals from the Arduino Mega present in the system.

Furthermore, servo engine controller receives 5V from

regulator in order to move the servos. Both the signals from

Arduino Mega and regulator are then used to control the

robotic arm.

The purpose of the relay in the system to control the status

of the electromagnet. This is supported by the signals received

from Arduino Mega according to user input. The embedded

timer in Arduino Mega excels as compared to many other

Arduino boards. The system runs with three servo engines

therefore the timing between the servo engines to move them

to the desired angles was important and the library of Arduino

Mega was the most adequate for this operation.

As previously mentioned, the system receives 12V of

energy, however servos require 5V of energy to work. The

regulator is responsible for converting 12V coming into the

system to 5V to feed them into the servos for operation.

The electromagnet works with 12V of energy. Given the

size of this prototype robot, an electromagnet with a maximum

pulling force of 50N (5 kilograms) was used in order to avoid

the robot from tipping over. The electromagnet can be seen in

Fig. 2. along with the closed system.

Fig. 2. Fully working, closed system.

3. Embedded System and Software Algorithm’s

Fig. 3 Flow diagram of algorithm step.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

17

Defining mathematical figures is an important problem.

In this study using the deep learning algorithm and MNIST

data set consists of 5 main stages. These are: pre-processing

on the image, feature extraction, deep learning algorithm,

MNIST data set and microcontroller control. The handwritten

robotic arm control architecture is shown in Fig. 3.

3.1. Embedded System Control

The embedded system was developed with atmel

atmega2560 microcontroller using embedded c for

programming. The embedded system was designed Arduino

Mega code was produced in the Arduino IDE. The Arduino

software is responsible for operating the robot. This is done

via data received from the MNIST Handwritten Digit

Recognition Software, which is written in Python. Arduino

was chosen language due to the availability robotic libraries

for ease of control [5].

In the first segment of the Arduino code, the variables

were declared. In this segment, there are pin declarations,

servo declarations and servo angle declarations.

In the setup () segment of the code, the servos were

connected to their respective pins. Furthermore, the initiation

angles of the three servos were declared. The initiation angles

are 90 degrees for each servo. These values help the user

understand that the system has initiated because there is no

user input that can keep the servos at 90 degrees. After setting

the servos to their angles, the serial port connection was

opened. The user can understand the connection has been

established via the three-note music played by the buzzer

present in the system. This serial connection allows the

Arduino code to interact with the signals received from the

Python code.

Finally, in the loop () section of the code, a switch case

was created. The Python code sends off letters ranging from

‘a’ to ‘e’, and each letter is assigned to an action in the robot.

The switch case is responsible for controlling which action is

triggered according to the input received from Arduino.

3.2. MNIST Handwritten Digit Recognition Software

The Python digit recognition software works using

OpenCV and Serial Port [6]. OpenCV proves rather useful

when working with computer vision and image recognition

due to wide variety of supported libraries and conducted

experiments. “OpenCV has more than 47 thousand people

user community and estimated number of downloads

exceeding 14 million. Usage ranges from interactive art, to

mines inspection, stitching maps on the web or through

advanced robotics.” [6].

When the software is initiated, a video stream from the

camera of the PC (or webcam, in this system) is recorded and

presented on the screen. Even though the entire video stream

is presented on the screen, the part of the screen which

processes the information is marked with a blue square.

Instead of detecting the entire video stream, the blue square

was chosen to be area of interest due to efficiency purposes.

The program works more efficiently in a smaller area. The

user must present his/her handwritten in this square for the

software to process the information. Once the handwritten is

presented in this square, the software is responsible for

counting the empty spaces between the handwritten digits. For

example, if the software is counting 3 defects, there would be

4 handwritten present in the square, which would trigger an

action to the servos.

The MNIST database consists of 70,000 samples of

handwritten digits. Each of them is grayscale image of size

28px x 28px. The software initiates by capturing the presented

handwritten digit from the external camera. Furthermore, a

label on the top right of this extracted digit is placed to indicate

which number is predicted for this extracted image. Then, the

extracted image is translated into grayscale. The purpose of

having a greyscale image is because OpenCV has built in

libraries that work with grayscale image [6].

The process is to predict the handwritten digit in this

grayscale image. This grayscale image is then fed into the

CNN. The first layer type of layer, which is convolution, is

responsible for filtering out the images to increase processing

speed. The second type of layer is pooling, which is present to

reduce the risks of overfitting. This type of layer reduces the

parameters to be learnt and in return reduces noise within the

image. The third type of layer is activation, which is where the

CNN learns the properties of the images. Our system works

with ReLU activation function, which is chosen for its benefits

when it comes to representing a large range of numeric values.

The final layer is the fully-connected layer, which represents

the functionality of an Artificial Neural Network. Each node

in the previous layer is connected to each other node in the

upcoming layer. This process helps the CNN compare features

from the inputted image with the training data set to predict

the outcome of the handwritten digit [7-9].

The Python code can be seen alongside the closed system

can be seen in Fig. 4.

Fig. 4. Closed system along with the software.

4. Kinematic Analysis

Kinematic analysis generates kinematic equations

describing robot motion geometry. Using the mechanical

properties of the robot, forward kinematic analysis is required

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

18

in order to hold an object with electromagnet and leave it to a

desired target. In doing these movements, inverse kinematic

analysis is required to find the angles to which the joints

should be found.

Fig. 5. Length and axis information of the robot arm.

Fig. 5. shows the part lengths and axis information of the

robot arm.

Fig. 6. Length and joint definitions of robot arm limbs

Fig. 6. shows the length of the shoulder, base, shoulder,

elbow and wrist joints are formed. In addition, the robot arm

has a holder end used to grasp objects.

Fig. 7. Design details of robot arm parts.

As shown on Fig. 7. the robot arm lengths are L1 and L2.

Height h1 between robot base and L1 arm, the height between

the holder electromagnatis and the wrist on the L2 handle is

known to be H2. Forward kinematic analysis of the robot

through this data;

x = L1*cosθ1+L2*cos(θ1+θ2)+L3*cos(θ1+θ2+ θ3) (1)

y = L1*sinθ1+L2*sin(θ1+θ2)+L3*sin(θ1+θ2+θ3) (2)

θ = θ1+θ2+θ3 (3)

We'II find out where the electromagnet on the robot arm

is in the work area. If the robot arm is taken derivative of the

above equations according to time to find the speed of

operation,

x ' = -L1*θ1'*sinθ1-L2*(θ1'+θ2')*sin(θ1+θ2)-L3*cos(θ1'+ θ2'+

θ3')*sin(θ1+θ2+θ3) (4)

y ' = L1*θ1'*cosθ1+L2*(θ1'+ θ2')*cos(θ1+θ2)+L3*cos (θ1'+ θ2'

+θ3')*cos(θ1+θ2+θ3) (5)

θ' = θ1'+θ2'+θ3' (6)

According to the data above, speed equations (4), (5) and

(6) are found.

The Robot calculates the angle θ1 and θ2 where the joints

should be located with Inverse Kinematics while making their

movements with forward kinematics. These angle equations

are given in equation (7) and (8).

θ1 = 𝑡𝑎𝑛−1 𝑦

𝑥
+ 𝑡𝑎𝑛−1 𝐿2∗sin 𝜃2

𝐿1+ 𝐿2∗cos 𝜃2
 (7)

θ2 = −𝑐𝑜𝑠−1 𝑥2 + 𝑦2−𝐿1
2−𝐿2

2

2 ∗ 𝐿1∗ 𝐿2
 (8)

Given above (1), (2), (3), (7) and (8) equations of the robot

arm X, Y coordinates and θ angles are calculated. The angles

θ1 and θ2 of the servo motors on the robot arm are calculated.

Fig. 8. shows four working positions of the robot arm.

These locations show the points needed to perform the robot's

tasks.

Fig. 8. 4 different motion results of the robot arm view.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

19

5. Experiments

In the test environment, a snapshot of the numbers on the

white background is taken and the operations are performed.

Tests have been repeated by changing the distance between

the texts and the display device. The test environment is given

in Fig. 9.

Fig. 9. Showcase of the system

In this experiment, the distance between the background

and the camera was 30 centimeters. The purpose of this

experiment was to test whether the software is capable of

recognizing digits from a relatively short distance. The

handwriting figures used in the experiment are written by the

authors of this article and shown on Fig. 10. The handwritten

digits for Onur Ozturk and Ali Cetinkaya respectively are

presented below.

Fig. 10. Testing data set

Recognizing digits from a distance of 30cm between the

background and camera.

The handwritten digits presented above were tested

individually and the results received from these tests are

presented below. Some figures resulted in incorrect

predictions, however the majority of the predictions are

correct.

The screenshots of the experiments performed between

Figure 11 and Figure 26 are given.

Fig. 11. Incorrectly predicted ‘1’.

Fig. 12. Correctly predicted ‘1’.

Fig. 13. Correctly predicted ‘2’.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

20

Fig. 14. Correctly predicted ‘3’.

Fig. 15. Correctly predicted ‘4’.

Fig. 16. Correctly predicted ‘5’.

Fig. 17. Incorrectly predicted ‘1’.

Fig. 18. Correctly predicted ‘2’.

Fig. 19. Correctly predicted ‘3’.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

21

Fig. 20. Incorrectly predicted ‘4’.

Fig. 21. Correctly predicted ‘4’.

Fig. 22. Incorrectly predicted ‘5’.

In this experiment, the distance between the background

and the camera was 2 meters. The purpose of this experiment

was to test whether the software is capable of recognizing

digits from a long distance. The test data set was presented in

the previous section.

Fig. 23. Correctly predicted ‘3’.

Fig. 24. Correctly predicted ‘5’.

Fig. 24. Showcasing the importance of boldness from a

distance of 2m.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

22

Fig. 25. Further showcasing the importance

of boldness from a distance of 2m.

Fig. 26. Results achieved from a mixed test set.

The first issue arises from the distance at which the

software is capable of recognizing the handwritten digits.

From a short distance, writing the numbers with a black or red

board marker was sufficient. However, as the distance

between the board on which the digits were written and the

camera increases, the software had difficulty recognizing the

numbers. The nature of the problem is caused by the thickness

of the digits written. From a short distance, the thickness of

the board marker was sufficient however from a long distance,

it looked thin therefore the camera could not recognize the

digits.

The second issue arises from having an unstable board and

camera. When conducting the tests for the system, the team

realized that if either the camera or the board was shaking, the

software could not identify the digits. To solve this issue, we

fixed the camera to a book and the handwritten digits were

stuck to the board with tape. Furthermore, if the paper with the

digit written on it is not stuck to the background completely

where some part of the paper is lifting off, the shadows left by

the lifting paper is recognized by the software as handwritten

digits. Therefore, the paper with the digit must be completely

stuck to the background where no piece is lifting off the

background.

The third issue arises from not having the handwritten

digit completely within the frame. For example, during the

testing phase when number four were shown to the camera

whilst not being within the frame fully, the software

recognized this number as six. In order to achieve correct

recognition, the most optimal position for the handwritten

digit is the middle of the frame. This issue is presented in the

Experiment and Results section in Figures 9 and 10.

The final issue arises from the similarity of the digit ‘1’

and ‘7’. During our tests, different members of the team wrote

different ‘1’s, where the horizontal line on the bottom was not

present in some handwritten digits. The MNIST data set

trained ‘1’s with the horizontal line present. Therefore, when

a person did not include the horizontal line below ‘1’, the

software recognized the digit as ‘7’. This issue is presented in

the Experiment and Results section in Figures 9.7.

6. Conclusion

The results indicated that as the distance between the

background and the camera increases, the boldness of the

handwritten digits must increase in order for the camera to

capture the image presented on the background. Furthermore,

a special case for number ‘1’ and ‘7’ exists. The user must

include the horizontal line below the ‘1’ in order for the

software to predict the number correctly as ‘1’. This is most

likely caused by the training data set including the horizontal

line below ‘1’s.

In the results obtained, it was observed that the robot

performs the movements given in Figure 8 according to the

order of identification. Because there are no lines below 1

characters created for testing, MNIST could not find them in

the data set and incorrectly confused them with 7 characters.

7. Discussion

In this study, a system has been developed with an

electromagnet placed on a robotic arm to perform repetitive

processes in the manufacturing industry. For this purpose, the

numbers of "1, 2, 3, 4, 5" written by hand on the MNIST

dataset were detected and recognized through the camera.

During the experiments, 17 samples were taken from the

images taken from the camera. In these experiments, 12

samples had correct results, 5 samples had false results and 2

samples had incomplete readings.

One of wrong reading "1" when there is no horizontal line

under a character "7" has been observed to interfere with the

character.

The figures used in the study were created by Onur

OZTURK and Ali CETINKAYA. As the distance between the

background and the camera increases in the experiments, it is

concluded that the numbers need to be thickened so that the

software can capture the image. To correct this error, the

reading resolution and accuracy can be increased by

increasing the camera resolution.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Cetinkaya et al., Vol.5, No.1, 2019

23

Acknowledgements

Many thanks to Istanbul Gelisim University and

Technology Transfer Office for their support.

References

[1] Y. Lecun, C. Cortes, C.J.C. Burges, MNIST handwritten

digit database, http://yann.lecun.com/exdb/mnist/

[2] K. Sato, N. Shimoda, Build your own machine-learning-

powered robot arm using tensorflow and google cloud |

Google Cloud blog, 2017.

[3] Keras documentation, https://keras.io/

[4] TensorFlow, https://www.tensorflow.org/

[5] A. Elfasakhany, E. Yanez, K. Baylon, R. Salgado,

Design and development of a competitive low-cost robot

arm with four degrees of freedom, Modern Mechanical

Engineering, pp.47-55.

[6] OpenCV library document, https://opencv.org/

[7] K. Simonyan, A. Zisserman, Very deep convolutional

networks for large-scale image recognition. Arxiv -
Computer Vision and Pattern Recognition .

 [8] S. Raschka, V. Mirajalili, Python machine learning (pp.

341-385).

[9] P. Bezak, P. Bozek, Y. Nikitin, Advanced robotic grasping

system using deep learning, Procedia Engineering, 96,

pp.10-20., 2014.

[10] A. Dhawan, A. Bhat, S. Sharma, H. K. Kaura, Automated

robot with object recognition and handling

features, International Journal of Electronics and

Computer Science Engineering, ISSN- 2277-1956.

[11] E. B. Mathew, D. Khanduja, B. Sapra, B. Bhushan,

Robotic arm control through human arm movement

detection using potentiometers. 2015 International

Conference on Recent Developments in Control,

Automation and Power Engineering (RDCAPE), 2015.

[12] B.Iscimen, H. Atasoy, Y. Kutlu, S. Yildirim, E. Yildirim,

Smart robot arm motion using computer vision, 2015.

[13] M.A. Jayaram, H. Fleyeh, Convex Hulls in Image

Processing, A Scoping Review, American Journal of

Intelligent Systems, 2016.

[14] N. Rai, B. Rai, P. Rai, Computer vision approach for

controlling educational robotic arm based on object

properties, 2nd International Conference on Emerging

Technology Trends in Electronics, Communication and

Networking. 2014

[15] T. S. Tonbul, M. Sarıtas, Beş eksenli bir edubot robot

kolunda ters kinematic hesaplamalar ve yörünge

planlaması. J. Fac. Eng. Arch. Gazi Univ. Vol 18, No 1,

145-167, 2013

[16] A. B. Rehiara, Kinematics of adeptthree robot arm,

Robot Arms, ISBN: 978-953-307-160-2, 2011.

http://yann.lecun.com/exdb/mnist/
https://keras.io/
https://www.tensorflow.org/

