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ABSTRACT: In this study, the structural and energetic properties of B6-nCnHn (n=0-6) series were 

investigated using Density Functional Theory (DFT) approach. Adiabatic ionization potential (AIP), 

vertical ionization potential (VIP), adiabatic electron affinity (AEA), vertical electron affinity (VEA), 

vertical detachment energy (VDE), HOMO-LUMO energy gap (Eg) and binding energy (Eb) have been 

investigated at the B3LYP/6-311++G** level of theory and discussed for the most stable isomers. Charge 

distribution and nucleus independent chemical shift (NICS) analysis were also performed.  B2C4H4 and 

C6H6 series are the most stable among considered series by calculating ionization potentials (IPs), 

electron affinities (EAs) and Eg. The benzene-like structure is found to be the most stable isomer for n=5 

(BC5H5), and it can be as aromatic as benzene. 
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C-H Grupları ile Bor Atomlarının Yer Değiştirmesi Sonucunda B6-nCnHn (n=0-6) Serilerinin Yapısal ve 

Elektronik Özellikleri: Bir Yoğunluk Fonksiyonel Teori Çalışması 

 

ÖZ: Bu çalışmada B6-nCnHn (n=0-6) serilerinin yapısal ve enerji özellikleri yoğunluk fonksiyonel teorisi 

kullanılarak araştırıldı. Adyabatik iyonizasyon potansiyeli (AIP), doğrudan iyonizasyon potansiyeli 

(VIP), adyabatik elektron ilgisi (AEA), doğrudan elektron ilgisi (VEA), doğrudan ayrılma enerjisi (VDE), 

HOMO-LUMO enerji aralığı (Eg) ve bağlanma enerjisi B3LYP/6-311++G** teori seviyesinde incelendi ve 

en kararlı izomerler tartışıldı. Yük dağılımı ve çekirdekten bağımsız kimyasal kayma analizleri de 

gerçekleştirildi. B2C4H4 and C6H6 serileri IP, EA ve Eg hesaplamaları sonucunda en kararlı seriler olarak 

bulunmuştur. Benzen tipi yapı BC5H5 (n=5) serisi için en kararlı isomer olarak bulunmuştur ve bu yapı 

benzen kadar aromatik olabilir. 

 

Anahtar Kelimeler: Aromatiklik, Elektronik yapı, Kararlılık, Karboranlar, Yoğunluk Fonksiyonel Teorisi 

 

INTRODUCTION 

Boron is only the non-metal element of IIIA group in the periodic table and possesses a richness of 

chemistry second only to carbon (Smith, 1990; Jemmis, 2002). Boron and carbon are capable of forming 

various stable compounds with hydrogen due to their strong chemical bonding characteristics. 

Hydrogenated boron-carbon or carborane compounds are of great interest for both experimental and 

theoretical chemists. Moreover, they have been declared as appropriate pioneers for the formation of 

carboranes (Williams, 1976; Grimes, 2013). The unique physical and chemical properties of carboranes 
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have led to using them extensively in materials science (El-Zaria et al., 2011), polymer chemistry (Jiang et 

al., 1996; McLemore et al., 1999) organometallic and coordination chemistry (Westerhausen et al., 2001; 

Spokoyny et al., 2011), medicine (Soloway et al., 1998; Barth et al., 2005) and medicinal chemistry 

(Valliant et al., 2002; Scholz and Hey-Hawkins, 2011) applications. 

The benzene-like structures have been attracted due to high resonance stability, nonclassical 

bonding, aromaticity and the benzene-like reactivity (Galeev and Boldyrev, 2011; Ivanov and Boldyrev, 

2012; Ivanov et al., 2012; Muz and Atis, 2016). Recently, the aromaticity and antiaromaticity of some 

carbon based compounds such as borabenzene, silabenzene and phosphabenzene have been discussed 

in detail (Galeev and Boldyrev, 2011; Ivanov and Boldyrev, 2012; Ivanov et al., 2012; Muz and Atis, 

2016). Moreover, these studies have been concluded that some benzene-like structures exhibit aromatic 

properties. More interestingly, it was found that the replacement of a phosphorus atom by the C-H 

group in the CxHxP6-x (x=0-6) series cause the transition from three-dimensional (3D) structures to two 

dimensional (2D) structures (Galeev and Boldyrev, 2011).  

The exchange of different group atoms by carbon atom in the carborane compounds provides extra 

or deficit electron(s). Thus, it can significantly change the structural and electronic properties of the 

system. In literature, there is a limited number of research on the structural properties of various 

carborane compounds (Takano et al., 1992; Jemmis et al., 1997; Schleyer and Najafian, 1998; Li, 2017). To 

the best of our knowledge, there is no study investigating the substitution of a boron atom by the C-H 

group in the carboranes and their derivatives. Therefore, this study aims to investigate the structural and 

electronic properties in the B6-nCnHn (n=0-6) series upon the replacement of boron atoms by the valence 

isoelectronic C-H groups. Another motivation is also to detect possible structural transitions in the 

considered series with the replacement of a boron atom by the C-H group. 

COMPUTATIONAL DETAILS 

The low-lying isomers of B6-nCnHn (n=0-6) series were performed using density functional theory 

(DFT). For the geometry optimizations, the low-lying isomers (Dinadayalane et al., 2004) of C6H6 

stoichiometry were first carried out. Then, the initial geometries of other series were typically 

constructed by substituting one boron atom by C-H group in C6H6 stoichiometry. This procedure 

continues until each C-H group takes up the boron atom. Thus, new isomers and their permutational 

isomers were obtained for each series.  

The singlet and triplet electronic states of all possible structural configurations for considered series 

were initially optimized by B3LYP (Becke, 1993) and 3-21G level of theory. To increase the reliability of 

the calculated results, the low-lying isomers for each series were reoptimized at B3LYP/6-311++G** level 

of theory. To check the stability of optimized structures of all isomers, the frequency calculations were 

also performed at the same level of theory. All electronic structure calculations and structural 

visualizations were performed utilizing the Gaussian 09 (Frisch et al., 2009) and Gauss View 5.0.9 

(Dennington et al., 2009) programs, respectively. 

RESULTS and DISCUSSIONS 

In this study, the substitution of B atoms by the C-H groups in the B6-nCnHn (n=0-6) series is 

investigated at B3LYP/6-311++G** level of theory. The three low-lying isomers were shown in Figure 1. 

In addition, the low-lying isomers and their relative energies (E<40 kcal/mol) were available in 

Supporting Information (Figure S1). Note that there is no imaginary frequency for optimized structures 

reported in this study. 

B6 Isomers. According to calculations for singlet (m1) and triplet (m3) ground states, the triplet B6 

structure is the most stable isomer with planar geometry and C2h point group symmetry (see Figure 1). 

Moreover, it has 2.70 kcal/mol lower energy than the pentagonal pyramidal geometry (second isomer) 

with singlet state and C5v point group symmetry. The third isomer is very like the first isomer with 

quasi-planar geometry and C2 point group symmetry, but it has 9.17 kcal/mol higher energy than the 
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global minimum. These three isomers were previously reported by Alexandrova et al. (Alexandrova et 

al., 2003). According to their calculations at B3LYP/6-311+G* level of theory, the second and third 

isomers have 1.2 and 9.1 kcal/mol higher energy than the global minimum, respectively. Therefore, the 

results from this current study were reinforced by findings in the literature. 

B5CH Isomers. The global minimum of B5CH is very like the first isomer of B6. Here, only difference 

is the substitution of one B atom by the C-H group. The second isomer with singlet state and Cs point 

group symmetry has 5.77 kcal/mol higher energy than the most stable isomer. The triplet B5CH structure 

is found to be the third isomer, and it has 11.03 kcal/mol higher energy than the global minimum.  

B4C2H2 Isomers. The first isomer is clearly reminiscent of the global minimum of B5CH, and it has a 

planar geometry with C2h point group symmetry. Here, the second isomer grows from the third isomer 

of B5CH. Additionally, the third isomer prefers a linear geometry with D point group symmetry. The 

second and third isomers have 12.27 and 14.62 kcal/mol higher energy than the global minimum, 

respectively.  

 
Figure 1. For B6-nCnHn (n=0-6) series, the three low-lying isomers with relative energies (kcal/mol) at 

B3LYP/6-311++G** level of theory. 

 

B3C3H3 Isomers. In this series, the global minimum has a different geometry than the previous series. 

The second isomer grows from the global minimum of the B4C2H2. It is also now higher (by 4.57 

kcal/mol) energy than the most stable isomer. The third isomer has 4.67 kcal/mol above the most stable 
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isomer. The second and third isomers were very close to each other as energy. The third isomer of the 

B3C3H3 series, benzene-like structure, also grows from the fifth isomer of the B4C2H2 by replacing B atom 

by the C-H group (see Figure S1, Supporting Information). 

B2C4H4 Isomers. In this series, the most stable isomer has Cs point group symmetry with singlet 

electronic ground state, and it has 1.65 kcal/mol lower energy than the second isomer. The second isomer 

is very like global minimum in the B3C3H3 series. The third isomer of this series, benzene-like structure, 

has also a planar geometry with C2v point group symmetry. It is now only higher (by 2.12 kcal/mol) 

energy than the global minimum. Obviously, it grows from the three isomers of the B3C3H3 by replacing 

one B atom by the C-H group. In here and subsequent series, there is no structure like the most stable 

isomer of B6, B5CH and B4C2H2 series as well as the second isomer of B3C3H3 series. 

BC5H5 Isomers. The lowest-lying isomer of this series is the monoborabenzene structure with planar 

geometry (C2v point group symmetry). The global minimum, benzene-like structure, is now more stable 

than the second isomer by 19.60 kcal/mol. Apparently, the substitution of five B atoms by five C-H 

groups in triplet planar structure (the global minimum of B6) switched the relative stabilities of benzene-

like and other structures. The third isomer has 21.94 kcal/mol above the most stable isomer.  

C6H6 Isomers. A total of 215 isomers on the potential energy surface for C6H6 series were reported by 

Dinadayalane et al. They were provided that benzene structure is lower in energy than other isomers. In 

our previous paper, it is also reported as found the most stable isomer with planar D6h point group 

symmetry.15 For this reason, the most stable isomer is presented in this study. 

To examine the structural stabilities of B6-nCnHn (n=0-6) series, the binding energy per atom (Eb) is 

calculated by taking into account the most stable isomers. The binding energy of a structure is also a 

measure of its relative stability. Eb is defined as: 

    

Eb(B6-nCnHn)=[(6-n)E(B)+(n)E(C)+(n)E(H)-E(B6-nCnHn)]/(n+6)                                                           (1) 

 

where n is from 0 to 6 the cluster-size, E(B6-nCnHn) is the cluster energy. E(B), E(C) and E(H) are the 

energies of atomic boron, carbon and hydrogen, respectively. Figure 2 shows the binding energy per 

atom as a function of cluster-size. The values were also summarized in Table 1. The Eb increases with the 

substitution of B atoms by the C-H groups in B6-nCnHn (n=0-6) series. The Eb values of B2C4H4 and BC5H5 

series are 0.34 and 0.19 eV lower than that of C6H6 (5.55 eV) with 5.21 and 5.36 eV, respectively. 

However, the stability of B6 is the lowest with 3.79 eV. 

 

Table 1. Binding energy per atom (Eb), adiabatic ionization potential (AIP), vertical ionization potential 

(VIP), adiabatic electron affinity (AEA), vertical electron affinity (VEA), vertical detachment energy 

(VDE) and HOMO-LUMO energy gap (Eg). All values are in eV. 
Structure Eb AIP VIP AEA VEA VDE Eg 

B6 3.79 8.41 9.12 2.26 2.19 2.71 2.26 

B5CH 4.43 8.40 8.59 2.17 2.54 2.85 2.51 

B4C2H2 4.97 8.87 9.08 0.48 0.86 1.22 4.62 

B3C3H3 5.10 8.50 8.98 0.59 0.80 1.29 4.40 

B2C4H4 5.21 8.95 9.70 -0.67 -0.32 0.31 6.72 

BC5H5 5.36 8.24 8.36 0.09 0.82 1.55 4.35 

C6H6 5.55 9.13 9.28 -0.60 -0.60 -0.60 6.60 
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Figure 2.  The binding energy per atom of B6-nCnHn (n=0-6) series. 

 

The capability of clusters to obtain or remove an electron is investigated by calculations of their 

ionization potentials and electron affinities. To examine the electronic properties of B6-nCnHn (n=0-6) 

series, the adiabatic ionization potential (AIP), vertical ionization potential (VIP), adiabatic electron 

affinity (AEA), vertical electron affinity (VEA), vertical detachment energy (VDE) and HOMO-LUMO 

energy gap (Eg) were calculated by considering the most stable isomers. Ionization potentials (IPs) and 

electron affinities (EAs) are defined as follows: 

   

IPs(B6-nCnHn)=[E(B6-nCnHn)cation]- [E(B6-nCnHn)neutral]                                                                    (2) 

   

EAs(B6-nCnHn)=[E(B6-nCnHn)neutral]- [E(B6-nCnHn)anion]                                                                    (3) 

 

The ionization potential (IPs) parameters such as AIP and VIP are calculated separately from 

Equation (2). AIP is the energy difference between cationic and neutral structures at their respective 

equilibrium geometries. VIP is the energy difference between the ground state of neutral and cationic 

structures, at optimized geometry of the neutral. The AIP and VIP are drawn in Figure 3 and tabulated 

Table 1. As seen in Figure 3, the AIP and VIP exhibit even-odd oscillations with maxima for even n. The 

ionization potentials show that the stability of odd-n series is lower than their neighboring even-n series. 

Note that VIP values are higher than the AIP values because of orbital relaxation.  
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Figure 3. Size dependence of adiabatic ionization potential (AIP) and vertical ionization potential (VIP) 

for the most stable isomers of the B6-nCnHn (n=0-6) series. 

 

 
Figure 4. Size dependence of adiabatic electron affinity (AEA), vertical electron affinity (VEA) and 

vertical detachment energy (VDE) for the most stable isomers of the B6-nCnHn (n=0-6) series. 

 

On the other hand, the electron affinities (EAs) parameters such as AEA, VEA and VDE are 

calculated separately from Equation (3). AEA is the energy difference between anionic and neutral 

structures at their respective equilibrium geometries. VEA is the energy difference between the ground 

state of neutral and anionic structures, at optimized geometry of the neutral. VDE is the energy 

difference between the ground state of neutral and anionic structures, at optimized geometry of the 

anion. The AEA, VEA and VDE are illustrated in Figure 4 and listed Table 1. The AEA, VEA and VDE 

decrease generally with the substitution of B atoms by the C-H groups in B6-nCnHn (n=0-6) series, and 

they exhibit even-odd oscillations with maxima for odd n (see in Figure 4).  
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Figure 5. Variation of the HOMO–LUMO gaps for the most stable isomers of the B6-nCnHn (n=0-6) series. 

 

Another way of ensuring the stability criteria is to calculate the difference energy between the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). 

Additionally, the structures must have large HOMO-LUMO energy gap (Eg) and high ionization 

potential (IP). The Eg is illustrated in Figure 5 and tabulated in the Table 1. As seen in Figure 5, the Eg 

increases with the substitution of B atoms by the C-H groups, and it exhibits even-odd oscillations with 

maxima for even n (except n=1). B6-nCnHn (n=0-6) series with even-n have larger Eg and higher absolute 

value of IPs. Therefore, the chemical stabilities of even-n series are stronger than their neighboring odd-n 

series. It is consistent with the results from Figure 3. Since the most stable isomer of B6 structure (for n=1) 

has open shell (triplet state) electronic configuration, its chemical stability is weaker than B5CH structure 

(for n=2), which has close shell (singlet state) electronic configuration. Note that the B2C4H4 and C6H6 

series are the most stable among considered series by calculating IPs, EAs and Eg. 

The HOMO and LUMO pictures of the B6-nCnHn (n=0-6) series are presented in Figure 6. The HOMO 

and LUMO localizations are found to be nearly symmetric over the most stable isomers. 

The natural population analysis (NPA) and electro-static potential (ESP) charge distributions are 

also investigated in this study.  The atomic charge distributions of the B, C and H atoms in the B6-nCnHn 

(n=0-6) series are shown in Figure 7(a-b). The charges on B and H atoms are positive in range of n=1-5, 

but C atoms are negative. Therefore, charges are transferred from B and H atoms to C atoms. 

Additionally, all the charge is on the H atoms for C6H6 series. Charges are transferred from H to C. The B 

atom acts generally as an electron donor for B6-nCnHn (n=1-5) series, whereas, the C atom acts as an 

electron acceptor. 
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Figure 6. HOMO and LUMO pictures of the B6-nCnHn (n=0-6) series. Green and red colors represent the 

positive and negative isosurfaces for HOMO and LUMO, respectively. 
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Table 2. NICS and NICSzz values for benzene and benzene-like structure. All values in ppm. 
Distance BC5H5 C6H6 

(Å) NICS NICSzz NICS NICSzz 

0.0 -12.292 -17.978 -8.065 -14.492 

0.2 -12.260 -19.009 -8.469 -16.264 

0.4 -12.091 -21.501 -9.399 -20.571 

0.6 -11.655 -24.125 -10.257 -25.213 

0.8 -10.884 -25.715 -10.575 -28.336 

1.0 -9.825 -25.808 -10.231 -29.252 

1.2 -8.600 -24.579 -9.371 -28.244 

1.4 -7.343 -22.494 -8.232 -25.998 

1.6 -6.159 -20.017 -7.025 -23.170 

1.8 -5.107 -17.487 -5.888 -20.228 

2.0 -4.209 -15.105 -4.889 -17.444 

2.2 -3.463 -12.970 -4.047 -14.947 

2.4 -2.854 -11.110 -3.354 -12.777 

2.6 -2.362 -9.519 -2.792 -10.926 

2.8 -1.966 -8.172 -2.337 -9.363 

3.0 -1.646 -7.037 -1.969 -8.051 

3.2 -1.388 -6.082 -1.670 -6.950 

3.4 -1.179 -5.279 -1.425 -6.026 

3.6 -1.008 -4.602 -1.225 -5.249 

3.8 -0.868 -4.029 -1.059 -4.592 

 

 
Figure 7. NPA (a) and ESP (b) charge distributions of B6-nCnHn (n=0-6) series. 

 

The nucleus independent chemical shift (NICS) analysis is also performed to interpret whether the 

benzene-like structures are aromatic. In planar structures, chemical shielding or absolute magnetic 

shielding can be computed at ring centers, and at point above (Schleyer et al., 1996). In this study, the 
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NICS and NICSzz values calculated for benzene (C6H6) and benzene-like (BC5H5) structures in range of 0-

3.8 Å (at ring centers and at point above) are tabulated in Table 2. According to NICS analyses, the 

BC5H5 structure has very high negative values. This result also indicates that BC5H5 structure can be an 

aromatic structure. 

CONCLUSIONS 

In this work, the substitution of boron atoms by the valence isoelectronic C-H groups in the B6-nCnHn 

(n=0-6) series is investigated within density functional theory DFT-B3LYP/6-311++G** level of theory. All 

possible isomers for each series have been searched considering the singlet and triplet electronic ground 

states. The most stable isomers except B6 have singlet electronic ground state.  According to calculations, 

the substitution of the B atoms by the C-H groups obviously contributes to strengthen the stability of 

considered series. The IPs, EAs and Eg results show that the B2C4H4 and C6H6 series are the most stable 

among considered series. Additionally, the Eb values of B2C4H4 and BC5H5 series are 0.34 and 0.19 eV 

lower than that of C6H6 (5.55 eV) with 5.21 and 5.36 eV, respectively. The global minimum of BC5H5 

structure is a stable planar structure with C2v point group symmetry. According to NICS analysis, the 

planar BC5H5 structure has very high negative values, and thus it can be aromatic as character. In 

addition, it can qualify to be an aromatic compound as much as the benzene molecule. 

Structural stability of compounds allows their presence in nature and afterwards to synthesize them 

in experiments. Therefore, I hope that this study will help guide future efforts aimed at synthesizing 

novel compounds based on carboranes and their derivatives. 
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