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Abstract

A graph is called Hamiltonian (resp. traceable) if the graph has a Hamiltonian cycle (resp.
path), a cycle (resp. path) containing all the vertices of the graph. The energy of a graph is
defined as the sum of the absolute values of the eigenvalues of the graph. In this note, we
present new conditions based on energy for Hamiltonain and traceable graphs.

1. Introduction

All the graphs considered in this note are undirected graphs without loops or multiple edges. Notation and terminology not defined here
follow those in [1]. Let G be a graph of order n with e edges. We use δ (G) and χ(G) to denote the minimum degree and the chromatic
number of G, respectively. The independence number, denoted α = α(G), is defined as the size of the largest independent set in G. The
eigenvalues µ1(G)≥ µ2(G)≥ ...≥ µn(G) of the adjacency matrix A(G) of G are called the eigenvalues of G. We use S+(G) (resp. S−(G))
to denote the sum of the squares of the positive (resp. negative) eigenvalues of G. Notice that S+(G)+S−(G) = 2e(G) for a graph G. The
energy, denoted Eng(G), of G is defined as ∑

n
i=1 |µi(G)| (see [2]). A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all

the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P
contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. In this note, we will present the energy conditions
for Hamiltonian and traceable graphs. The results are as follows.

Theorem 1.1. Let G be a k-connected (k ≥ 2) graph with n≥ 3 vertices and e edges. If

Eng(G)≥ 2

√
2e(χ−1)(n− k−1)

χ
,

then G is Hamiltonian.

Theorem 1.2. Let G be a k-connected graph with n≥ 3 vertices and e edges. If

Eng(G)≥ 2

√
2e(χ−1)(n− k−2)

χ
,

then G is traceable or K1,3.

2. Lemmas

In order to prove Theorem 1.1, we need the following results as our lemmas. Lemma 2.1 below is Theorem 2.3 on Pages 484 in [3].

Lemma 2.1. Let G be a graph. Then

χ ≥ 1+max
{

S+

S−
,

S−

S+

}
.
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Lemma 2.2 below is Theorem 3.14 on Pages 88 and 89 in [4].

Lemma 2.2. Let G be a graph. If the number of eigenvalues of G which are greater than, less than, and equal to zero are p, q, and r,
respectively, then

α ≤ r+min{ p, q},

where α is the independence number of G.

3. Proofs

Next, we will present proofs for Theorems 1.1 and 1.2. Some ideas from [5] are used in our proofs.

Proof of Theorem 1.1. Let G be a graph satisfying the conditions in Theorem 1.1. Suppose, to the contrary, that G is not Hamiltonian. If
n = 3, G must be Hamiltonian since G is k-connected (k ≥ 2). From now on, we assume that n≥ 4. Since G is k-connected (k ≥ 2), G has a
cycle. Choose a longest cycle C in G and give an orientation on C. Since G is not Hamiltonian, there exists a vertex u0 ∈V (G)−V (C). By
Menger’s theorem, we can find s (s≥ k) pairwise disjoint (except for u0) paths P1, P2, ..., Ps between u0 and V (C). Let vi be the end vertex
of Pi on C, where 1≤ i≤ s. Without loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the orientation of C. We
use v+i to denote the successor of vi along the orientation of C, where 1≤ i≤ s. Since C is a longest cycle in G, we have that v+i 6= vi+1,
where 1≤ i≤ s and the index s+1 is regarded as 1. Moreover, S := {u0,v+1 ,v

+
2 , ...,v

+
s } is independent (otherwise G would have cycles

which are longer than C). Then α ≥ s+1≥ k+1.

Let µ1 ≥ µ2 ≥ ...≥ µp be the p positive eigenvalues of G and let µn−q+1 ≥ µn−q+2 ≥ ...≥ µn be the q negative eigenvalues of G. Then
n−(p+q) is the number of eigenvalues of G which are equal to zero. Since ∑

p
i=1 µi+∑

n
i=n−q+1 µi = trace of A= 0, ∑

p
i=1 |µi|=∑

n
i=n−q+1 |µi|.

Thus we have that

Eng(G) = 2
p

∑
i=1
|µi|= 2

n

∑
i=n−q+1

|µi|.

From Lemma 2.1, we have that

χ ≥ 1+
S+

S−
= 1+

S+

2e−S+
=

2e
2e−S+

, χ ≥ 1+
S−

S+
= 1+

S−

2e−S−
=

2e
2e−S−

.

Therefore we further have that

S+ ≤ 2e(χ−1)
χ

, S− ≤ 2e(χ−1)
χ

.

From Cauchy-Schwarz inequality, we have that

Eng(G)

2
=

p

∑
i=1
|µi| ≤

√
p

p

∑
i=1

µ2
i =

√
pS+ ≤

√
2e(χ−1)p

χ
.

Similarly, we have that

Eng(G)

2
=

n

∑
i=n−q+1

|µi| ≤

√√√√q
n

∑
i=n−q+1

µ2
i =

√
qS− ≤

√
2e(χ−1)q

χ
.

Therefore we get that

Eng(G) =
Eng(G)

2
+

Eng(G)

2

≤

√
2e(χ−1)p

χ
+

√
2e(χ−1)q

χ
=

√
2e(χ−1)

χ
(
√

p+
√

q).

From Lemma 2.2, we have that α ≤ n−(p+q)+min{ p,q} ≤ n− p−q+ p= n−q and α ≤ n−(p+q)+min{ p,q}≤ n− p−q+q= n− p.
Thus p≤ n−α and q≤ n−α . Therefore we have that

2

√
2e(χ−1)(n− k−1)

χ
≤ Eng(G)≤ 2

√
2e(χ−1)(n−α)

χ

≤ 2

√
2e(χ−1)(n− s−1)

χ
≤ 2

√
2e(χ−1)(n− k−1)

χ
.

From the above proofs, we have that

S+ = S− =
2e(χ−1)

χ
,



Universal Journal of Mathematics and Applications 35

µ1 = µ2 = · · ·= µp, µn−q+1 = µn−q+2 = · · ·= µn,

p = q = n−α,α = s+1 = k+1.

Thus pµ2
1 = S+ = S− = qµ2

n . Since p = q, µ2
1 = µ2

n . Hence µ1 =−µn. Since G is connected and µ1 =−µn, G is a bipartite graph. From
Perron-Frobenius theorem, we have that µ1 > µ2. Since µ1 = µ2 = · · ·= µp, we must have p = 1. Now α = n− p = n−1, which implies
that G cannot be 2-connected, a contradiction.

Therefore the proof of Theorem 1 is complete. �

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose, to the contrary, that G is not traceable. If
n = 3, G must be traceable since G is k-connected (k ≥ 1). From now on, we assume that n≥ 4. Choose a longest path P in G and give an
orientation on P. Let x and y be the two end vertices of P. Since G is not traceable, there exists a vertex u0 ∈V (G)−V (P). By Menger’s
theorem, we can find s (s≥ k) pairwise disjoint (except for u0) paths P1, P2, ..., Ps between u0 and V (P). Let vi be the end vertex of Pi on P,
where 1≤ i≤ s. Without loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the orientation of P. Since P is a
longest path in G, x 6= vi and y 6= vi, for each i with 1≤ i≤ s, otherwise G would have paths which are longer than P. We use v+i to denote
the successor of vi along the orientation of P, where 1≤ i≤ s. Since P is a longest path in G, we have that v+i 6= vi+1, where 1≤ i≤ s−1.
Moreover, S := {u0,v+1 ,v

+
2 , ...,v

+
s ,x} is independent (otherwise G would have paths which are longer than P). Then α ≥ s+2≥ k+2.

Using the arguments similar to the ones in Proof of Theorem 1.1, we have that

2

√
2e(χ−1)(n− k−2)

χ
≤ Eng(G)≤ 2

√
2e(χ−1)(n−α)

χ

≤ 2

√
2e(χ−1)(n− s−2)

χ
≤ 2

√
2e(χ−1)(n− k−2)

χ
.

Therefore we have that

S+ = S− =
2e(χ−1)

χ
,

µ1 = µ2 = · · ·= µp, µn−q+1 = µn−q+2 = · · ·= µn,p = q = n−α,α = s+2 = k+2.

Thus pµ2
1 = S+ = S− = qµ2

n . Since p = q, µ2
1 = µ2

n . Hence µ1 =−µn. Since G is connected and µ1 =−µn, G is a bipartite graph. From
Perron-Frobenius theorem, we have that µ1 > µ2. Since µ1 = µ2 = · · ·= µp, we must have p = 1. Now α = n− p = n−1. So G is K1,n−1
with n≥ 4. Since now k = 1 and n−1 = α = k+2, we have that G is K1,3.

Therefore the proof of Theorem 1.2 is complete.
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