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Abstract 

This paper deals with the time-fractional differential-difference Burgers equation 
1(1 )( ),n

n n n

d u
u u u

dt



 += + −  

(0,1)  . The compact finite differences method (CFD-method) is used for numerical solution of this 

problem. According to the method, we approximate the unknown values 
nu  of the desired function by 

compact finite differences approximation. As an application, we demonstrate the capabilities of this method 

for identification of various values of order of fractional derivative with distinct two fractional (Riemann–

Liouville and Caputo) derivatives. Numerical results show that the proposed version of CFD-method allows 

to obtain all data from the initial condition with sufficient high accuracy.  AMS (MOS) subject classifications. 

35R30, 47A52, 35L20 

Keywords:Compact finite differences method,Time-fractional Burger equation, Time-fractional differential-

difference equations. 

 

Zamansal-Kesirli Diferansiyel Fark Burger Denkleminin Sonlu Farklar Yöntemiyle Çözümü 

Öz 

Bu makalede zamansal-kesirli diferansiyel fark Burger Denklemi 
1(1 )( ),n

n n n

d u
u u u

dt



 += + −  (0,1)   

üzerinde durulmuştur. Bu denklemin sayısal çözümü için kompakt sonlu farklar metodu (CFD) kullanılmıştır. 

Bu metoda göre, kompakt sonlu fark yaklaşımı ile ilgili fonksiyonun bilinmeyen bir 
nu  değerine 

yaklaşılmıştır. Bir uygulama olarak, farklı iki kesir türevi (Riemann-Liouville ve Caputo) incelenmiştir. Bu iki 

kesir türev tipi için farklı mertebelerde bulunan değerler karşılaştırılmıştır. Sayısal sonuçlar, CFD yönteminin 

önerilen versiyonunun, başlangıç koşulundan tüm verilerin yeterli yüksek doğrulukta elde edilmesini 

sağladığını göstermektedir.  

Anahtar Kelimeler:Kompakt sonlu farklar metodu, Zamansal-kesirli burger denklemi, Zamansal-kesirli 

diferansiyel-fark denklemi. 

1. Introduction 

Fractional calculus, formerly, has been used 

mainly by mathematicians as an abstract area 

which covering only pure mathematical 

manipulations.  But, recently, the paradigm 

began to change from pure to applied 

mathematics with various applications. Due 

to applications of fractional calculus several 

kinds of numerical methods has appeared in 

the literature. Among various definitions of 

fractional derivatives including the most 

frequently used ones, the Riemann–Liouville 

derivative, the Caputo derivative, and some 

other fractional derivatives may be found 

state-of-the-art studies [Podlubny, 1999; Li 

and Zeng, 2015; Kilbas et al., 2006; Miller 

and Ross, 1993; Duarte, 2011; 

Podlubny,1988]. Hence, due to the rapid 

development of fractional numerical 

methods, more and more publications are 

emerging. [Mohan and Deekshitulu, 2012; 

Cui, 2009; Hodzic-Zivanovic and Jovanovic, 

2017; Yokus and Kaya, 2017;Rawashdeh, 

2017; Al-luhaibi, 2015] 

https://orcid.org/0000-0001-9761-8787
https://orcid.org/0000-0001-9761-8787
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Here and now, we set up notations, basic 

definitions and main properties of 

Riemann- Liouville derivative and the 

relation between Riemann-Liouville 

derivative and Caputo fractional 

derivative. Hence, by definition, Riemann-

Liouville fractional derivative with fractional 

order (0,1)   of the function ( )u u t= , may 

be given [Podlubny, 1999; Cui, 2009] , i.e., 

0

( ) 1 ( )
: , 0

(1 ) ( )

t

RL

d u t u
d t

dt t t



 




 

  
=  
 −  − 

    (1.1) 

where ( )x  is the Euler’s Gamma Function, 

which has following properties: 

1

0

( ) , 0t xx e t dt x



− − =  ; ( 1) ( )x x x + =  ;  

. 

Also, Caputo fractional derivative with 

fractional order (0,1)   of the function 

( )u u t=  is defined by [Podlubny, 1999; Cui, 

2009] as follows: 

0

( ) 1 ( )
: , 0.

(1 ) ( )

t

C

d u t u
d t

dt t



 




 

 
=  
 − − 

  (1.2) 

From (1.1) and (1.2), it is clear that 

definitions of Riemann–Liouville derivative 

and Caputo derivative are not equivalent. 

But, there is a fact that, almost all the 

numerical methods for the Riemann–

Liouville derivative can be theoretically 

extended to the Caputo derivative if the 

function ( )u t  satisfies suitable smooth 

conditions [Li and Zeng, 2015]. Following 

equality shows the relation between the 

Riemann–Liouville and Caputo derivatives 

for 0 1  ; 

( ) ( ) (0)
, 0,

(1 )
RL C

d u t d u t t u
t

dt dt

  

  

−   
= +    

 −   
    (1.3) 

where 
( )

RL

d u t

dt





 
 
 

 and 
( )

C

d u t

dt





 
 
 

 are 

Riemann–Liouville and Caputo fractional 

derivatives of the function ( )u u t= , 

respectively [Podlubny, 1999]. 

In this study, in special, we will solve and 

make comparisons of the time-fractional 

differential-difference Burgers equation 

1(1 )( ), (0,1)n
n n n

d u
u u u

dt




+= + −         (1.4) 

with initial condition 

                        (1.5) 

where  nd u

dt




 denotes the fractional 

derivative with fractional order   of the 

function ( )u u t=  by applying Riemann–

Liouville derivative and the Caputo 

derivative on fractional derivatives 

respectively and we will compare the 

numerical solutions with individual fractional 

derivatives numerically. 

2. Numerical Implementation 

Burger Equation for Riemann-Liouville 

fractional derivative: For the numerical 

solution to the considered problem (1.4) we 

consider Riemann-Liouville fractional 

derivative at left-hand side of (1.4): 

1

1 1

(1 )( ), (0,1),

( ) , 0.

n
n n n

RL

d u
u u u

dt

u t t








+

 
= + −  

 


= 

     (2.1) 

We construct a uniform grid of mesh points 

nt  with nt n= , 0,1,2, ,n N= , and 

/T N = . We denote the exact solution by 

( )n nu u t=  with 0( ) 0u t =  and approximate 

solution by nU  at the same point nt  

( 0 0U = ). We can approximate the Riemann-

Liouville fractional derivative (1.3) by  
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/

0

( ) 1
( ) ( ), 0

t
p

k

kRL

d v t
w v t k O t

dt

 


 
 

 =

 
= − +  

 
      (2.2) 

where kw
 are the coefficients of the 

generating function, that is 0 1w = , 

1

1
(1 ) , 1k kw w k

k

 
−

+
= −   and 1p =  [Li 

and Zeng, 2015; Cui, 2009]. Then the 

compact finite difference approximation of 

(2.1) is given as follows: 

1

0

1
(1 )( ), 1

n

k n k n n n

k

w U U U U n


− +

=

= + −       (2.3) 

So (2.3) gives the approximate solution for 

all points nt  as follows: 

0 1 1 0
1

1

, 1(1 )

n n n
n n

n

w U w U w U
U U

nU

U

  





−
+

 + + +
= +

+
 =

 (2.4) 

 

Numerical calculation: We consider here 

0.5 =  as initial data and 0.8 =  as 

fractional order of derivative. In this example 

the time step size is 0.5 =  and number of 

time interval is 10N = . The left Figure 1 

shows numerical solution ( )U t  for (0, ]t T , 

5T = . The numerical solutions 

corresponding to the distinct values of time 

step size   for 0.8 =  are plotted in the 

Figure 1, below.  

Figure 1. Solution for Riemann–Liouville 

fractional derivative ( 0.8 = )  

We think that Figure 1 verifies that solution 

 for distinct times  values  preserves the 

characteristics of the problem, since no 

analytical solution is known. In order to get 

in to the numerical solutions, we run the 

problem with 

distinct 0.2,0.4,0.6,0.8 = values to see the 

consequences of fractional orders. Yet again, 

the time step size is 0.01 =  and number of 

time interval is 20N = . Figure 2 shows the 

numerical solutions corresponding to the 

distinct values of fractional order  . 
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Figure 2. The solutions for distinct fractional 

orders ( 0.2,0.4,0.6,0.8 = ) 

Since, the solutions with distinct fractional 

orders behave like, we conclude that obtained 

solution are good approximations for the 

problem in hand. 

Burger Equation for Caputo fractional 

derivative: In case of Caputo fractional 

derivative in left-hand side of (1.4) we get  

1

1 1

(1 )( ), (0,1),

( ) , 0.

n
n n n

C

d u
u u u

dt

u t t








+

 
= + −  

 


= 

    (2.5) 

We consider L1 approximation of the Caputo 

fractional derivative for (2.5). According to 

the L1 method, the Caputo fractional 

derivative is approximated as follows 

[Podlubny, 1999]: 

( )
1

2

1

0

( 1) ( ) ( ), 0 1,
n

n
n k

kC

d u
b u k u k O

dt





 

−
−

− −

=

 
= + − +   

 
      (2.6) 

where ( )1 1( 1)
(2 )

kb k k


 



−
− −= + −

 −
. 

Taking into account (2.6) in (2.5), we get the 

approximate solution of (2.5) as follows: 

1 1 0 2 2 1 0 1
1

1

( ) ( ) ( )
,

1 1.

.

n n n n
n n

n

b U U b U U b U U
U U

U n

U 

− − −
+

− + − + + −
= +

+ 
 =

  (2.7) 

Numerical computation: We, again, consider 

here 0.5 =  as initial data and 0.8 =  as 

fractional order of derivative. In this example 

the time step size is 0.5 =  and number of 

time interval is 10N = . The left Figure 3 

shows numerical solutions ( )U t  of (1.4) and 

(2.5) for (0, ]t T , 5T = . The numerical 

solutions of (2.5) corresponding to the 

distinct values of time step size   for 

0.8 =  are plotted in the right Figure 3. 

In order to compare the numerical solutions 

of (2.5), we consider here 0.5 =  as initial 

data and 0.2,0.4,0.6,0.8 =  as fractional 

order of derivative. In this example the time 

step size is 0.01 =  and number of time 

interval is 20N = . Figure 4 shows the 

numerical solutions corresponding to the 

distinct values of fractional order  . 

 

Figure 3. Solutions for Caputo fractional 

derivatives ( 0.8 = ) 

 

Figure 4. Solutions with respect to the   

values 
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It is noticeable that the left figure in Figure 3 

shows slight difference on the solutions with 

Riemann–Liouville fractional derivative and 

Caputo fractional derivatives for 0.8 = . 

We think that this slight difference is due to 

the second term on r.h.s of equation (1.3) 

which states the relation between the 

Riemann–Liouville and Caputo derivatives 

for 0 1  Hence, numerical experiments 

clearly show that the outcome of this term in 

equation (1.3) is insignificant, and any of the 

derivative may be used for future problems. 

3. Conclusions 

In this study the time-fractional differential-

difference Burgers equation is experimented 

numerically with Riemann–Liouville and 

Caputo derivatives. We use the compact 

finite differences method for numerical 

solution of the problem and present 

computational results for the case of distinct 

values of fractional order   as well as initial 

data. Numerical experiments show that any 

of the fractional (Riemann–Liouville and 

Caputo) derivatives may be used for any 

physical problem without any reluctance and 

the choice of the fractional derivative is 

negligible at least the problem considered in 

this study. 
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