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ABSTRACT

Let A be a point which moves with constant angular speed on the circle with centre O and radius 1,
andB a point wich moves with an angular speed which is q times (q > 1) that ofA on the circle with
centre O and radius r (r > 1). We study the envelope of the straight lines AB. Both limit cases r = 1
and r = +∞ (with q constant) are epicycloids; the relation between the shapes of these epicycloids
does not depend on q.
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1. Introduction.

An epicycloid is the trajectory of a point on a circle which rolls without slipping around another circle;
the ratio of the radii of these circles determines the shape of the epicycloid. Examples of epicycloids are the
cardioid and the nephroid. My attention was drawn to epicycloids by a recent article [4] where it is shown by
direct calculations how the cardioid can be obtained as the envelope of the family of chords joining a point to
its ‘double’ on a circle. Now, this result is not new: it is exercise 5.7(2) in [1, p.185], where a generalization is
hinted at. In fact, the general case is already in Gomes Teixeira’s three volume work [2, volume II, §561 p.166].
It can be worded as follows.

On the circle α with centre O := (0, 0) and radius 1, let A and B be two points which, starting from (1, 0),
move with constant speed. If the angular velocity of B is q times (q > 1) that of A, the chord AB generates a
family of straight lines whose envelope is an epicycloid (see Figure 1 for the case q = 4).

Here we investigate what occurs if B moves on the circle β with centre O and radius r (r > 1) starting from
(r, 0), its angular velocity being always q times that of A. We calculate explicitly the parametric representation
of the curve which is the envelope of the straight linesAB; we find the critical points of this curve and we study
its position relatively to α. The curve is not an epicycloid, but, as r tends to 1, we evidently get the epicycloid
from Gomes Teixeira’s cited result; moreover, as r tends to +∞, we also get an epicycloid. We show that the
shapes of these epicycloids are related in a way which does not depend on q.

2. Envelope and curve.

We may suppose that A and B start at t = 0 from the points (1, 0) and (r, 0) respectively; we can then choose
the following parametrizations:

A(t) = (cos t, sin t), B(t) = (r cos qt, r sin qt).

The straight line through A and B is given by the equation

x− cos t

r cos qt− cos t
=

y − sin t

r sin qt− sin t
.
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Figure 1. The circle α and some of the chordsAB for q = 4.

Hence the set of these lines is the zero set of the function

F (t, x, y) := (x− cos t)(r sin qt− sin t)− (y − sin t)(r cos qt− cos t)

= x(r sin qt− sin t)− y(r cos qt− cos t)− r cos t sin qt+ r sin t cos qt

= x(r sin qt− sin t)− y(r cos qt− cos t)− r sin(q − 1)t.

We deduce:
∂F

∂t
(t, x, y) = x(rq cos qt− cos t) + y(rq sin qt− sin t)− r(q − 1) cos(q − 1)t.

The envelope of the straight lines AB is the set of points (x, y) such that there exists t with F (t, x, y) = 0 and
(∂F/∂t)(t, x, y) = 0 [1, Definition 5.3 p.102]. So we must solve the system{

x(r sin qt− sin t)− y(r cos qt− cos t) = r sin(q − 1)t

x(rq cos qt− cos t) + y(rq sin qt− sin t) = r(q − 1) cos(q − 1)t.

This is a linear system in the unknown x and y of the form ax− by = u and cx+ dy = v, whose solution is

x =
bv + du

ad+ bc
, y =

av − cu
ad+ bc

if its determinant ad+ bc is non zero. So we first calculate this determinant:

ad+ bc = (r sin qt− sin t)(rq sin qt− sin t) + (r cos qt− cos t)(rq cos qt− cos t)

= r2q sin2 qt− r sin qt sin t− rq sin qt sin t+ sin2 t

+ r2q cos2 qt− r cos qt cos t− rq cos qt cos t+ cos2 t

= r2q + 1− r(q + 1)(sin qt sin t+ cos qt cos t)

= r2q + 1− r(q + 1) cos(q − 1)t.

Suppose ad+ bc = 0; this would mean

cos(q − 1)t =
r2q + 1

r(q + 1)
. (2.1)

We will prove that the right-hand of (2.1) is greater than 1, which implies that (2.1) has no solution and
ad+ bc 6= 0. Let, for r > 0, f(r) := (r2q + 1)/(r(q + 1)). We have f ′(r) = (r2q − 1)/(r2(q + 1)). Then f ′(r) = 0

69 www.iejgeo.com

http://www.iej.geo.com


A Natural Morphing Between Two Epicycloids

implies r2q − 1 = 0, that is, r = 1/
√
q < 1. Since limr→+∞ f ′(r) = q/(q + 1) > 0, f is increasing on ]1/

√
q; +∞[;

in particular, for all r > 1, f(r) > f(1) = 1, as wanted. Next we calculate the numerator of x:

bv + du = (r cos qt− cos t)r(q − 1) cos(q − 1)t+ (rq sin qt− sin t)r sin(q − 1)t.

We concentrate on the second term of the right hand:

(rq sin qt− sin t)r sin(q − 1)t = (rq sin qt− sin t)r(cos t sin qt− sin t cos qt)

= r2q sin2 qt cos t− r2q sin qt sin t cos qt

− r sin t cos t sin qt+ r2 sin2 t cos qt

= r2q(1− cos2 qt) cos t− r2q sin qt sin t cos qt

− r sin t cos t sin qt+ r(1− cos2 t) cos qt

= r2q cos t− r2q cos2 qt cos t− r2q sin qt sin t cos t

+ r cos qt− r cos2 t cos qt− r sin t cos t sin qt

= r2q cos t− r2q cos qt(cos qt cos t+ sin qt sin t)

+ r cos qt− r cos t(cos t cos qt+ sin t sin qt)

= r2q cos t+ r cos qt− r(rq cos qt+ cos t) cos(q − 1)t.

Therefore

bv + du = (r cos qt− cos t)r(q − 1) cos(q − 1)t

− r(rq cos qt+ cos t) cos(q − 1)t+ r2q cos t+ r cos qt

= r2(q − 1) cos qt cos(q − 1)t− r(q − 1) cos t cos(q − 1)t

− r2q cos qt cos(q − 1)t− r cos t cos(q − 1)t+ r2q cos t+ r cos qt

= r2q cos t− r2 cos qt cos(q − 1)t+ r cos qt− rq cos t cos(q − 1)t

= rq cos t[r − cos(q − 1)t] + r cos qt[1− r cos(q − 1)t].

The numerator of y can be calculated along the same lines and we find:

av − cu = rq sin t[r − cos(q − 1)t] + r sin qt[1− r cos(q − 1)t].

We conclude that the envelope of the straight lines AB is the curve γr given by

γr(t) =


rq cos t[r − cos(q − 1)t] + r cos qt[1− r cos(q − 1)t]

r2q + 1− r(q + 1) cos(q − 1)t

rq sin t[r − cos(q − 1)t] + r sin qt[1− r cos(q − 1)t]

r2q + 1− r(q + 1) cos(q − 1)t

 (2.2)

for all t ∈ R.

3. Critical points.

The critical points of γr are those points where the derivative of γr is zero: γ̇r(t) = 0. Now, if the expression
we have found for γr is not simple, the one for γ̇r will certainly be complicated, and to solve γ̇r(t) = 0 from it
not less.

However, it is possible to find the critical points of γr without messy calculations if we allow ourselves
the use of some old-style reasoning. Suppose γr has a critical point at t0. Let ∆t > 0 be so small that we
may consider the arcs on the circles α and β between t− := t0 −∆t and t+ := t0 + ∆t as straight segments.
We write A− := A(t−), A0 := A(t0), A+ := A(t+) and similarly for B−, B0 , B+, so that A0 (respectively B0) is
the middlepoint of the segment A−A+ (resp. B−B+). Let I be the intersection of the straight lines A−B− and
A0B0, and J the intersection of A0B0 and A+B+. We have essentially two possibilities: see Figure 2. We may
consider I and J as points on the curve γr. The equality γ̇r(t0) = 0 means that γr(t) does not vary for t near
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Figure 2. Position of I and J with respect toA−A+ andB−B+.

t0; hence I = J , which is only possible if the segments A−A+ and B−B+ are parallel. Now, these segments
are on the concentric circles α and β respectively: the tangents at A0 to α and at B0 to β can only be parallel
when A0 and B0 are aligned with the centre O. Going back to the parametrizations of A and B, this gives two
possibilities:

(a) cos qt0 = − cos t0 and sin qt0 = − sin t0;

(b) cos qt0 = cos t0 and sin qt0 = sin t0.

The case (a) occurs when qt0 = t0 + (2l + 1)π for some l ∈ Z, that is,

t0 =
(2l + 1)π

q − 1
.

Then cos(q − 1)t0 = cos(2l + 1)π = −1 and

x =
rq cos t0[r + 1]− r cos t0[1 + r]

r2q + 1 + r(q + 1)
=
r(r + 1)(q − 1) cos t0

(rq + 1)(r + 1)
=
r(q − 1) cos t0

rq + 1
.

Similarly,

y =
r(q − 1) sin t0

rq + 1
.

Hence all these critical points are on the circle with centre O and radius

Ra :=
r(q − 1)

rq + 1
. (3.1)

The case (b) occurs when qt0 = t0 + 2lπ for some l ∈ Z, that is,

t0 =
2lπ

q − 1
.

Then cos(q − 1)t0 = cos 2lπ = 1 and

x =
rq cos t0[r − 1] + r cos t0[1− r]

r2q + 1− r(q + 1)
=
r(r − 1)(q − 1) cos t0

(rq − 1)(r − 1)
=
r(q − 1) cos t0

rq − 1
.

Similarly,

y =
r(q − 1) sin t0

rq − 1
.
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Hence all these critical points are on the circle with centre O and radius

Rb :=
r(q − 1)

rq − 1
. (3.2)

Moreover, Ra < Rb < 1.

4. Periodicity.

Suppose q is a rational number: q = m/n with m, n ∈ Z, m > n ≥ 1 and gcd(m,n) = 1. We show that γr is in
this case periodic and therefore its image is a closed curve.

To find the period of γr, we must find when the points A and B have regained their initial position at (1, 0)
and (r, 0) respectively, that is, when both points have toured a whole number of times around O. As A tours
n times, B tours q · n = m

n · n = m times: they are at their initial position. Moreover, since gcd(m,n) = 1, this
cannot occur before. Hence γr is periodic of period 2nπ. (This does not preclude the curve intersecting itself for
t strictly between 0 and 2nπ; in fact, when n > 1 some selfintersection is necessary.) The critical points of type
(a) (see section 3) occur at

t =
(2l + 1)π

m/n− 1
=

(2l + 1)nπ

m− n
.

It follows that there are m− n distinct critical points of type (a), corresponding to l = 0, . . . ,m− n− 1. The
critical points of type (b) (see section 3) occur at

t =
2lπ

m/n− 1
=

2lnπ

m− n
.

It follows that there are m− n distinct critical points of type (b), corresponding to l = 0, . . . ,m− n− 1. In total,
γr has 2(m− n) critical points.

When q is not rational, γr is not periodic, so its image is not a closed curve, and it has infinitely many critical
points of both types.

5. Within the unit circle.

First, we prove that γr cannot go outside the circle β. Let t0 be such that γr(t0) is one of the points on the curve
which are farthest from O, and suppose γr(t0) is outside β. Then t0 cannot be a critical point, since all critical
points are inside α (see section 3). Hence it is regular and γ̇r(t0) 6= 0, so the tangent to the curve γr at γr(t0) is
well defined. Moreover, γ̇r(t0) is orthogonal to γr(t0): since ‖γr(t)‖2 is maximal at t0, its derivative at t0 is zero,
i.e. 2γr(t0)γ̇r(t0) = 0. But the curve γr is tangent at γr(t0) to the line given by F (t0, x, y) = 0 [1, proposition 5.25
p.114]. Now it follows from the first part of our discussion that the tangent to the curve at γr(t0) does not touch
the circle β, and hence cannot be a straight line through A and B: contradiction.

The same argument shows that γr cannot go outside the circle α: see Figure 3.
Next we show that there are points of γr which lie on α. We already know that, if such a point γr(t) exists,

γ̇r(t) 6= 0 and γr(t) it is farthest from the centreO and hence γ̇r(t) is orthogonal to γr(t). Moreover the tangent to
γr at γr(t) is the straight line given by F (t, x, y) = 0, in other words: it goes through A(t) and B(t). This implies
γr(t) = A(t), i.e. 

rq cos t[r − cos(q − 1)t] + r cos qt[1− r cos(q − 1)t]

r2q + 1− r(q + 1) cos(q − 1)t
= cos t

rq sin t[r − cos(q − 1)t] + r sin qt[1− r cos(q − 1)t]

r2q + 1− r(q + 1) cos(q − 1)t
= sin t.

(5.1)

The first equation can be written:

r2q cos t− rq cos t cos(q − 1)t+ r cos qt[1− r cos(q − 1)t] = r2q cos t+ cos t− r(q + 1) cos t cos(q − 1)t

that is,
r cos qt[1− r cos(q − 1)t]− cos t+ r cos t cos(q − 1)t = 0
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Figure 3. The curve γr cannot go outside α.

or
[r cos qt− cos t] · [1− r cos(q − 1)t] = 0.

The calculations with the second equation of (5.1) are analogue and we get the system{
[r cos qt− cos t] · [1− r cos(q − 1)t] = 0

[r sin qt− sin t] · [1− r cos(q − 1)t] = 0.

If 1− r cos(q − 1)t 6= 0, we have

cos qt =
1

r
cos t, sin qt =

1

r
sin t

and
cos(q − 1)t = cos qt cos t+ sin qt sin t =

1

r
cos2 t+

1

r
sin2 t =

1

r
.

We conclude that the curve γr touches (and is tangent to) the circle α exactly for every t with cos(q − 1)t = 1/r.
(When γr is periodic, the existence of points on the curve for which ‖γr(t)‖2 is maximal is clear by

compactness. In the aperiodic case, one must reason on a piece of the curve joining two critical points.)

6. Away from the origin.

We prove here that there is no point on the curve whose distance from O is less than Ra. Suppose such a
point exists: we may even choose t such that ‖γr(t)‖2 be minimal. Then t cannot be a critical point (see section
3). Hence γ̇r(t) 6= 0, so the tangent to the curve γr at γr(t) is well defined. Moreover, γ̇r(t) is orthogonal to γr(t)
and the tangent to the curve at γr(t) is the straight line through A(t) and B(t), by a reasoning already used in
section 5. This implies that the scalar product of γr(t) with the vector joining A(t) to B(t) is zero:

0 =


rq cos t[r − cos(q − 1)t] + r cos qt[1− r cos(q − 1)t]

r2q + 1− r(q + 1) cos(q − 1)t

rq sin t[r − cos(q − 1)t] + r sin qt[1− r cos(q − 1)t]

r2q + 1− r(q + 1) cos(q − 1)t

 ·
(
r cos qt− cos t
r sin qt− sin t

)
.

Multiplying by the common denominator (which is never zero), we have

0 = r2q cos t cos qt[r − cos(q − 1)t]− rq cos2 t[r − cos(q − 1)t]

+ r2 cos2 qt[1− r cos(q − 1)t]− r cos qt cos t[1− r cos(q − 1)t]

+ r2q sin t sin qt[r − cos(q − 1)t]− rq sin2 t[r − cos(q − 1)t]

+ r2 sin2 qt[1− r cos(q − 1)t]− r sin qt sin t[1− r cos(q − 1)t],
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or

0 = {r2q cos t cos qt+ r2q sin t sin qt− rq cos2 t− rq sin2 t}[r − cos(q − 1)t]

+ {r2 cos2 qt+ r2 sin2 qt− r cos qt cos t− r sin qt sin t}[1− r cos(q − 1)t].

We simplify it to

0 = {r2q cos(q − 1)t− rq}[r − cos(q − 1)t] + {r2 − r cos(q − 1)t}[1− r cos(q − 1)t],

that is,
0 = rq{r cos(q − 1)t− 1}[r − cos(q − 1)t] + r{r − cos(q − 1)t}[1− r cos(q − 1)t],

or
0 = (rq − r)[r − cos(q − 1)t] · [r cos(q − 1)t− 1],

But r − cos(q − 1)t = 0 has no solution since r > 1; and the solutions to r cos(q − 1)t− 1 = 0 give the points on
α already found. The conclusion follows.

7. The limit case r = 1.

When r tends to 1, the expression (2.2) for γr gives

γ1(t) =


q cos t[1− cos(q − 1)t] + cos qt[1− cos(q − 1)t]

q + 1− (q + 1) cos(q − 1)t

q sin t[1− cos(q − 1)t] + sin qt[1− cos(q − 1)t]

q + 1− (q + 1) cos(q − 1)t

 .

The terms 1− cos(q − 1)t (which give a possible zero of the denominator) cancel out to

γ1(t) =


q cos t+ cos qt

q + 1

q sin t+ sin qt

q + 1

 .

Comparing with the representation of an epicycloid in [2, volume II, formula (8) p.162], we see that γ1 is the
epicycloid obtained as the trajectory of a point on a circle of radius ρ := 1/(q + 1) rolling around a circle of
radius R := (q − 1)/(q + 1). Note that R+ 2ρ = 1 and that the ratio R/ρ equals q − 1. We observe further (see
(3.1) and (3.2)) that

lim
r→1+

Ra = R, lim
r→1+

Rb = 1.

This means that the critical points of type (a) remain but that those of type (b) disappear: they merge with
the points of contact of γr with α in those particular points where cos t0 = cos qt0 and sin t0 = sin qt0, i.e.
A(t0) = B(t0) where there is no chord possible! In fact, the envelope is not defined at these points: we closed
the gap by continuity (these points correspond to the zeros of the term 1− cos(q − 1)t in our first expression for
γ1).

8. The limit case r = +∞.

When r tends to +∞, the expression (2.2) for γr gives

γ∞(t) =


q cos t− cos qt cos(q − 1)t

q

q sin t− sin qt cos(q − 1)t

q

 .
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Figure 4. The case q = 4 and r = 2 in detail.

Now

cos qt cos(q − 1)t =
1

2
cos(2q − 1)t+

1

2
cos t;

hence

q cos t− cos qt cos(q − 1)t =
1

2
[(2q − 1) cos t− cos(2q − 1)t].

An analogue calculation for the second coordinate gives finally

γ∞(t) =


(2q − 1) cos t− cos(2q − 1)t

2q

(2q − 1) sin t− sin(2q − 1)t

2q

 .

Comparing with the representation of an epicycloid in [2, volume II, formula (2) p.156], we see that γ∞ is the
epicycloid obtained as the trajectory of a point on a circle of radius ρ := 1/2q rolling around a circle of radius
R := (q − 1)/q. Note that R+ 2ρ = 1 and that the ratio R/ρ equals 2(q − 1), which is the double of the ratio R/ρ
in the case r = 1. We observe further (see (3.1) and (3.2)) that

lim
r→+∞

Ra = R, lim
r→+∞

Rb = R.

This means that all critical points of γr remain, but the distinction between type (a) and type (b) disappears.
That in this case we also have an epiycloid is not a surprise. When r tends to +∞, the straight line AB tends

to a line through A which makes an angle qt with the x-axis. We can then use [2, volume II, §560 p.165] or [3,
p.140]: the diameter of a circle rolling around another circle envelopes an epicycloid.
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Figure 5. With q = 4, top left: r = 7/6, top right: r = 5/3, bottom left: r = 3, bottom right: r = 30.

9. Examples.

We take q = 4 and r = 2. The curve γ2 has period 2π. The three critical points of type (a) are on the circle
of radius Ra = 2/3 at angles π/3, π and 5π/3. The three critical points of type (b) are on the circle of radius
Rb = 6/7 at angles 0, 2π/3 and 4π/3. The points of contact of γ2 with α are at the angles t such that cos 3t = 1/2
i.e. cos 3t = cosπ/3; we find the six angles π/9, 5π/9, 7π/9, 11π/9, 13π/9 and 17π/9. All this can be seen in Figure
4.

In Figure 5 we illustrate, also for q = 4, the cases r = 7/6, r = 5/3, r = 3 and r = 30, without drawing the
curve γr itself.

Sections 7 and 8 and the preceding example may suggest that the epicycloid for r = +∞ shows two times
more critical points than the one for r = 1. It is not always so. Take q = 3/2; for r = 1 as well as for r = +∞ the
epicycloids show one critical point.
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10. Another natural morphing.

Almost all calculations made in the preceding sections for q > 1 are still valid when q < −1, that is, when B,
starting from (r, 0), moves on β in the sense opposite to A. We only state some salient differences in the results:
1 < Rb < Ra; if q = −m/n with m, n ∈ Z, m > n ≥ 1 and gcd(m,n) = 1, γr has m+ n critical points of type (a)
andm+ n critical points of type (b); the curve γr is again tangent to the circle α but does not go inside it; finally,
the limit cases γ1 and γ∞ are hypocycloids.
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