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Abstract

A function is said to be bi-univalent in the open unit disk U if both the function and
its inverse map are univalent in U. By the same token, a function is said to be bi-
subordinate in U if both the function and its inverse map are subordinate to a given
function in U. In this paper, we consider the m-fold symmtric transform of such functions
and use their Faber polynomial expansions to find upper bounds for their n-th (n > 3)
coeflicients subject to a given gap series condition. We also determine bounds for the first
two coefficients of such functions with no restrictions imposed.
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1. Introduction

Let A be the class of analytic functions in the open unit disk U := {z € C: |z| < 1}
and let 8 be the class of functions f that are analytic and univalent in U and are of the
form

flz) =2+ Z anz". (1.1)
n=2

For f(z) and F(z) analytic in U, we say that f(z) is subordinate to F'(z), written
[ < F, if there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 in U such
that f(z) = F(w(z)). We note that f(U) C F(U) if both f and F are in S. Moreover, for
the Schwarz function w(z) = > o2 ; w,z" we have |w,| <1 (e.g. see [3]).

For each function f € 8, the m-fold symmetric function given by

fm(z) = X/ f(zm™) =2+ i amk1 2™ (2 € U,m e N),

k=1
is univalent in the unit disk U (e.g. see [3]). We denote the class of such functions by §,,.
The functions in the class 81 = § are univalent one-fold symmetric.
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Since the functions in 8§ are one-to-one, they are invertible and their inverse maps need
not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem (e.g.
see [3]) ensures that every univalent function f € § contains a disk of radius 1/4. Thus
every function f € § has an inverse map f~!, which is defined by f~!(f(z)) = z and
f(f71 (w)) = w where z € U and |w| < ro (f) > 1/4.

It is easy to verify that for f € 8§ = 8 of the form (1.1), the inverse function g = f~1
is given by

g(w) = w — agw® + (2a% — ag) w3 — <5a§ — bagas + a4) wh - (1.2)

Similarly, for the m-fold symmetric function f,, € 8,,, its inverse function g,, = f,,! is

of the form

gm(w) (1.3)
= W — a1+ [(m+ 1)ad, | — asmir]w?™ T

1
- §<m +1)(3m +2)al, ;1 — (3m + 2)amt1a2m41 + agmrr | W 4+

A function f € A is said to be bi-univalent in U if both f and its inverse map g = f~! are

univalent in U. Similsarly, a function f,, € A is said to be m-fold symmetric bi-univalent
in U if both f,,, and its inverse map g,, = f,,! are univalent in U. We let %, be the class of
all m-fold symmetric bi-univalent functions in U. Obviously, for m = 1, the formula (1.3)
coincides with the formula (1.2) of the class 31 = X . For a brief history of functions in the
class X, see the work of Srivastava et al. [9] and the references cited therein. The concept
of m-fold symmetric bi-univalent functions has been introduced concurrently by Hamidi
and Jahangiri [5] and Srivastava et al. [10]. Not much was known about the bounds
of the general coefficients a,, (n = 4) of subclasses of bi-univalent functions up until the
publication of the article [7] by Jahangiri and Hamidi who used the Faber polynomial series
expansions to obtain bounds for the n—th coefficients a,, (n = 3) of certain subclasses
of the normalized bi-univalent functions subject to a given gap series condition. Here
we consider the m-fold symmetric transformation of a subordination version of a class
of functions considered in [7] and obtain the upper bounds for the general coefficients
|@m(n—1)+1] of such functions subject to a given gap series condition. We also determine

the upper bounds for their first two coefficients |a,,+1| and |agm+1| as well as bounds for
their Feket-Szego coefficient body ’a2m+1 — mTHafn +1‘. In general, our results are new on

their own rights and in particular improve a few of the previously known results.

2. Main results

Let the function ¢ € A have positive real part in U so that ¢ maps the unit disk U
onto a region starlike with respect to 1, symmetric with respect to the real axis, ¢(0) =1
and ¢'(0) > 0 (e.g. see [8]). Here we use the m-fold symmetric transformation of the
function ¢ € A, denoted by ¢, € A. Obviously, by the properties of m-fold symmetric
analytic functions (e.g. see [3]), ¢, is an analytic function with positive real part in the

unit disk U, satisfying ¢,,(0) = 1, go,(gl )(0) > 0 and symmetric with respect to the real
axis having the power series expansion

©m(2) = 1+ Bpz™ + By 2™ 4 B3 25 + - - (B > 0).
Using the above definition of functions ¢,, € A we introduce the following

Definition 2.1. A function f,, € 3,, is said to be in the class ¥,, (X; o) if

- @ <ene) e,
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and
gm(w)
(122 ) < () (weD)
where A > 0, m € N and g, is given by (1.3).

In order to prove our theorems in this section, we need to use the Faber polynomial
expansions of inverse functions. For the function f € 8 of the form (1.1), the coefficients
of its inverse map g = f~! may be expressed (e.g. see [1] and [2]) by

n

gw) = [ ) =w+ D K (a0,

where
- (=n)! -1 (=n)! ~3
K n — n n
T ona D=1 TR ) m—3)" ®
(—n)! n—4 (—n)! n—5
Con43)n—a1" “F oar2)n 5™
2 (_n)l n—=6
x[as + (—n + 2)a3] + Con o)l 6)'a2 [ag + (—2n + 5)azaq]
+2 a3V,
Jj=7
such that V; with 7 < j <nisa homogeneous polynomial in the variables ao,as, - -, ap.
In partlcular the first three terms of K", are
1 1 1 .
§K1 2= —ay, §K2 8 = 2a% —as, ZK?’ Y = —(5a3 — bagaz + a4).

In general, for n > 1 and real values of p, an expansion of K¥ | is (see [1,12] or [2, page
349])

plp—1) P! 3 P! -1
KP . — PP=2)p _Pr_p . Dr
ne1 = P T e ey e T T T D Y
where DY | = DP | (as,as,- -+ ,a,) are homogeneous polynomials explicated in

s m!(a2)ul e (an):unfl

P —
Dn—l(a27a37 7an) - nz:; Nl! .. 'Nn—l!

for p<n-—1,

and the sum is taken over all nonnegative integers p1, ..., un—1 satisfying

{ p1+pg e i1 = P,
w1+ 2u0+ -+ (n—1Dpp—1 =n—1.

It is clear that D)~ ((12,(13, Ce L ap) = Ay L
Now we are ready to state and prove our first theorem which provides an upper bound for
the general coefficients of functions in ¥, (A; ¢,,) subject to a given gap series condition.

Theorem 2.2. For A >0, m € N, let the function f,, € X, (A\;om) be given by (1.3). If
ar, =0 form+1<k<(n—2)m+1, then

|a(n—1)ym+1] < Bm
14 (n—1)m\]

Proof. By definition, for function f,, € ¥,,(\; vm), we have
fm( )

n > 3.

(1= 0=+ A (2 —HZ (n — Dmag-1yme12" 0™, (2.1)
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and for its inverse map, g,, = f,,!, we obtain

(1- ) gmlf}w) + Agl, (w) (2.2)
= 1+ i[l + (n = D)mA g1y w0 I™

n=2

S 1
= 1+ [I+(n— 1)m)\}EK;f1(am+1, ot - - 7a(n—1)m+1)w(n_1)m.

n=2

On the other hand, since fn, € X, (A;om), by the definition of subordination, there
exist two Schwarz functions Py, @, : U — U with

oo
Po(2) = Y pumz™" = pmz™ + -+ and
n=1

o0
Qun(w) = 3 Gumt™™ = g™ + -,
n=1

so that
(137 mz(z) + Af(2) (2.3)
= ‘Pm(Pm(Z)) =1+ i i BkmDZ(pmyp%m te apnm)znma
n=1k=1
and
(-2 gt w) (2.4)

o n
= Som(Qm(w)) =1+ Z Z BkmeL(Qma P2m, inm)wnm-
n=1k=1

Comparing the corresponding coefficients of (2.1) and (2.3), we obtain

n—1

[1 + (TL - l)m)‘]a(n—l)m+l - Z BkmeL—l(pWMme) T up(n—l)m)~ (2-5)
k=1

Similarly, by comparing the corresponding coefficients of (2.2) and (2.4), we obtain

1
[1 + (n - 1)m>\]ﬁan1 (am-l-la a2m+1; " * ya(n—l)m—H)
n—1
= Z BkmeL—l(Qma az2m; " - yQ(n—l)m)' (2.6)
k=1

Letting ax = 0 for m +1 <k < (n —2)m + 1 yields b, —1)m+1 = —@(n—1)m+1 and hence
[1 + (n - 1)mA]a(n71)m+1 = Bmp(nfl)nm

and
—[1+ (n—1)mAam—1)ym+1 = Bndm—1)ym-

Now taking the absolute values of either of the above two equations and using the facts
that [p—1)m| < 1 and |gp_1)m| < 1, we obtain

Bm|p(n—1)m| . Bm|Q(n—1)m‘ B,
la(—1)ym+1] < = < _
(=mH =T —DmA] [+ (n—DmA] ~ [L+ (n— 1)m)]
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Our next two theorems provide bounds for the first two coeflicients of certain subclasses
of ¥ (A; pm) with no gap series restrictions imposed.

Theorem 2.3. For A\>0, meNand 0 < <1 let fr, € Xy ()\; M) Then

1—zm
_J201-5) 4(1-5)
<
2(1-8)
< = 7
[aam 1] < 7750
and
m+1 , 2(1-7)
_ ot - < 22 P
@mAl = T Am | = o

Proof. The equations (2.5) and (2.6) for n = 2 and n = 3, respectively, imply

(1 +mA)ams1 = 2(1 — B)pm, (2.7)
(1+2mA)azmr1 = 2(1 = B)pam + 2(1 = B)pin, (2.8)
—(T+mA)ams1 = 2(1 - B)qm, (2.9)
(14 2mA)[(m + 1)a2, 1 — azmis] = 20— Bgom +2(1 - Ay (2.10)
Taking absolute values of (2.7) or (2.9), we get
amer| < 20200

Also by adding (2.8) and (2.10), we have
(1+2mA)(m + Daz 1y = 2(1 = B) | (p2m + Pi) + (d2m + 430)] -
Taking the absolute values of the above equation yields
(1 +2mA)(m + 1)lam41]* < 201 = B) [[p2m + Pl + a2m + @3] -
Now by using [6, Corollary 2.3], we have
(14 2mA)(m + Dami* <200 8) [1+ (1 = Dlpm + 14 (1 = Dlgm[?] -

Therefore,

4(1 - )
[am 1] < \/(1 FomN(m+ 1)

Next, by solving (2.8) for agy,+1, taking the absolute values and using [6, Corollary 2.3]
we get

2(1-5)

2(1 —
|a2mt1] < T 2mn {1+ (1-— 1)|pm’2} _20-p)

S 1+42mA

Finally, subtracting (2.10) from (2.8) and considering the fact that p2, = ¢2, we obtain
m+1
3t ) = 201~ 5) (o = 2m).
Taking the absolute values of both sides and using the fact that |pa;,| < 1 and |gom| < 1
we obtain

_20-8)
1+ 2mA
This completes the proof. ]

2(14+2mA) <a2m+1 —

m+1 ,
a2m+1 — B Qi1
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1—2zm

| | < mi 2a 2a (2.11)
am+1| < min , '
H L+mA" /(1 +mA)?Z+ am(1+2m\ — m)?)

Theorem 2.4. For A\>0, meNand 0 < a <1 let fr, € X ()\; (HZW)Q). Then

2c
< -
|a2m+1| =7 +2m)\a

and
m+1 o2 200

5 mH| S T oy
Proof. The equations (2.5) and (2.6) for n = 2 and n = 3, respectively, imply

a2m+1 —

(1 4+ mA)am+i1 = 2appm, (2.12)
(14 2mN\)agmy1 = 2apoy, + 20°p2,, (2.13)
—(1+mNapms1 = 2aqm, (2.14)
(14 2mA)[(m + 1)aZ, .1 — asm+1] = 2aqam + 2a°q (2.15)
Taking the absolute values of (2.12) or (2.14), we get
| < 1f(:m. (2.16)

Also by adding (2.13) and (2.15), we have

(14 2mA)(m + 1)a2, 4 = 2« [(pzm +ap) + (q2m + aqzz)] :

Taking the absolute values of the above equation yields
(14 2mA) (m + Dlam 1| < 20 [[pom + ap2| + |gom + ag?]] -
Now, for 0 < a < 1 we use [6, Corollary 2.3], to obtain
(14 2mA)(m + Damir[* < 20 [1+ (@ = Dlpml? + 1+ (0= 1)lgml?]

(1+m)\)2 lam+1 |2
4a2

Solve the above equation for |a,,; 1| and apply the fact that |p,|> = |gn|*> =
to obtain
| < 2a
a :
ml = V(I +mA)?Z + am(1 + 2mA\ — mA?)

So, (2.16) in conjunction with (2.17) yield (2.11).
Next, we solve (2.13) for agm+1, take the absolute values and apply [6, Corollary 2.3]
to obtain

(2.17)

2a 2a
<——11 -1 —_—
2] < 1+2m)\[ (@ = 1)lpm| } ~ 142m)\
Finally, subtracting (2.15) from (2.13) and considering the fact that p2, = g2, we obtain

m+1
2(1 + Qm)\) <a2m+1 5 %1+1> =2« (me - q2m) .

Taking the absolute values of both sides and using the fact that |pe,| < 1 and |gom| < 1
we obtain

20

[ —
~142mA\
This completes the proof. ]

m—+ 1 o2

a2m+1 — T m+1

Remark 2.5. Theorem 2.2 for m = 1 and ¢;(z) = M yields the estimates obtained
by Jahangiri and Hamidi [7, Theorem 1].

Remark 2.6. Theorems 2.3 and 2.4 are improvements of the estimates obtained by Stimer
Eker [11, Theorems 2 and 1], respectively.
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Remark 2.7. Theorems 2.3 and 2.4 for m = 1 are improvements of the estimates obtained
by Frasin and Aouf [4, Theorems 3.2 and 2.2], respectively.

Remark 2.8. Theorems 2.3 and 2.4 for A = 1 are improvements of the estimates obtained
by Srivastava et al. [10, Theorems 3 and 2], respectively.

Remark 2.9. Letting A = 1 in Theorem 2.3 yields the following bounds for |az| and |as|
which are improvements of the estimates obtained by Srivastava et al. [9, Theorem 2]

1-8 §s5<L
lag| <
2(1 - f) 1
_ o< —.
3 =p< 3
and 2(1 - )
) < 205)

Remark 2.10. Letting A\ = 1 in Theorem 2.4 we obtain |a3| < (2«/3) which is an
improvement of the estimate obtained by Srivastava et al. [9, Theorem 1].
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