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Abstract
Let H be a subgroup of a finite group G and Aut(G) be the automorphism group of
G. In this paper we introduce and study the probability that the autocommutator of a
randomly chosen pair of elements, one from H and the other from Aut(G), is equal to a
given element of G.
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1. Introduction
Throughout the paper H denotes a subgroup of a finite group G and Aut(G) denotes au-

tomorphism group of G. The autocommutativity degree of G, denoted by Pr(G,Aut(G)),
is the probability that an automorphism fixes an element of G. In other words,

Pr(G,Aut(G)) = |{(x, α) ∈ G× Aut(G) : [x, α] = 1}|
|G|| Aut(G)|

where [x, α] = x−1α(x) is the autocommutator of x and α. The study of autocommu-
tativity degree of finite groups was initiated by Sherman [10] in 1975. Many results on
Pr(G,Aut(G)), including some characterizations of G in terms of Pr(G,Aut(G)), can be
found in [1, 3]. In the year 2015, Rismanchian and Sepehrizadeh [9] generalized the con-
cept of autocommutativity degree and studied relative autocommutativity degree of H,
that is the probability that an automorphism of G fixes an element of H. However in the
year 2011, Moghaddam et al. [8] also studied this notion. We write Pr(H,Aut(G)) to
denote the relative autocommutativity degree of H. Recently, we have obtained several
new results on Pr(H,Aut(G)) in [2]. In this paper, we introduce a new probability concept
called the generalized relative autocommutativity degree of H given by the following ratio

Prg(H,Aut(G)) = |{(x, α) ∈ H × Aut(G) : [x, α] = g}|
|H|| Aut(G)|

(1.1)

where g is an element of G. In other words Prg(H,Aut(G)) is the probability that the
autocommutator of a randomly chosen pair of elements, one from H and the other from
Aut(G), is equal to a given element g ∈ G. Clearly, if g = 1 (the identity element of G) then
Prg(H,Aut(G)) = Pr(H,Aut(G)). In the forthcoming sections, we obtain some computing
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formulae and bounds for Prg(H,Aut(G)). We also obtain some characterizations of groups
through Prg(H,Aut(G)).

Let S(H,Aut(G)) = {[x, α] : x ∈ H and α ∈ Aut(G)} and [H,Aut(G)] be the subgroup
generated by S(H,Aut(G)). Let L(H,Aut(G)) = {x ∈ H : [x, α] = 1 for all α ∈ Aut(G)}
and L(G) = L(G,Aut(G)), the absolute center of G defined in [5]. Clearly, L(H,Aut(G)) is
a normal subgroup ofH contained inH∩Z(G). Let CAut(G)(x) = {α ∈ Aut(G) : α(x) = x}
for x ∈ G and CAut(G)(H) = {α ∈ Aut(G) : α(x) = x for all x ∈ H}. Then CAut(G)(x) is
a subgroup of Aut(G) and CAut(G)(H) = ∩

x∈H
CAut(G)(x). Note that if g /∈ S(H,Aut(G))

then Prg(H,Aut(G)) = 0, therefore throughout the paper we consider g ∈ S(H,Aut(G)).

2. Some computing formulae
We begin with the following results.

Proposition 2.1. Let H be a subgroup of G. If g ∈ G then
Prg−1(H,Aut(G)) = Prg(H,Aut(G)).

Proof. Let A = {(x, α) ∈ H × Aut(G) : [x, α] = g} and B = {(y, β) ∈ H × Aut(G) :
[y, β] = g−1}. Then (x, α) 7→ (α(x), α−1) gives a bijection between A and B. Therefore,
|A| = |B| and hence the result follows from (1.1). �
Proposition 2.2. Let G1 and G2 be two finite groups such that gcd(|G1|, |G2|) = 1. Let
H1 and H2 be subgroups of G1 and G2 respectively. If (g1, g2) ∈ G1 ×G2 then

Pr(g1,g2)(H1 ×H2,Aut(G1 ×G2)) = Prg1(H1,Aut(G1))Prg2(H2,Aut(G2)).
Proof. Let

X = {((x, y), αG1×G2) ∈ (H1 ×H2) × Aut(G1 ×G2) :
[(x, y), αG1×G2 ] = (g1, g2)},

Y = {(x, αG1) ∈ H1 × Aut(G1) : [x, αG1 ] = g1} and
Z = {(y, αG2) ∈ H2 × Aut(G2) : [y, αG2 ] = g2}.

Since gcd(|G1|, |G2|) = 1, by [6, Lemma 2.1], we have Aut(G1×G2) = Aut(G1) × Aut(G2).
Therefore, for every αG1×G2 ∈ Aut(G1 × G2) there exist unique αG1 ∈ Aut(G1) and
αG2 ∈ Aut(G2) such that αG1×G2 = αG1 ×αG2 , where αG1 ×αG2((x, y)) = (αG1(x), αG2(y))
for all (x, y) ∈ H1 ×H2. Also, for all (x, y) ∈ H1 ×H2, we have [(x, y), αG1×G2 ] = (g1, g2) if
and only if [x, αG1 ] = g1 and [y, αG2 ] = g2. These lead to show that X = Y×Z. Therefore

|X|
|H1 ×H2|| Aut(G1 ×G2)|

= |Y|
|H1|| Aut(G1)|

· |Z|
|H2|| Aut(G2)|

.

Hence, the result follows from (1.1). �
In the year 1940, Hall [4] introduced the concept of isoclinism between two groups.

Following Hall, Moghaddam et al. [7] have defined autoisoclinism between two groups,
in the year 2013. Recently in [2], we generalize the notion of autoisoclinism between
two groups. Let H1 and H2 be subgroups of the groups G1 and G2 respectively. The
pairs (H1, G1) and (H2, G2) are said to be autoisoclinic if there exist isomorphisms ψ :

H1
L(H1,AutG1) → H2

L(H2,Aut(G2)) , β : [H1,Aut(G1)] → [H2,Aut(G2)] and γ : Aut(G1) →
Aut(G2) such that the following diagram commutes

H1
L(H1,Aut(G1)) × Aut(G1) ψ×γ−−−−→ H2

L(H2,Aut(G2)) × Aut(G2)ya(H1,Aut(G1))

ya(H2,Aut(G2))

[H1,Aut(G1)] β−−−−→ [H2,Aut(G2)]
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where the maps a(Hi,Aut(Gi)) : Hi
L(Hi,Aut(Gi)) × Aut(Gi) → [Hi,Aut(Gi)], for i = 1, 2, are

given by
a(Hi,Aut(Gi))(xiL(Hi,Aut(Gi)), αi) = [xi, αi].

Such a pair (ψ×γ, β) is said to be an autoisoclinism between the pairs of groups (H1, G1)
and (H2, G2). We have the following generalization of [3, Theorem 5.1] and [9, Lemma
2.5].

Theorem 2.3. Let G1 and G2 be two finite groups with subgroups H1 and H2 respectively.
If (ψ×γ, β) is an autoisoclinism between the pairs (H1, G1) and (H2, G2) then, for g ∈ G1,

Prβ(g)(H2,Aut(G2)) = Prg(H1,Aut(G1)).

Proof. Let Sg = {(x1L(H1,Aut(G1)), α1) ∈ H1
L(H1,Aut(G1)) × Aut(G1) : [x1, α1] = g} and

Tβ(g) = {(x2L(H2,Aut(G2)), α2) ∈ H2
L(H2,Aut(G2)) × Aut(G2) : [x2, α2] = β(g)}. Since

(H1, G1) is autoisoclinic to (H2, G2) we have |Sg| = |Tβ(g)|. Again, it is clear that
|{(x1, α1) ∈ H1 × Aut(G1) : [x1, α1] = g}| = |L(H1,Aut(G1))||Sg| (2.1)

and
|{(x2, α2) ∈ H2 × Aut(G2) : [x2, α2] = β(g)}| = |L(H2,Aut(G2))||Tβ(g)|. (2.2)

Hence, the result follows from (1.1), (2.1) and (2.2). �
Note that Aut(G) acts on G by the action (α, x) 7→ α(x) where α ∈ Aut(G) and x ∈ G.

Let orb(x) = {α(x) : α ∈ Aut(G)} be the orbit of x ∈ G. Then by orbit-stabilizer theorem,
we have

| orb(x)| = | Aut(G)|
|CAut(G)(x)|

.

Now we obtain the following computing formula for Prg(H,Aut(G)) in terms of the order
of CAut(G)(x) and orb(x).

Theorem 2.4. Let H be a subgroup of G. If g ∈ G then

Prg(H,Aut(G)) = 1
|H|| Aut(G)|

∑
x∈H

xg∈orb(x)

|CAut(G)(x)| = 1
|H|

∑
x∈H

xg∈orb(x)

1
| orb(x)|

.

Proof. Let Tx,g(H,G) = {α ∈ Aut(G) : [x, α] = g} for any x ∈ H. Then Tx,g(H,G) ̸= ∅
if and only if xg ∈ orb(x). We also have

{(x, α) ∈ H × Aut(G) : [x, α] = g} = ⊔
x∈H

({x} × Tx,g(H,G)),

where ⊔ represents the union of disjoint sets. Therefore, by (1.1), we have

|H|| Aut(G)|Prg(H,Aut(G)) = | ⊔
x∈H

({x} × Tx,g(H,G))| =
∑
x∈H

|Tx,g(H,G)|. (2.3)

Let σ ∈ Tx,g(H,G) and β ∈ σCAut(G)(x). Then β = σα for some α ∈ CAut(G)(x). We
have

[x, β] = [x, σα] = x−1σ(α(x)) = [x, σ] = g.

Therefore, β ∈ Tx,g(H,G) and so σCAut(G)(x) ⊆ Tx,g(H,G). Again, let γ ∈ Tx,g(H,G)
then γ(x) = xg. We have σ−1γ(x) = σ−1(xg) = x and so σ−1γ ∈ CAut(G)(x). Therefore,
γ ∈ σCAut(G)(x) which gives Tx,g(H,G) ⊆ σCAut(G)(x). Thus, σCAut(G)(x) = Tx,g(H,G)
and hence

|Tx,g(H,G)| = |CAut(G)(x)| = | Aut(G)|
| orb(x)|

. (2.4)

Therefore, the result follows from (2.3) and (2.4). �
Putting g = 1 in Theorem 2.4 we get the following corollary.
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Corollary 2.5. Let H be a subgroup of G. Then

Pr(H,Aut(G)) = 1
|H|| Aut(G)|

∑
x∈H

|CAut(G)(x)| = | orb(H)|
|H|

where orb(H) = {orb(x) : x ∈ H}.

As an application of Theorem 2.4 we have the following result.

Proposition 2.6. Let H be a subgroup of G. If orb(x) = x[H,Aut(G)] for all x ∈
H \ L(H,Aut(G)) then

Prg(H,Aut(G)) =


1

|[H,Aut(G)]|

(
1 + |[H,Aut(G)]| − 1

|H : L(H,Aut(G))|

)
, if g = 1

1
|[H,Aut(G)]|

(
1 − 1

|H : L(H,Aut(G))|

)
, if g ̸= 1.

Proof. If g = 1 then the result follows from [2, Proposition 3.4]. If g ̸= 1, we have
xg /∈ orb(x) for all x ∈ L(H,Aut(G)). Again, since g ∈ S(H,Aut(G)) ⊆ [H,Aut(G)]
therefore xg ∈ x[H,Aut(G)] = orb(x) for all x ∈ H \ L(H,Aut(G)). Now from Theorem
2.4 we have

Prg(H,Aut(G)) = 1
|H|

∑
x∈H\L(H,Aut(G))

xg∈orb(x)

1
| orb(x)|

= 1
|H|

∑
x∈H\L(H,Aut(G))

xg∈orb(x)

1
[H,Aut(G)]

= 1
|[H,Aut(G)]|

(
1 − 1

|H : L(H,Aut(G))|

)
.

�

3. Various bounds
In this section, we obtain various bounds for Prg(H,Aut(G)). We begin with the fol-

lowing lower bounds.

Proposition 3.1. Let H be a subgroup of G. Then, for g ∈ G, we have

Prg(H,Aut(G)) ≥


|L(H,Aut(G))|

|H|
+

|CAut(G)(H)|(|H| − |L(H,Aut(G))|)
|H|| Aut(G)|

, if g = 1

|L(H,Aut(G))||CAut(G)(H)|
|H|| Aut(G)|

, if g ̸= 1.

Proof. Let C denotes the set {(x, α) ∈ H × Aut(G) : [x, α] = g}.
If g = 1 then (L(H,Aut(G)) × Aut(G)) ∪ (H × CAut(G)(H)) is a subset of C

and |(L(H,Aut(G)) × Aut(G)) ∪ (H × CAut(G)(H))| = |L(H,Aut(G))|| Aut(G)| +
|CAut(G)(H)||H| − |L(H,Aut(G))||CAut(G)(H)|. Hence, the result follows from (1.1).

If g ̸= 1 then C is non-empty since g ∈ S(H,Aut(G)). Let (y, β) ∈ C then
(y, β) /∈ L(H,Aut(G)) × CAut(G)(H) otherwise [y, β] = 1. It is easy to see that the coset
(y, β)(L(H,Aut(G)) × CAut(G)(H)) having order |L(H,Aut(G))||CAut(G)(H)| is a subset
of C. Hence, the result follows from (1.1). �
Proposition 3.2. Let H be a subgroup of G. If g ∈ G then

Prg(H,Aut(G)) ≤ Pr(H,Aut(G)).
The equality holds if and only if g = 1.
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Proof. By Theorem 2.4, we have

Prg(H,Aut(G)) = 1
|H|| Aut(G)|

∑
x∈H

xg∈orb(x)

|CAut(G)(x)|

≤ 1
|H|| Aut(G)|

∑
x∈H

|CAut(G)(x)| = Pr(H,Aut(G)).

Clearly the equality holds if and only if g = 1. �
Proposition 3.3. Let H be a subgroup of G. Let g ∈ G and p the smallest prime dividing
| Aut(G)|. If g ̸= 1 then

Prg(H,Aut(G)) ≤ |H| − |L(H,Aut(G))|
p|H|

<
1
p
.

Proof. By Theorem 2.4, we have

Prg(H,Aut(G)) = 1
|H|

∑
x∈H\L(H,Aut(G))

xg∈orb(x)

1
| orb(x)|

(3.1)

noting that for x ∈ L(H,Aut(G)) we have xg /∈ orb(x). Also, for x ∈ H \ L(H,Aut(G))
and xg ∈ orb(x) we have | orb(x)| > 1. Since | orb(x)| is a divisor of | Aut(G)| we have
| orb(x)| ≥ p. Hence, the result follows from (3.1). �
Proposition 3.4. Let H1 and H2 be two subgroups of G such that H1 ⊆ H2. Then

Prg(H1,Aut(G)) ≤ |H2 : H1|Prg(H2,Aut(G)).
The equality holds if and only if xg /∈ orb(x) for all x ∈ H2 \H1.

Proof. By Theorem 2.4, we have
|H1|| Aut(G)|Prg(H1,Aut(G)) =

∑
x∈H1

xg∈orb(x)

|CAut(G)(x)|

≤
∑
x∈H2

xg∈orb(x)

|CAut(G)(x)|

= |H2|| Aut(G)|Prg(H2,Aut(G)).
Hence, the result follows. �

We conclude this section with the following result.

Proposition 3.5. Let H be a subgroup of G. If g ∈ G then
Prg(H,Aut(G)) ≤ |G : H| Pr(G,Aut(G))

with equality if and only if g = 1 and H = G.

Proof. By Proposition 3.2, we have
Prg(H,Aut(G)) ≤ Pr(H,Aut(G))

= 1
|H|| Aut(G)|

∑
x∈H

|CAut(G)(x)|

≤ 1
|H|| Aut(G)|

∑
x∈G

|CAut(G)(x)|

= |G : H| Pr(G,Aut(G)).
Hence, the result follows from Corollary 2.5. �
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4. Characterizations through Prg(H, Aut(G))
In this section, we obtain some characterizations of groups through Prg(H,Aut(G)).

The following lemma is useful in this regard.

Lemma 4.1. Let H be a subgroup of G. If p is the smallest prime divisor of | Aut(G)|
and |[H,Aut(G)]| = p then orb(x) = x[H,Aut(G)] for all x ∈ H \ L(H,Aut(G)).

Proof. We have orb(x) ⊆ x[H,Aut(G)] for all x ∈ H. Also, | orb(x)| is a divisor of
| Aut(G)| for all x ∈ H. Therefore, | orb(x)| ≥ p for all x ∈ H \ L(H,Aut(G)). Hence,
| orb(x)| = |x[H,Aut(G)]| = p for all x ∈ H \ L(H,Aut(G)) and the result follows. �

Now we derive the following characterizations.

Theorem 4.2. Let H be a subgroup of a finite group G and g ∈ G. Let p be the smallest
prime dividing | Aut(G)| and |[H,Aut(G)]| = p. If g ̸= 1 and Prg(H,Aut(G)) = n−1

np or
g = 1 and Prg(H,Aut(G)) = n+p−1

np (where n is a positive integer) then H
L(H,Aut(G)) is

isomorphic to a group of order n. In particular,
(1) if n = q or q2 for some prime q then H

L(H,Aut(G))
∼= Zq,Zq2 or Zq × Zq.

(2) if H is abelian and n = qk1
1 qk2

2 . . . qkm
m , where qi’s are primes not necessarily dis-

tinct, then H
L(H,Aut(G))

∼= Z
q

k1
1

× Z
q

k2
2

× · · · × Z
qkm

m
.

Proof. If g ̸= 1 and Prg(H,Aut(G)) = n−1
np then, by Lemma 4.1 and Proposition 2.6, we

have
n− 1
np

= 1
p

(
1 − 1

|H : L(H,Aut(G))|

)
which gives |H : L(H,Aut(G))| = n.

If g = 1 and Prg(H,Aut(G)) = n+p−1
np then, by Lemma 4.1 and Proposition 2.6, we have

n+ p− 1
np

= 1
p

(
1 + p− 1

|H : L(H,Aut(G))|

)
which also gives |H : L(H,Aut(G))| = n.

Hence, H
L(H,Aut(G)) is isomorphic to a group of order n.

(1) If n = q or q2 for some prime q then |H : L(H,Aut(G))| = q or q2. Therefore
H

L(H,Aut(G)) is abelian. Hence, the result follows from fundamental theorem of finite abelian
groups.

(2) If H is abelian and n = qk1
1 qk2

2 . . . qkm
m , where qi’s are primes not necessarily distinct

then H
L(H,Aut(G)) is an abelian group of order qk1

1 qk2
2 . . . qkm

m . Hence, the result follows from
fundamental theorem of finite abelian groups. �

Putting H = G, in Theorem 4.2, we have the following corollary.

Corollary 4.3. Let G be a finite group and g ∈ G. Let p be the smallest prime dividing
| Aut(G)| and |[G,Aut(G)]| = p. If g ̸= 1 and Prg(G,Aut(G)) = n−1

np or g = 1 and
Prg(G,Aut(G)) = n+p−1

np (where n is a positive integer) then G
L(G) is isomorphic to a

group of order n. In particular,
(1) if n = q or q2 for some prime q then G

L(G)
∼= Zq,Zq2 or Zq × Zq.

(2) if G is abelian and n = qk1
1 qk2

2 . . . qkm
m , where qi’s are primes not necessarily distinct,

then G
L(G))

∼= Z
q

k1
1

× Z
q

k2
2

× · · · × Z
qkm

m
.

We conclude the paper with the following result which gives converse of Theorem 4.2.
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Theorem 4.4. Let H be a subgroup of a finite group G and g ∈ G. Let p be the smallest
prime dividing | Aut(G)| and |[H,Aut(G)]| = p. If H

L(H,Aut(G)) is isomorphic to a group of
order n then

Prg(H,Aut(G)) =


n− 1
np

, if g ̸= 1
n+ p− 1

np
, if g = 1.

Proof. If p is the smallest prime dividing | Aut(G)| and |[H,Aut(G)]| = p then, by Lemma
4.1, we have orb(x) = x[H,Aut(G)] for all x ∈ H \ L(H,Aut(G)). Therefore, by Proposi-
tion 2.6, we have

Prg(H,Aut(G)) =


1
p

(
1 + p− 1

|H : L(H,Aut(G))|

)
, if g = 1

1
p

(
1 − 1

|H : L(H,Aut(G))|

)
, if g ̸= 1.

If H
L(H,Aut(G)) is isomorphic to a group of order n then |H : L(H,Aut(G))| = n and hence

the result follows. �
Note that putting H = G in Theorem 4.4, we get the converse of Corollary 4.3.
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