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Abstract- An analysis has been carried out to determine the velocity profile of a fluid on an inclined plane using the Finite 

Element Method (FEM). The overall results from these finite elements were finally assembled to represent the velocity profile 

in the entire domain of the inclined plane. The results obtained from the finite element method shows that as the velocity 

distribution has a parabolic profile with the maximum velocity of 1109.8748m/s at open surface of the inclined plane. The fluid 

due to the no slip boundary condition has 0m/s at the walls of the inclined plane. Also, it was shown that the higher the angle 

of inclination and fluid viscosity, the lower the velocity and also the higher the fluid density, the higher the velocity. The result 

obtained from the FEM when compared with the result obtained from the exact differential equation method shows a strong 

agreement with a maximum percentage error of 2.3413x10-14. 
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1. Introduction 

Investigation of the properties of flow down an inclined 

plane is a subject of great theoretical and practical 

importance and has attracted the attention of many 

researchers [1-3]. Consideration has been given to a fluid 

constantly poured on the inclined plane from above. The 

fluid forms a steady stream moving downwards under the 

action of the gravity. Such an example is a river flow. This 

phenomenon also occurs in case of conveyor belts and in the 

lubrication theory. 

Literature is not replete on the velocity profile of a flow 

down an inclined plane. 

Bognár, et al. in 2018 investigated the velocity 

distributions on an inclined plane in the transport of non-

Newtonian fluids [4]. The process was modelled by 

boundary layer flows. They considered the equations of 

continuity and motion boundary conditions on the plane and 

on the surface of the transported material. They finally 

examined the velocity distribution in case of different 

material properties, constant plane speed and different 

inclination angle. 

The finite element method has been used to solve a 

problem on the velocity distribution in viscous 

incompressible fluid using the langrange interpolation 

function and compared their result with the exact differential 
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equation method [5]. The plain in this case was taken to be 

horizontal. Also, the Finite Element Method (FEM) to 

determine the velocity distribution in a concentric cylindrical 

annulus [6]. The annulus pipe in this case was taken to be 

horizontal. 

The aim of this study is to determine at the same time 

the velocity profile of a fluid in inclined plane. We will be 

using FEM unlike other methods that need to carry out 

several iterations to determine the velocities at different 

point. 

2. Finite Element Method 

 Consider the flow of a Newtonian viscous fluid on an 

inclined flat surface, as shown in “Fig. 1”. Examples of such 

flow can be found in wetted-wall towers and the application 

of coatings to wallpaper rolls. The momentum equation, for a 

fully developed steady laminar flow along the z coordinate, 

is given by 

2
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and 

( ) 0zw L =               (3) 

The Gerlekin Finite Element Method was used to 

discretize the domain (inclined plane). 

 

 

 

 

 

 

Fig. 1. Velocity Profile. 

The domain of the problem consists of all points 

between x = 0 and x = L i.e. Ω = (0, L). The domain was 

divided into a set of line elements, a typical element being of 

length he and located between two end points A and B of a 

typical element. The collection of such elements is called the 

finite element mesh of the domain. The reason for dividing 

the domain into finite elements was to represent the 

geometry of the domain and to approximate the solution over 

the entire domain. 

2.1.  Mathematical analysis 

In the development of the weak form, we assumed a 

linear mesh and placed it over the domain. This was done by 

multiplying equation (1) by the weighted function (w) and 

integrating the final equation over the domain. This results in 

the mathematical expression in equation (4). 
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Equation (4) is known as the weak form of the 

governing equation. 

The weak form requires that the approximation chosen 

for u should be at least linear in x so that there are no terms 

in equation (4) that are identically zero. Since the primary 

variable is simply the function itself, the Lagrange family of 

interpolation functions is admissible. We proposed that u  

was the approximation over the typical finite element domain 

by the expression: 
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where ( )e

iw x=  is the trial function .  

In Galerkin’s weighted residual method, the weighting 

functions are chosen to be identical to the trial functions [7].  

Substitute equation (5) into equation (4), we have: 
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Equation (6) is referred to as the finite element based 

model while equation (7) is known as the stiffness matrix 

and equation (8) is referred to as the flux matrix. 

Hence, the one-dimensional Lagrange quadratic interpolation 

function becomes 

1

2
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where 
eh = Elemental length 

2.2 Evaluating the stiffness matrix  ijK   and flux matrix  eF  

To evaluate the Kij matrix, we substitute equations 10-12 

accordingly into equations (7) and (8), respectively. Then we 

have; 
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Equation (13) represents the generalized form of the 

stiffness matrix for the entire domain of the fluids between 

stationary parallel plates and equation (14) represents the 

generalized form of the flux matrix for the entire domain of 

the fluid between stationary parallel plates. 

In this work, the domain of the parallel plates was 

divided into four quadratic elements. Therefore, 
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Substitute in equation (6), equations (15) and (16) and 

finally, we have: 
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Due to balance of internal flux, 
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equal to zero. 

Introducing the boundary conditions stated in equation 

(3), equation (17) reduces to 

1

2

3

2
4

5

6

7

8

7 8 1 0 0 0 0 0 1

8 16 8 0 0 0 0 0 4

1 8 14 8 1 0 0 0 2

0 0 8 16 8 0 0 0 4cos

0 0 1 8 14 8 1 0 22

0 0 0 0 8 16 8 0 4

0 0 0 0 1 8 14 8 2

0 0 0 0 0 0 8 16 4

e

w

w

w

w gh

w

w

w

w

 



−     
    

− −
    
    − −
    

− −      = +    − −     
   − − 
    − −     
   −     

1

1

1

2

1 2

3 1

2

2

2 3

3 1

3

2

3 4

3 1

4

2

Q

Q

Q Q

Q

Q Q

Q

Q Q

Q

 
 
 
 +
 
 
 

+ 
 
 

+ 
 
 

   (18) 

3. Results and Discussion 

The data used in this work are given thus: 

0 345 ,   2 ,  9.81 / ,   0.4 . ,   8kgm g m s Pa s L m  −= = = = =   

The exact differential equation solution of the problem is 

given in equation (19) [7]. 
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In this paper, the problem being analysed is the one that 

involves the flow of a Newtonian viscous fluid on an 

inclined plane. Examples of such flow can be found in 

wetted-wall towers and the applications to wallpaper rolls. 

The momentum equation, for a fully developed laminar flow 

along the z coordinate was used to analyse the velocity 

distribution of an incompressible fluid flowing down an 

inclined plane under the influence of a pressure gradient. 
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The finite element method was used to discretize the 

entire domain. The domain was discretized into four linear 

elements. In other to analyse these elements, a quadratic 

interpolation function was used to approximate the velocity 

distribution in the domain. 

A graph of the velocity profile of the Newtonian viscous 

fluid on the inclined flat surface is as shown in “Fig. 2”. The 

graph represents the velocity at different nodes plotted 

against the length of the inclined flat surface. The graph 

shows a parabolic relationship between the velocity and the 

length of the inclined flat surface. It was observed from the 

graph in “Fig. 2” that the velocity of the fluid at point 8m 

which is the boundary of the fluid and the inclined flat 

surface was 0m/s. This was due to the fact we applied the no 

slip boundary condition at the boundary (walls) of the 

inclined flat surface. 

    
Fig. 2. A graph of velocity against length of plate. 

From “Fig. 2”, between 0 and 8m represents the velocity 

profile. Point 0m is the open surface of the inclined flat 

surface while point 8m in the wall of the inclined flat surface. 

From this analysis the maximum velocity of 1109.8748m/s 

was attained at the open surface of the incline plane. 

To verify the accuracy of the results obtained from the 

Finite Element Method, the results obtained was compared 

with the results obtained using the exact differential equation 

method. It was observed from the two methods that their 

results were in good agreement with one another. From the 

results shown in Table 1, even with just four linear elements, 

we were able to have a very high accuracy with a maximum 

percentage error of 2.3413x10-14. The advantage of the finite 

element method over the exact differential equation method 

is that the FEM gives results that represent the velocities at 

different nodes for the whole material under consideration at 

the same time unlike the result from the exact differential 

equation method that provide discrete result at a time and 

needs further iteration to determine the velocity values at 

other points of the stationary parallel plates  

 

Table 1. Comparison between the Exact Solution and the FEM Solution 

LENGTH FEM EXACT % ERROR 

0 1109.8748 1109.8748 0.0000 

1 1092.5330 1092.5330 0.0000 

2 1040.5076 1040.5076 2.1852E-14 

3 953.7987 953.7987 0.0000 

4 832.4061 832.4061 1.3658E-14 

5 676.3300 676.3300 1.6809E-14 

6 485.5702 485.5702 2.3413E-14 

7 260.1269 260.1269 2.1852E-14 

8 0.0000 0.0000 0.0000 

 

3.1. Effect of change in inclination angle on the velocity 

profile 

In this analysis, it was observed that as the angle of 

inclination increases, the velocity decreases as well. It is 

important to note that the angle of inclination was measured 

between the wall of the inclined material and the vertical. 

This is shown in “Fig. 2”. 

 
 

Fig. 3. A graph of velocity against length of plate at 

different angles of inclination 
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It is clear here that maximum velocity can be achieved 

when the angle of inclination is 0ᵒ (Zero degree). At this 

point, with all other parameters held constant, the maximum 

velocity attained was 1569.6m/s. Also, holding other 

parameters constant and increasing the angle of inclination, 

the velocity decreases until an angle of inclination of 90ᵒ. At 

this point, the velocity is almost zero. This can be well 

represented in “Fig. 4”. 

 

Fig. 4. A graph of velocity against angles of inclination. 

In the design of a drainage system for example, the angle 

of inclination should be set well above 0ᵒ, else, the fluid in 

the drainage will not drained thereby having stagnant fluid 

which might have detrimental effect on the drainage. 

3.2. Effect of Change in Fluid Viscosity and Density on the 

Velocity Profile 

Examining the effect of the change in viscosity on the 

velocity profile, it was observed that viscosity affect the 

velocity profile. With an increase in the viscosity of a fluid, 

the velocity of the fluid was seen to decrease. This decrease 

in the velocity was as a result of the increase in the drag 

between the wall of the inclined material and the fluid. This 

can be shown in “Fig. 5”. 

 
Fig. 5. A graph of velocity against change in viscosity. 

Also looking at the effect of a change in the fluid density 

on the velocity distribution, it was observed that a change in 

fluid density has a linear relationship with the velocity of the 

fluid. This means that the higher the fluid density, the higher 

the velocity of the fluid. This is as shown in “Fig. 6”. 

  
Fig. 6. A graph of velocity against change in density. 

4. Conclusion 

So far, the finite element method has been used to obtain 

the velocity profile of a fluid on an inclined plane with 

steady laminar flow. The results obtained from the FEM 

were compared with the results obtained from the exact 

differential equation method and it was discovered that both 

results agrees. It has also been shown that the higher the 

angle of inclination and fluid viscosity, the lower the velocity 

and also the higher the fluid density, the higher the velocity. 

The result obtained shows that the finite element method is 

an efficient and accurate method. 
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