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Abstract: In this paper, we proposed a viscosity iterative algorithm to approximate a common solution of
split generalized equilibrium problem and fixed point problem for a nonexpansive semigroups in real Hilbert
spaces. Under certain conditions control on parameters, the iteration sequences generated by the proposed
algorithms are proved to be strongly convergent to a solution of split generalized equilibrium problem. Our
results can be viewed as a generalization and improvement of various existing results in the current literature.
Some numerical examples to guarantee the main result of this paper.
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1. Introduction

The class of nonexpansive mappings have powerful applications to solve various problems arising

in the field of applied mathematics, such as variational inequality problem, convex minimiza-

tion, zeros of a monotone operator, initial value problems of differential equations, game-theoretic

model. In 1967, Browder and Petryshyn [3] introduced the concept of strict pseudo contraction

as a generalization of nonexpansive mappings. Later on, Alber et al.[1] introduced the notion

of total asymptotically nonexpansive mappings which is more general in nature and unifies vari-

ous definitions of mappings associated with the class of asymptotically nonexpansive mappings.

The viscosity iterative algorithms for finding a common element of the set of fixed points for

nonlinear operators and the set of solutions of variational inequality problems have been inves-

tigated by many authors [22, 32, 35, 36, 37] and references therein. The viscosity technique for

nonexpansive mappings in Hilbert space was proposed by Moudafi[18, 21]. This technique al-

low us to apply this method to convex optimization, linear programming and monoton inclusions

[26, 28, 31, 33, 34, 38]. It is well known that the generalized equilibrium problems include vari-

ational inequality problems, optimization problems, problems of Nash equilibria, saddle point

problems, fixed point problems and complementarity problems as special cases[2, 21, 34, 33].

Moudafi [18] introduced the following split equilibrium problem (SEP):

ISSN 1309 - 6788 c© 2019 Çankaya University
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Let C be a nonempty subset of a real Hilbert space H1, Q be a nonempty subset of a real Hilbert

space H2 and let A : H1→H2 be a bounded linear operator. Also F1 : C×C→R and F2 : Q×Q→R

be two nonlinear bifunctions. The split equilibrium problem is to find x∗ ∈C such that

F1(x∗,x)≥ 0, ∀x ∈C (1)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗,y)≥ 0, ∀y ∈ Q (2)

It is remarked that inequality (1) represents the classical equilibrium problem [12] and its solution

set is denoted EP(F1). Moreover, inequalities (1) and (2) constitute a pair of equilibrium problems

which aim to find a solution x∗ of an equilibrium problem (1) such that its image y∗ = Ax∗ under a

given bounded linear operator A also solves another equilibrium problem (2). The solution set of

(SEP) is denoted by Ω = {p ∈ EP(F1) : Ap ∈ EP(F2)} [4, 5, 6, 7, 19, 20].

Recently, Kazmi and Rizvi [13] introduced a split generalized equilibrium problem (SGEP):

Find x∗ ∈C such that

F1(x∗,x)+ψ1(x∗,x)≥ 0, ∀x ∈C

and

y∗ = Ax∗ ∈ Q solves F2(y∗,y)+ψ2(y∗,y)≥ 0, ∀y ∈ Q

where F1,ψ1 : C×C→ R and F2,ψ2 : C×C→ R be nonlinear bifunctions and A : H1 → H2 is

bounded linear operator. The solution set of (SGEP) is denote by Γ = {p ∈ GEP(F1,ψ1) : Ap ∈
GEP(F2,ψ2)}.
In 2015, Ma and Wang [16] established strong convergence results for the split common fixed

point problem of total asymptotically strict pseudo contractions in Hilbert spaces. Quite recently,

some methods have been proposed and analyzed in [14, 15] for the split equilibrium problem.

In 2017 Zhang and Gui [39] introduced an iterative algorithm in a Hilbert space as follows:

un = T F1
rn
(xn +δA∗(T F2

sn
− I)Axn)

xn+1 = αn f (xn)+
(1−αn)

l ∑
l
i=0 T n

i un,

where Ti : C→C is a asymptotically nonexpansive mapping for i = 0,1, . . . ,n.

A family S := {T (s) : 0≤ s<∞} of mapping from C into itself is called a nonexpansive semigroup

on C if it satisfies the following conditions:

1. T (0)x = x for all x ∈C,

2. T (s+ t) = T (s)T (t) for all s, t ≥ 0,

3. ‖T (s)x−T (s)y‖ ≤ ‖x− y‖ for all x,y ∈C and s≥ 0,

4. For all x ∈C,s→ T (s)x is continuous.
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Plubtieng and Punpaeng Theorem introduced the following iterative method for nonexpansive

semigroup[24]:

xn+1 = αn f (xn)+βnxn +(1−αn−βn)
1
sn

∫ sn
0 T (s)xnds.

In 2010 Kang et.al, introduced and inspired by results in [12], prove a strong convergence of the

iterative scheme in a real Hilbert space by

xn+1 = αnγ f (xn)+βnxn +((1−βn)I−αnA) 1
sn

∫ sn
0 T (s)xnds,

where A is a strong positive bounded linear operator on C.

Cianciaruso et al. [9] considered the following iterative method:

F(un,y)+ 1
rn
〈y−un,un− xn〉 ≥ 0;

xn+1 = αnγ f (xn)+(1−αnA) 1
sn

∫ sn
0 T (s)unds.

Kazmi and Rizvi [13] considered the following iterative method:

un = T (F1,ψ1)
rn (xn +δA∗(T (F2,ψ2)

rn − I)Axn);

xn+1 = αnγ f (xn)+βnxn +((1−βn)I−αnB) 1
sn

∫ sn
0 T (s)unds.

Recently, Sahebi et al. [25, 26, 27, 28] considered a general viscosity iterative algorithm for find-

ing a common element of the set general equilibrium problem system and the set of fixed points of

a nonexpansive semigroup in a Hilbert space. They proved, under the certain appropriate condi-

tions, the iterative algorithm converges strongly to the unique solution of a variational inequality.

By intuition from the above mentioned results and the ongoing research in this direction, we

aim to employ a viscosity iterative algorithm to approximate a common solution of split general-

ized equilibrium problem and fixed point problem for a nonexpansive semigroup in real Hilbert

spaces.Under certain conditions on parameters, the iteration sequences generated by the proposed

algorithms are proved to be strongly convergent to a solution of split generalized equilibrium

problem. Some numerical examples and preliminary computational results are also provided. Our

results can be viewed as a generalization and improvement of various existing results in the current

literature . The rest of paper is organized as follows. The next section presents some preliminary

results. Section 3 is devoted to introduce viscosity iterative algorithm for SGEP. section 4 is de-

voted to prove strong convergence algorithm. The last section presents some numerical examples

to demonstrate the proposed algorithms.

2. Preliminaries

Let H be a Hilbert space and C be a nonempty closed and convex subset of H. For each point

x ∈ H, there exists a unique nearest point of C, denote by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖ for
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all y ∈C. PC is called the metric projection of H onto C. It is well known that PC is nonexpansive

mapping and is characterized by the following property:

〈x−PCx,y−PCy〉 ≤ 0 (3)

Further, it is well known that every nonexpansive operator T : H → H satisfies, for all (x,y) ∈
H×H, inequality

〈(x−T (x))− (y−T (y)),T (y)−T (x)〉 ≤ (
1
2
)‖(T (x)− x)− (T (y)− y)‖2, (4)

and therefore, we get, for all (x,y) ∈ H×Fix(T ),

〈(x−T (x)),(y−T (y))〉 ≤ (
1
2
)‖(T (x)− x)‖2, (5)

see, e.g. [11].

It is also known that H satisfies Opial’s condition [23], i.e., for any sequence {xn} with xn ⇀ x,

the inequality

liminf
n→∞

‖xn− x‖< liminf
n→∞

‖xn− y‖ (6)

holds for every y ∈ H with y 6= x.

Definition 1. A mapping T : H→ H is said to be firmly nonexpansive if

〈T x−Ty,x− y〉 ≥ ‖T x−Ty‖2, ∀x,y ∈ H.

Lemma 1. [8] The following inequality holds in real space H:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H.

Definition 2. A mapping T : C→ H is said to be monotone, if

〈T x−Ty,x− y〉 ≥ 0, ∀x,y ∈C.

T is called α-inverse-strongly-monotone if there exist a positive real number α such that

〈T x−Ty,x− y〉 ≥ α‖T x−Ty‖2, ∀x,y ∈C.

Lemma 2. [17] Assume that B is a strong positive linear bounded self adjoint operator on a Hilbert

space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I−ρB‖ ≤ 1−ργ̄ .

Lemma 3. [29] Let C be a nonempty bounded closed convex subset of a Hilbert space H and let

S := {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C, for each x ∈C and t > 0. Then, for

any 0≤ h < ∞,

lim
t→∞

sup
x∈C
‖1

t

∫ t

0
T (s)xds−T (h)(

1
t

∫ t

0
T (s)xds)‖= 0.
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Lemma 4. [30] Let {xn} and {yn} be bounded sequences in a Banach space X and {βn} be a

sequence in [0,1] with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose xn+1 = (1−βn)yn +βnxn,

for all integers n≥ 0 and limsupn→∞(‖yn+1−yn‖−‖xn+1−xn‖)≤ 0. Then limn→∞ ‖yn−xn‖= 0.

Lemma 5. [38] Let {an} be a sequence of nonnegative real numbers such that an+1≤ (1−αn)an+

δn, n ≥ 0 where αn is a sequence in (0,1) and δn is a sequence in R such that (i) Σ∞
n=1αn = ∞;

(ii) limsupn→∞

δn
αn

or (iii) Σ∞
n=1δn < ∞. Then limn→∞ an = 0.

Assumption 1. Let F : C×C→ R be a bifunction satisfying the following assumptions:

1. F(x,x)≥ 0, ∀x ∈C,

2. F is monotone, i.e., F(x,y)+F(y,x)≤ 0, ∀x ∈C,

3. F is upper hemicontinuouse, i.e., for each x,y,z ∈C,

limsupt→0 F(tz+(1− t)x,y)≤ F(x,y),

4. For each x ∈C fixed, the function x→ F(x,y) is convex and lower semicontinuous;

let ψ : C×C→ R be such that

1. ψ(x,x)≥ 0, ∀x ∈C,

2. for each y ∈C fixed, the function x→ ψ(x,y) is upper semicontonuous,

3. for each x ∈C fixed, the function y→ ψ(x,y) is convex and lower semicontinuous;

Lemma 6. [13] Assume that F1,ψ1 : C×C→ R satisfying Assumption 1. Let r > 0 and x ∈ H1.

Then, there exists z ∈C such that F1(z,y)+ψ1(z,y)+ 1
r 〈y− z,z− x〉 ≥ 0, ∀y ∈C.

Lemma 7. [6] Assum that the bifunctions F1,ψ1 : C×C→ R satisfying Assumption 1 and ψ1 is

monotone. For r > 0 and for all x ∈ H1, define a mapping T (F1,ψ1)
r : H1→C as follows:

T (F1,ψ1)
r x = {z ∈C : F1(z,y)+ψ1(z,y)+

1
r
〈y− z,z− x〉 ≥ 0}, ∀y ∈C.

Then, the following hold:

(i) T (F1,ψ1)
r is single− valued.

(ii) T (F1,ψ1)
r is f irmly nonexpansive, i.e.,

‖T (F1,ψ1)
r (x)−T (F1,ψ1)

r (y)‖2 ≤ 〈T (F1,ψ1)
r (x)−T (F1,ψ1)

r (y),x− y〉, x,y ∈ H1.

(iii) Fix(T (F1,ψ1)
r ) = GEP(F1,ψ1).

(iv) GEP(F1,ψ1) is compact and convex.

Further, assume that F2,ψ2 : Q×Q→ R satisfying Assumption 1. For a > 0 and for all w ∈ H2,

define a mapping T (F2,ψ2)
a : H2→ Q as follows:

T (F2,ψ2)
a w = {d ∈ Q : F2(d,e)+ψ2(d,e)+

1
a
〈e−d,d−w〉 ≥ 0}, ∀e ∈ Q.

Then, we easily observe that T (F2,ψ2)
a satisfy in Lemma 7 and GEP(F2,ψ2) is compact and convex.
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Lemma 8. [10] Let F1 : C×C→ R be a bifunction satisfying Assumption 1 hold and let T F1
r be

defined as in Lemma 7, for r > 0. Let x,y ∈ H1 and r1,r2 > 0. Then,

‖T F1
r2

y−T F1
r1

x‖ ≤ ‖x− y‖+ |r2− r1

r2
|‖T F1

r2
y− y‖.

Lemma 9. [34] Let F1 : C×C→ R be a bifunction satisfying Assumption 1 hold and let T F1
r be

defined as in Lemma 7, for r > 0. Let x ∈ H1 and r1,r2 > 0. Then,

‖T F1
r2

x−T F1
r1

x‖2 ≤ r2− r1

r2
〈T F1

r2
(x)−T F1

r1
(x),T F1

r2
(x)− x〉.

3. Viscosity Iterative Algorithm for SGEP

Let H1 and H2 be two real Hilbert spaces and C ⊆ H1, Q ⊆ H2 be nonempty, closed and convex

subsets. Let F1,ψ1 : C×C→ R and F2,ψ2 : Q×Q→ R are nonlinear mappings satisfying As-

sumption 1 and F2 is upper semicontinuous in first argument. Let S = {T (s) : s ∈ [0,+∞)} be a

nonexpansive semigroup on C such that Θ = Fix(S)∩Γ 6= /0. Also f : H1→ H1 be a contraction

mapping with constant α ∈ (0,1), A : H1 → H2 be a bounded linear operator and B and D be

strongly positive bounded linear self adjoint operators on H1 with constants γ̄1, γ̄2 > 0, such that

0 < γ < γ̄1
α
< γ + 1

α
, γ̄1 ≤ ‖B‖ ≤ 1 and ‖D‖= γ̄2.

Algorithm 1. For given x0 ∈C arbitrary, let the sequence {xn} be generated by:{
un = T (F1,ψ1)

rn (xn +δA∗(T (F2,ψ2)
an − I)Axn)

xn+1 = αnγ f (xn)+βnDxn +((1− εn)I−βnD−αnB) 1
sn

∫ sn
0 T (s)unds,

(7)

where δ ∈ (0, 1
L2 ), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A, {sn} is pos-

itive real sequence, {αn}, {βn}, {εn} are the sequence in (0,1) such that εn ≤ αn, and {rn} ⊂ [r,∞)

with r > 0, {an} ⊂ [a,∞) with a > 0 satisfying conditions:

(C1) limn→∞ αn = limn→∞ βn = limn→∞ εn = 0, Σ∞
n=1αn = ∞;

(C2) limn→∞
|sn+1−sn|

sn
= 0, limn→∞ sn = ∞;

(C3) limn→∞ |rn+1− rn|= 0, liminfn→∞ rn > 0, limn→∞ |an+1−an|= 0.

Lemma 10. For any 0 < γ < γ̄1
α
< γ + 1

α
, there exist a unique fixed point for sequence {xn}.

Proof. Using similar argument used in the proof of Lemma 3.1 [28], we can find that the iteration

(7) is well defined.

Remark 3.1. By 7 (ii) for δ ∈ (0, 1
2L2 ),the mapping I + δA∗(T (F2,ψ2)

an − I)A is a nonexpansive

mapping and A∗(T (F2,ψ2)
an − I)A is a 1

2L2 -inverse strongly monotone mapping.

Lemma 11. Let p ∈ Θ = Fix(S)∩ Γ. Then the sequence {xn} generated by Algorithm 1 is

bounded.
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Proof. Theorem 3.1 [39] implies that

‖un− p‖2 ≤ ‖xn− p‖2 +δ (δ − 1
L2 )‖A∗(T

(F2,ψ2)
an − I)Axn‖2.

Since δ ∈ (0, 1
2L2 ), we have

‖un− p‖ ≤ ‖xn− p‖. (8)

Therefore

‖xn+1− p‖
= ‖αnγ f (xn)+βnDxn +((1− εn)I−βnD−αnB) 1

sn

∫ sn
0 T (s)unds− p‖

≤ αn‖γ f (xn)−Bp‖+βn‖Dxn−Dp‖+ εn‖p‖
+‖((1− εn)I−βnD−αnB)‖ 1

sn

∫ sn
0 ‖T (s)un−T (s)p‖ds

≤ αn(‖γ f (xn)− γ f (p)‖+‖γ f (p)−Bp‖)+βn‖Dxn−Dp‖+ εn‖p‖
+(1−βnγ̄2−αnγ̄1)‖un− p‖
≤ αnγα‖xn− p‖+αn‖γ f (p)−Bp‖+βnγ̄2‖xn− p‖+αn‖p‖
+(1−βnγ̄2−αnγ̄1)‖un− p‖

= (1− (γ̄1− γα)αn)‖xn− p‖+αn(‖p‖+‖γ f (p)−Bp‖)
≤max{‖xn− p‖, ‖γ f (p)−Bp‖+‖p‖

γ̄1−γα
}

...

≤max{‖x0− p‖, ‖γ f (p)−Bp‖+‖p‖
γ̄1−γα

}.

(9)

Hence {xn} is bounded.

Now, set tn := 1
sn

∫ sn
0 T (s)unds. Then the sequences {un}, {tn} and { f (xn)} are bounded.

Lemma 12. The following properties are satisfying for the algorithm 1

P1. limn→∞ ‖xn+1− xn‖= 0.

P2. limn→∞ ‖xn− tn‖= 0.

P3. limn→∞ ‖(T (F2,ψ2)
an − I)Axn‖2 = 0.

P4. limn→∞ ‖tn−un‖= 0.

P5. limn→∞ ‖T (s)tn− tn‖= 0.

Proof. P1: By Theorem 3.1 [39], we have

‖un+1−un‖ ≤ ‖xn+1− xn‖+δ‖A‖( |an+1−an|
an+1

ηn)
1
2 + |rn+1−rn|

rn+1
σn+1 (10)

where

σn+1 = supn∈N ‖T
(F1,ψ1)

rn+1 (xn+1 +δA∗(T (F2,ψ2)
an+1 − I)Axn+1)− (xn+1 +δA∗(T (F2,ψ2)

an+1 − I)Axn+1)‖

ηn = supn∈N〈T
(F2,ψ2)

an+1 Axn−T (F2,ψ2)
an Axn,T

(F2,ψ2)
an+1 Axn−Axn〉,
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‖tn+1− tn‖ = ‖ 1
sn+1

∫ sn+1
0 T (s)un+1ds− 1

sn

∫ sn
0 T (s)unds‖

= ‖ 1
sn+1

∫ sn+1
0 (T (s)un+1−T (s)un)ds+( 1

sn+1
− 1

sn
)
∫ sn

0 (T (s)un−T (s)p)ds

+ 1
sn+1

∫ sn+1
sn

(T (s)un−T (s)p)ds‖
≤ ‖un+1−un‖+ |sn+1−sn|sn

sn+1sn
‖un− p‖+ |sn+1−sn|

sn+1
‖un− p‖

= ‖un+1−un‖+ 2|sn+1−sn|
sn+1

‖un− p‖.

By (10) we estimate that

‖tn+1− tn‖ ≤ ‖xn+1− xn‖+δ‖A‖( |an+1−an|
an+1

ηn)
1
2 + |rn+1−rn|

rn+1
σn+1 +

2|sn+1−sn|
sn+1

‖un− p‖. (11)

setting xn+1 = εnxn +(1− εn)en, then we have

en+1− en = αn+1γ f (xn+1)+βn+1Dxn+1+((1−εn+1)I−βn+1D−αn+1B)tn+1−εn+1xn+1
1−εn+1

−αnγ f (xn)+βnDxn+((1−εn)I−βnD−αnB)tn−εnxn
1−εn

= αn+1
1−εn+1

(γ f (xn+1)−Btn+1)+
αn

1−εn
(Btn− γ f (xn))+

βn+1
1−εn+1

D(xn+1− tn+1)

+ βn
1−εn

D(tn− xn)+(tn+1− tn)+ εn
1−εn

xn− εn+1
1−εn+1

xn+1.

Using (11), we have

‖en+1− en‖ ≤ αn+1
1−εn+1

‖γ f (xn+1)−Btn+1‖+ αn
1−εn
‖γ f (xn)−Btn‖

+ βn+1
1−εn+1

‖D‖‖xn+1− tn+1‖+ βn
1−εn
‖D‖‖tn− xn‖+‖tn+1− tn‖

+ εn
1−εn
‖xn‖+ εn+1

1−εn+1
‖xn+1‖

≤ αn+1
1−εn+1

‖γ f (xn+1)−Btn+1‖+ αn
1−εn
‖γ f (xn)−Btn‖

+ βn+1
1−εn+1

‖D‖(‖xn+1‖+‖tn+1‖)+ βn
1−εn
‖D‖(‖tn‖+‖xn‖)+‖xn+1− xn‖

+δ‖A‖( |an+1−an|
an+1

ηn)
1
2 + |rn+1−rn|

rn+1
σn+1 +

2|sn+1−sn|
sn+1

‖un− p‖
+ εn

1−εn
‖xn‖+ εn+1

1−εn+1
‖xn+1‖

which implies that

‖en+1− en‖−‖xn+1− xn‖
≤ αn+1

1−εn+1
‖γ f (xn+1)−Btn+1‖+ αn

1−εn
‖γ f (xn)−Btn‖

+ βn+1
1−εn+1

‖D‖(‖xn+1‖+‖tn+1‖)+ βn
1−εn
‖D‖(‖tn‖+‖xn‖)+δ‖A‖( |an+1−an|

an+1
ηn)

1
2

+ |rn+1−rn|
rn+1

σn+1 +
2|sn+1−sn|

sn+1
‖un− p‖+ εn

1−εn
‖xn‖+ εn+1

1−εn+1
‖xn+1‖.

Hence, it follows by conditions (C1)− (C3) that

limsup
n→∞

(‖en+1− en‖−‖xn+1− xn‖)≤ 0. (12)
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From (12) and Lemma 4 we get limn→∞ ‖en+1− xn‖= 0, and then

lim
n→∞
‖xn+1− xn‖= lim

n→∞
(1− εn)‖en+1− xn‖= 0. (13)

Also by (11) we have limn→∞ ‖tn+1− tn‖= 0.

P2: We can write

‖xn− tn‖ ≤ ‖xn+1− xn‖+‖αnγ f (xn)+βnDxn +((1− εn)I−βnD−αnB)tn− tn‖
≤ ‖xn+1− xn‖+αn‖γ f (xn)−Btn‖+βn‖Dxn−Dtn‖+ εn‖tn‖
≤ ‖xn+1− xn‖+αn‖γ f (xn)−Btn‖+βnγ̄2‖xn− tn‖+ εn‖tn‖.

Then

(1−βnγ̄2)‖xn− tn‖ ≤ ‖xn+1− xn‖+αn‖γ f (xn)−Btn‖+ εn‖tn‖.

Therefore, we thus

‖xn− tn‖ ≤ 1
1−βn γ̄2

‖xn+1− xn‖+ αn
1−βn γ̄2

‖γ f (xn)−Btn‖+ εn
1−βn γ̄2

‖tn‖
≤ 1

1−βn γ̄2
‖xn+1− xn‖+ αn

1−βn γ̄2
(‖γ f (xn)−Btn‖+‖tn‖).

The condition (C1) together (P1) implies that

lim
n→∞
‖xn− tn‖= 0. (14)

P3: From (8), we have

‖xn+1− p‖2

= ‖αnγ f (xn)+βnDxn +((1− εn)I−βnD−αnB)tn− p‖2

= ‖αn(γ f (xn)−Bp)+βn(Dxn−Dp)+((1− εn)I−βnD−αnB)(tn− p)− εn p‖2

≤ ‖((1− εn)I−βnD−αnB)(tn− p)+βn(Dxn−Dp)− εn p‖2 +2〈αn(γ f (xn)−Bp),xn+1− p〉
≤ ((1−βnγ̄2−αnγ̄1)‖un− p‖+βn‖D‖‖xn− tn‖+ εn‖p‖)2 +2αn〈γ f (xn)−Bp,xn+1− p〉
= (1−βnγ̄2−αnγ̄1)

2‖un− p‖2 +(βn)
2‖D‖2‖xn− tn‖2 +(εn)

2‖p‖2

+2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)εn‖p‖‖un− p‖
+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉

(15)
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≤ (1−βnγ̄2−αnγ̄1)
2(‖xn− p‖2 +δ (δ − 1

L2 )‖A∗(T
(F2,ψ2)

an − I)Axn‖2)+(βn)
2‖D‖2‖xn− tn‖2

+(εn)
2‖p‖2 +2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)εn‖p‖‖un− p‖

+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉
≤ ‖xn− p‖2 +(βnγ̄2 +αnγ̄1)

2‖xn− p‖2 +(1−βnγ̄2−αnγ̄1)
2δ (δ − 1

L2 )‖A∗(T
(F2,ψ2)

an − I)Axn‖2

+(βn)
2‖D‖2‖xn− tn‖2 +(αn)

2‖p‖2 +2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖
+2(1−βnγ̄2−αnγ̄1)αn‖p‖‖un− p‖+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉.

Therefore

(1−βnγ̄2−αnγ̄1)
2δ ( 1

L2 −δ )‖A∗(T (F2,ψ2)
an − I)Axn‖2

≤ ‖xn− p‖2−‖xn+1− p‖2 +(βnγ̄2 +αnγ̄1)
2‖xn− p‖2 +(βn)

2‖D‖2‖xn− tn‖2 +(αn)
2‖p‖2

+2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)αn‖p‖‖un− p‖
+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉

≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+(βnγ̄2 +αnγ̄1)
2‖xn− p‖2 +(βn)

2‖D‖2‖xn− tn‖2

+(αn)
2‖p‖2 +2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)αn‖p‖‖un− p‖

+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉.

This implies by (C1), (P1) and (14) that

lim
n→∞
‖(T (F2,ψ2)

an − I)Axn‖2 = 0. (16)

P4: we have

‖un− p‖2 ≤ ‖xn− p‖2−‖un− xn‖2 +2δ‖un− xn‖‖A∗(T (F2,ψ2)
an − I)Axn‖,

The equations (15) and (16) imply that

‖xn+1− p‖2 ≤ (1−βnγ̄2−αnγ̄1)
2‖un− p‖2 +(βn)

2‖D‖2‖xn− tn‖2 +(εn)
2‖p‖2

+2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)εn‖p‖‖un− p‖
+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉
≤ (1−βnγ̄2−αnγ̄1)

2(‖xn− p‖2−‖un− xn‖2 +2δ‖A(un− xn)‖‖(T (F2,ψ2)
an − I)Axn‖)

+(βn)
2‖D‖2‖xn− tn‖2 +(εn)

2‖p‖2 +2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖
+2(1−βnγ̄2−αnγ̄1)εn‖p‖‖un− p‖+2βnεn‖D‖‖p‖‖xn− tn‖
+2αn〈γ f (xn)−Bp,xn+1− p〉
≤ ‖xn− p‖2 +(βnγ̄2 +αnγ̄1)

2‖xn− p‖2− (1−βnγ̄2−αnγ̄1)‖un− xn‖2

+2(1−βnγ̄2−αnγ̄1)
2δ‖A(un− xn)‖‖(T (F2,ψ2)

an − I)Axn‖+(βn)
2‖D‖2‖xn− tn‖2

+(αn)
2‖p‖2 +2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖

+2(1−βnγ̄2−αnγ̄1)αn‖p‖‖un− p‖+2βnεn‖D‖‖p‖‖xn− tn‖
+2αn〈γ f (xn)−Bp,xn+1− p〉.

Therefore
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(1−βnγ̄2−αnγ̄1)
2‖un− xn‖2

≤ ‖xn− p‖2−‖xn+1− p‖2 +(βnγ̄2 +αnγ̄1)
2‖xn− p‖2

+2(1−βnγ̄2−αnγ̄1)
2δ‖A(un− xn)‖‖(T (F2,ψ2)

an − I)Axn‖+(βn)
2‖D‖2‖xn− tn‖2 +(αn)

2‖p‖2

+2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)αn‖p‖‖un− p‖
+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉
≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+(βnγ̄2 +αnγ̄1)

2‖xn− p‖2

+2(1−βnγ̄2−αnγ̄1)
2δ‖A(un− xn)‖‖(T (F2,ψ2)

an − I)Axn‖+(βn)
2‖D‖2‖xn− tn‖2 +(αn)

2‖p‖2

+2(1−βnγ̄2−αnγ̄1)βn‖D‖‖un− p‖‖xn− tn‖+2(1−βnγ̄2−αnγ̄1)αn‖p‖‖un− p‖
+2βnεn‖D‖‖p‖‖xn− tn‖+2αn〈γ f (xn)−Bp,xn+1− p〉.

It follows by Condition (C1), (P2) and (P3) that

lim
n→∞
‖xn−un‖= 0. (17)

This implies by (14) and (17)that

‖tn−un‖ ≤ ‖tn− xn‖+‖xn−un‖→ 0. Therefore, limn→∞ ‖tn−un‖= 0.

P5: Let E := {w ∈ C : ‖w− p‖ ≤ ‖x0− p‖, 1
γ̄1−γα

‖γ f (p)−Bp‖+ ‖p‖}, Then E is a nonempty

bounded closed convex subset of C which is T (s)-invariant for each s∈ [0,+∞) and contains {xn}.
So, without loss of generality, we may assume that S := {T (s) : s ∈ [0,+∞)} is a nonexpansive

semigroup on E. From Theorem 1 [13] we have

‖T (s)xn− xn‖ ≤ 2‖ 1
sn

∫ sn
0 T (s)unds− xn‖+‖T (s) 1

sn

∫ sn
0 T (s)unds− 1

sn

∫ sn
0 T (s)unds‖.

By Lemma 3 and (14), we obtain limn→∞ ‖T (s)xn− xn‖= 0.

Therefore
‖T (s)tn− xn‖ ≤ ‖T (s)tn−T (s)xn‖+‖T (s)xn− xn‖

≤ ‖tn− xn‖+‖T (s)xn− xn‖→ 0,

‖T (s)tn− tn‖ ≤ ‖T (s)tn−T (s)xn‖+‖T (s)xn− xn‖+‖xn− tn‖
≤ ‖tn− xn‖+‖T (s)xn− xn‖+‖xn− tn‖→ 0.

Then we have limn→∞ ‖T (s)tn− tn‖= 0.
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4. Convergence Algorithm

Theorem 1. The Algorithm defined by (7) convergence strongly to z ∈ Fix(S)∩Γ, which is a

unique solution of the variational inequality

〈(γ f −A)z,y− z〉 ≤ 0, ∀y ∈Θ.

Proof. Let s = PΘ. We get

‖s(I−B+ γ f )(x)− s(I−B+ γ f )(y)‖ ≤ ‖(I−B+ γ f )(x)− (I−B+ γ f )(y)‖
≤ ‖I−B‖‖x− y‖+ γ‖ f (x)− f (y)‖
≤ (1− γ̄1)‖x− y‖+ γα‖x− y‖
= (1− (γ̄1− γα))‖x− y‖.

Then s(I−B+ γ f ) is a contraction mapping from H1 into itself. Therefore by Banach contraction

principle, there exists z ∈ H1 such that z = s(I−B+ γ f )z = PΘ(I−B+ γ f )z.

We show that limsupn→∞〈(γ f −B)z,xn− z〉 ≤ 0 where z = PΘ(I−B+ γ f ). To show this inequal-

ity, we choose a subsequence {tni} of {tn} ⊆ E such that

limsup
n→∞

〈(γ f −B)z, tn− z〉= limsup
n→∞

〈(γ f −B)z, tni− z〉. (18)

Since {tni} is bounded, there exists a subsequence {tni j
} of {tni} which converges weakly to some

w∈C. Without loss of generality, we can assume that tni ⇀ w. Now, we prove that w∈ Fix(S)∩Γ.

Let us first show that w ∈ Fix(S). Assume that w /∈ Fix(S). Since tni ⇀ w and T (s)w 6= w, from

Opial’s conditions (6) and Lemma 12 (P5), we have

liminfn→∞ ‖tni−w‖ < liminfn→∞ ‖tni−T (s)w‖
≤ liminfn→∞(‖tni−T (s)tni‖+‖T (s)tni−T (s)w‖)
≤ liminfn→∞ ‖tni−w‖,

which is a contradiction. Thus, we obtain w∈Fix(S). We show that w∈Γ. Since un =T (F1,ψ1)
rn (xn+

δA∗(T (F2,ψ2)
an − I)Axn), where dn = xn +δA∗(T (F2,ψ2)

an − I)Axn.

we have

F1(un,y)+ψ1(un,y)+
1
rn
〈y−un,un−dn〉 ≥ 0, ∀y ∈C.

It follows from the monotonically of F1 that

ψ1(un,y)+
1
rn
〈y−un,un−dn〉 ≥ F1(un,y), ∀y ∈C

which implies that

ψ1(un,y)+ 〈y−uni ,
uni− xni

rn
+δA∗(

(T (F2,ψ2)
ani

− I)Axni

rn
)〉 ≥ F1(y,uni), ∀y ∈C.
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From ‖un− xn‖→ 0, we get uni ⇀ w and uni−xni
rn
→ 0.

Since limn→∞ ‖A∗(T (F2,ψ2)
an − I)Axn‖= 0, then A∗(

(T (F2 ,ψ2)
ani

−I)Axni
rn

)→ 0.

Therefore

ψ1(uni ,y)≥ F1(y,uni), ψ1(w,y)≥ F1(y,w).

Let yt = ty+(1− t)w for all t ∈ (0,1]. Since y ∈ C and w ∈ C, we get yt ∈ C. It follows from

Assumption 1 that

0 = F1(yt ,yt)+ψ1(yt ,yt) ≤ tF1(yt ,y)+(1− t)F1(yt ,w)

+tψ1(yt ,y)+(1− t)ψ1(yt ,w)

= t(F1(yt ,y)+ψ1(yt ,y))

+(1− t)(F1(yt ,w)+ψ1(yt ,w))

≤ F1(yt ,y)+ψ1(yt ,y),

so 0≤ F1(yt ,y)+ψ1(yt ,y).

Letting t → 0, we obtain 0 ≤ F1(w,y)+ψ1(w,y). This implies that w ∈ GEP(F1,ψ1). Now we

show that Aw ∈ GEP(F2,ψ2). Since ‖un− xn‖ → 0, un ⇀ w as n→ ∞ and {xn} is bounded, there

exists a subsequence {xn j} of {xn} such that xn j ⇀ w and since A is bounded linear operator so

that Axn j ⇀ Aw.

From ‖(T (F2,ψ2)
an − I)Axn‖→ 0, we have T (F2,ψ2)

an Axn j ⇀ Aw. Therefore from Lemma 7, we have

F2(T
(F2,ψ2)

an j
Axn j ,v)+h2(T

(F2,ψ2)
an j

Axn j ,v)+
1

an j

〈v−T (F2,ψ2)
an j

Axn j ,T
(F2,ψ2)

an j
Axn j−Aw〉≥ 0, ∀v∈Q.

Since F2 is upper semicontinuous in first argument, from above inequality, we obtain

F2(Aw,v)+ψ2(Aw,v)≥ 0, ∀v ∈ Q,

which means that Aw ∈ GEP(F2,ψ2) and hence w ∈ Γ.

We claim that limsupn→∞〈(γ f −B)z,xn− z〉 ≤ 0, where z = PΘ(I−B+ γ f ). Now from (3), we

have

limsupn→∞〈(γ f −B)z,xn− z〉 = limsupn→∞〈(γ f −B)z, tn− z〉
≤ limsupn→∞〈(γ f −B)z, tni− z〉
= 〈(γ f −B)z,w− z〉
≤ 0.

(19)

Next, we show that xn→ z. It follows from (8) that
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‖xn+1− z‖2 = αn〈γ f (xn)−Bz,xn+1− z〉+βn〈Dxn−Dz,xn+1− z〉− εn〈z,xn+1− z〉
+〈((1− εn)I−βnD−αnB)(tn− z),xn+1− z〉
≤ αn(γ〈 f (xn)− f (z),xn+1− z〉+ 〈γ f (z)−Bz,xn+1− z〉)+βn‖D‖‖xn− z‖‖xn+1− z‖
−εn‖z‖‖xn+1− z‖+‖(1− εn)I−βnD−αnB‖‖tn− z‖‖xn+1− z‖
≤ αnαγ‖xn− z‖‖xn+1− z‖+αn〈γ f (z)−Bz,xn+1− z〉+βnγ̄2‖xn− z‖‖xn+1− z‖
−εn‖z‖‖xn+1− z‖+(1−βnγ̄2−αnγ̄1)‖xn− z‖‖xn+1− z‖

= (1−αn(γ̄1−αγ))‖xn− z‖‖xn+1− z‖− εn‖z‖‖xn+1− z‖+αn〈γ f (z)−Bz,xn+1− z〉
≤ 1−αn(γ̄1−αγ)

2 (‖xn− z‖2 +‖xn+1− z‖2)− εn‖z‖‖xn+1− z‖+αn〈γ f (z)−Bz,xn+1− z〉
≤ 1−αn(γ̄1−αγ)

2 ‖xn− z‖2 + 1
2‖xn+1− z‖2− εn‖z‖‖xn+1− z‖+αn〈γ f (z)−Bz,xn+1− z〉.

This implies that

2‖xn+1− z‖2 ≤ (1−αn(γ̄1−αγ))‖xn− z‖2 +‖xn+1− z‖2

−2αn‖z‖‖xn+1− z‖+2αn〈γ f (z)−Bz,xn+1− z〉.

Then

‖xn+1− z‖2 ≤ (1−αn(γ̄1−αγ))‖xn− z‖2−2αn‖z‖‖xn+1− z‖+2αn〈γ f (z)−Bz,xn+1− z〉
= (1− kn)‖xn− z‖2 +2αnln,

(20)

where kn = αn(γ̄1−αγ) and ln = 〈γ f (z)−Bz,xn+1− z〉−‖z‖‖xn+1− z‖.
Since limn→∞ αn = 0 and Σ∞

n=0αn = ∞, it is easy to see that limn→∞ kn = 0, Σ∞
n=0kn = ∞ and

limsupn→∞ ln ≤ 0. Hence, from (19) and (20) and Lemma 5, we deduce that xn → z, where

z = PΘ(I−B+ γ f )z.

Remark 4.1. Putting rn = an,{εn} = 0,D = 0 and δ ∈ (0, 1
L) we obtain method introduced in

Theorem 1 [13]. Taking H1 = H2 = H,ψ1 = ψ2 = 0,{βn} = {εn} = 0 and A = D = 0, then

Theorem 4.1 of [9] is obtained. Taking H1 = H2 = H,F1 = F2 = ψ1 = ψ2 = 0,{εn}= 0,A = 0 and

B = D = I, then Theorem 3.3 of [24] is obtained.

5. Numerical Examples

In this section, we give some examples and numerical results for supporting our main theorem.

All the numerical results have been produced in Matlab 2017 on a Linux workstation with a 3.8

GHZ Intel annex processor and 8 Gb of memory.

Example 5.1. Let H1 = H2 = R2, the set of all real numbers, with the inner product defined

by 〈(x,y),(z, t)〉 = xz+ yt, ∀(x,y),(z, t) ∈ R2, and induced usual norm ‖(x,y)‖ = (x2 + y2)
1
2 . Let

C = [−1,2]×[0,3], Q= [−4,0]×[0,3]. Define bifunctions F1,ψ1 :C×C→R by F1((x,y),(z, t))=

(x,y−3)(z− x, t− y) and ψ1((x,y),(z, t)) = (3x,2y+3)(z− x, t− y). Define F2,ψ2 : Q×Q→ R
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by F2((u,v),(k, l)) = (u−2,v)(k−u, l−v) and ψ2((u,v),(k, l)) = (−3u+2, v
2)(k−u, l−v). Fur-

thermore, define f (x,y) = (1
8 x, 1

7 y), A(x,y) = (2x,2y), B(x,y) = (−2x,−2y), D(x,y) = (1
2 x, 1

2 y).

We define a nonexpansive semigroup mappings on C as follows:

T (s)(x,y) =
1

1+2s
(x,y)

Choose αn = 1
2n , βn = 1

n2+n , εn = 1
3n2 , sn = 2n, rn = 1 + 1

n and an = 2n
3n−1 . The sequences

{(xn,yn)} ⊂ R2, {un} ⊂C, and {zn} ⊂ Q generated by the iterative schemes

zn = T (F2,ψ2)
an (A(xn,yn)); un = T (F1,ψ1)

rn ((xn,yn)+
1
16

A∗(zn−A(xn,yn))); (21)

(xn+1,yn+1)=
1
n
(
1
8

xn,
1
7

yn)+
1

2(n2 +n)
(xn,yn)+((1− 1

3n2 )I−
1

(n2 +n)
D− 1

2n
B)

1
sn

∫ sn

0

1
1+2s

unds

(22)

It is easy to check that all the conditions in Theorem 1 satisfy with w = {(0,0)} ∈ Fix(S)∩Γ.

After simplification, schemes (21) and (22) reduce to

zn = ( (2−6n)
n+1 xn,

6n−2
6n−1 yn);

un = ( n
(n+1)(5n+1)xn,

42n2−8n
(48n−8)(2n+3)yn);

(xn+1,yn+1) =
1
n
(
1
8

xn,
1
7

yn)+
1

2(n2 +n)
(xn,yn)+

1
4n

ln(1+4n)(1− 1
3n2 −

1
2(n2 +n)

+
1
n
)un

Choose (x1,y1) = (2,1). Figure 1 indicates the behavior of xn for algorithm (1), which converges

to the same solution, that is, w = {(0,0)} ∈ Fix(S)∩Γ as a solution of this example.

FIGURE 1. The graph of {(xn,yn)} with initial value (2,1).

Example 5.2. Let H1 = H2 = R with the inner product 〈x,y〉 = xy, ∀x,y ∈ R, and induced usual

norm | . |. Let C = [0,2], Q = [−4,−2]. Define F1,ψ1 : C×C→ R by F1(x,y) = (x− 6)(y− x)

and ψ1(x,y) = 2x(y− x), ∀x,y ∈ C. Define F2,ψ2 : Q×Q→ R by F2(u,v) = (u+ 16)(v− u)

and ψ2(u,v) = 3u(v− u). Let f (x) = 1
6 x, A(x) = −2x, B(x) = 1

2 x, D(x) = x, and for each x ∈
C, T (s)x = x. Furthermore, we take αn = 1

n , βn = 1
2(n+1)2 , εn = 1

n2 , sn = n, rn = 1 + 2
n and
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an =
n

2n+1 , in algorithm (1), we obtain

xn+1 = (
1
3n

+
1

2(n+1)2 )xn +((1− 1
n2 )I−

1
2(n+1)2 D− 1

n
B)

1
sn

∫ sn

0
unds

After simplification, schemes we have

xn+1 = (
1
3n

+
1

2(n+1)2 )xn +un(1−
1
n2 −

1
2(n+1)2 −

1
2n

)

Figure 2 indicates the behavior of xn with initial point x1 = 0.1.

FIGURE 2. The graph of {xn} with initial value x1 = 0.1.

Example 5.3. Let H1 = H2 = R with the inner product defined by 〈x,y〉= xy, and induced usual

norm | . |. Let C = [0,4],Q = [0,2].Define F1 : C×C→ R by F1(x,y) = x(y− x). Define F2 :

Q×Q→ R by F2(u,v) = −2u(u− v). Let f (x) = 1
8 x, A(x) = −x, B(x) = x, D(x) = 3x, and for

each x∈C, T (s)x= e−2sx. Furthermore, we take αn =
1√
n , βn =

1
n+1 , εn =

1
2n2 , sn = 2n, rn = 1+ 1

n

and an =
2n

3n−1 in algorithm (1), we obtain

xn+1 = (
1

4
√

n
+

3
n+1

)xn +((1− 1
2n2 )I−

1
n+1

D− 1√
n

B)
1
sn

∫ sn

0
e−2sunds

After simplification,we have

xn+1 = (
1

4
√

n
+

3
n+1

)xn +(1− 1
2n2 −

3
n+1

− 1√
n
)(

1− e−4n

2n
)un

Figure 3 indicates the behavior of xn with initial point x1 = 1.

FIGURE 3. The graph of {xn} with initial value x1 = 1.
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6. Conclusions

We have proposed an iterative algorithm for finding a common solution of a system of generalized

equilibrium problems, a split equilibrium and a hierarchial fixed point prob- lems over the com-

mon fixed points set of nonexpansive semigroups in Hilbert spaces.We proved that the proposed

iterative has strong convergence under some mild conditions imposed on algorithm parameters.
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